JPH0233784B2 - TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN - Google Patents

TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN

Info

Publication number
JPH0233784B2
JPH0233784B2 JP10138084A JP10138084A JPH0233784B2 JP H0233784 B2 JPH0233784 B2 JP H0233784B2 JP 10138084 A JP10138084 A JP 10138084A JP 10138084 A JP10138084 A JP 10138084A JP H0233784 B2 JPH0233784 B2 JP H0233784B2
Authority
JP
Japan
Prior art keywords
carbide
wear
less
matrix
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10138084A
Other languages
Japanese (ja)
Other versions
JPS59229465A (en
Inventor
Juichi Saito
Masayuki Iijima
Hachiro Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP10138084A priority Critical patent/JPH0233784B2/en
Publication of JPS59229465A publication Critical patent/JPS59229465A/en
Publication of JPH0233784B2 publication Critical patent/JPH0233784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、すぐれた耐摩耗性を有し、例えば
内燃機関のバルブロツカアームのパツト面の形成
やタペツトの製造などに使用した場合に、相手部
材であるカムシヤフトを損傷することなく、それ
自体もすぐれた耐摩耗性を示すFe基焼結合金に
関するものである。 〔従来技術およびその問題点〕 一般に、例えば内燃機関のバルブロツカアーム
のパツト面は、強い衝撃荷重と高速摺動を受ける
ものであるため、前記パツト面を形成する材料に
は耐摩耗性と相手部材であるカムシヤフトを損耗
させない性質が要求される。 従来、このような荷重と摺動を受ける機械部品
の製造には、 (a) 鋳造に際して荷重および摺動を受ける部分を
チル化した鋳鉄、 (b) 炭化タングステン、炭化モリブデンなどから
なる硬質粒子を分散させて硬さ向上をはかつた
焼結合金、 などの材料が使用されているが、上記(a)材料は満
足する耐摩耗性を示さず、また上記(b)材料におい
ては、それ自体非常に硬質であるため相手部材を
損耗させ、しかもこの損耗度合は分散硬質粒子の
量が多く、その粒径が大きいほど増大するもので
あり、このようなことから逆に分散硬質粒子の量
を少なく、その粒径を微細にすれば、それ自体の
耐摩耗性が低下して望ましくなく、さらに、この
(b)材料は通常の焼結法によつて製造されるもので
あるため普通密度が低くならざるを得ず、この結
果靭性不足をきたしてマトリツクス破壊が進行す
るなどの問題点を有している。 〔研究の目的および研究に基く知見事項〕 本発明者等は、上述のような観点から、すぐれ
た耐摩耗性および靭性を有すると共に、相手部材
に及ぼす損耗がほとんど皆無の合金を得べく研究
を行なつた結果、重量%で(以下%は重量%を示
す)、 C:1〜3%、 Cr:10.1〜20%、 Nb:0.2〜5%、 を含有し、さらに、 Mo:0.5〜10%、 W:0.5〜10%、 V:0.2〜5%、 Ta:0.2〜5%、 のうちの1種または2種以上を含有し(ただし
Mo、W、V、およびTaからなる炭化物形成成分
の合量:20%以下)、さらに必要に応じて、 Ni:0.5〜10%、 Co:0.5〜10%、 のうちの1種または2種を含有し、残りがFeと
不可避不純物からなる組成で構成されたFe基焼
結合金においては、マトリツクス中に均一に分散
した硬い炭化物粒子によつて耐摩耗性が向上し、
かつ前記炭化物粒子の平均粒径はNb成分の作用
によつて針状炭化物の減少がはかられるため3〜
50μmと比較的微細になるので、使用初期におい
て炭化物粒子より軟いマトリツクスが摩耗して早
期に平滑な摩耗面を形成することから、相手部材
に対するなじみ性がきわめて良好になると共に、
摩擦面の面圧が微細な炭化物粒子に一様に分散さ
れるようになることから、それ自体は勿論のこ
と、相手部材の摩耗も改善し、さらにNb成分の
含有によつて焼結性が一段と向上し、合金は理論
密度比:90%以上の緻密な組織をもつようになる
ので、靭性のきわめて高いものとなり、この結果
靭性不足に帰因するマトリツクス破壊が皆無とな
り、さらに必要に応じて含有されるNiおよびCo
成分によつてマトリツクスが一段と強化され、か
つなじみ性も著しく向上するようになるという知
見を得たのである。 〔発明の構成要件〕 したがつて、この発明は、上記知見に基いてな
されたものであつて、 C:1〜3%、 Cr:10.1〜20%、 Nb:0.2〜5%、 を含有し、 Mo:0.5〜10%、 W:0.5〜10%、 V:0.2〜5%、 Ta:0.2〜5%、 のうちの1種または2種以上を含有し(ただし
Mo、W、V、およびTaからなる炭化物形成成分
の合量:20%以下)、さらに必要に応じて、 Ni:0.5〜10%、 Co:0.5〜10%、 のうちの1種または2種を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ理論密度比:90%以上をもつと共に、素
地中に平均粒径:3〜50μmの炭化物粒子が均一
に分散した組織をもつFe基焼結合金に特徴を有
するものである。 〔技術的限定理由〕 ついで、この発明のFe基焼結合金において、
成分組成範囲、理論密度比、および炭化物粒子の
平均粒径を上記の通り数値限定した理由を説明す
る。 (a) C C成分には、CrおよびNb成分、さらに上記
の炭化物形成成分と結合して炭化物を形成し、
合金の耐摩耗性を向上させる作用があるが、そ
の含有量が1%未満では、炭化物の析出量が少
なすぎて所望のすぐれた耐摩耗性を確保するこ
とができず、一方3%を越えて含有させると、
炭化物の析出量が多くなりすぎて相手部材が著
しく摩耗するようになると共に、靭性低下をき
たすようになることから、その含有量を1〜3
%と定めた。 (b) Cr Cr成分には、Cと結合してビツカース硬
さ:1000〜1800をもつた高硬度Cr炭化物を析
出し、合金の耐摩耗性を一段と改善すると共
に、マトリツクス中に固溶して、その耐熱性を
著しく向上させる作用があるが、その含有量が
10.1%未満では、前記作用に所望の効果が得ら
れず、一方20%を越えて含有させると、相手部
材の摩耗が激しくなると共に、合金脆化が発生
するようになることから、その含有量を10.1〜
20%と定めた。 (c) Nb Nb成分には、C成分と結合してビツカース
硬さ:2300〜3300をもつた高硬度炭化物を形成
して合金の耐摩耗性を改善するほか、上記のよ
うに針状炭化物の形成を抑制して炭化物を微細
化し、もつてなじみ性を向上させると共に、焼
結性を向上させて組織を緻密化する作用がある
が、その含有量が0.2%未満では前記作用が不
十分、すなわち炭化物粒子の平均粒径を50μm
以下にすることができないばかりでなく、組織
の緻密化も難しく、一方5%を越えて含有させ
ると、平均粒径が3μm未満の硬質にして微細
な炭化物粒子が多量に形成するようになつて相
手部材を著しく損耗するようになることから、
その含有量を0.2〜5%と定めた。 (d) 炭化物形成成分 これらの成分には、C成分と結合して、Wお
よびMoはビツカース硬さ:1000〜3000を有す
る複合炭化物、またVおよびTaはビツカース
硬さ:2300〜3300を有するMC型炭化物を形成
し、もつて合金の耐摩耗性を向上させるほか、
マトリツクスに固溶して耐熱性を向上させる作
用があるが、その含有量が、それぞれMo:0.5
%未満、W:0.5%未満、V:0.2%未満、およ
びTa:0.2%未満では前記作用に所望の効果が
得られず、一方Mo:10%、W:10%、V:5
%、およびTa:5%をそれぞれ越えて含有さ
せると、相手部材を損耗させる度合が激しくな
るばかりでなく、被研削性も劣化するようにな
ることから、その含有量を、それぞれMo:0.5
〜10%、W:0.5〜10%、V:0.2〜5%、およ
びTa:0.2〜5%と定めた。また、これら炭化
物形成成分の合量が20%を越えると、同様に析
出炭化物の量が多くなりすぎて相手部材を著し
く損耗するようになることから、これら炭化物
形成成分の合量を20%以下と定めた。 (e) NiおよびCo NiおよびCo成分は、上記の通り、より一層
のマトリツクス強化となじみ性改善をはかるた
めに選択的に含有されるが、その含有量がそれ
ぞれ0.5%未満では所望の添加含有効果が得ら
れず、一方それぞれ10%を越えて含有させて
も、より一層の改善効果は見られず、経済性を
考慮して上限値を10%と定めた。 (f) 合金の理論密度比 その理論密度比が90%未満では、マトリツク
スの強度が低く、空孔も存在し、前記空孔のも
つ切欠き効果によつてクラツク伝播が促進され
るようになることから、摩擦面における前記マ
トリツクスは大巾に破壊され、この結果摩耗が
著しくなるので、90%以上の理論密度比をもつ
ようにしなければならない。 (g) 炭化物粒子の平均粒径 その平均粒径が3μm未満では、細かすぎて
所望のすぐれた耐摩耗性を確保することができ
ず、一方50μmを越えて大きな平均粒径にする
と、炭化物粒子にへき開や剥離が発生し、これ
が連続するとマトリツクスに破壊が起るばかり
でなく、相手部材をも著しく損耗するようにな
ることから、その平均粒径を3〜50μmと定め
たのである。 〔実施例および効果の確認〕 つぎに、この発明のFe基焼結合金を実施例に
より比較例と対比しながら説明する。 まず、酸化鉄粉末を主原料として使用し、これ
に各成分の金属酸化物粉末と炭素粉末を所定量配
合した後、水素還元(炭素と水素による共還元
法)して合金粉末とし、ついでこの合金粉末から
5ton/cm2の圧力で圧粉体を成形した後、この圧粉
体を真空中、1120〜1180℃の範囲内の所定温度で
焼結して、それぞれ第1表に示される成分組成を
もつた焼結体を製造し、引続いてこの焼結体に、
温度:1000℃に加熱して焼入れした後、温度:
540〜560℃に1時間保持の熱処理を施すことによ
つて本発明合金1〜23と比較合金1〜6をそれぞ
れ製造した。 なお、比較合金1〜6は、構成成分のうちのい
ずれかの成分(第1表に※印を付した成分)がこ
[Industrial Application Field] This invention has excellent wear resistance, and when used, for example, for forming the part surface of a valve locker arm of an internal combustion engine or manufacturing a tappet, it will not damage the camshaft, which is a mating member. The present invention relates to an Fe-based sintered alloy that itself exhibits excellent wear resistance without any damage. [Prior art and its problems] In general, for example, the part surface of a valve locker arm of an internal combustion engine is subjected to strong impact loads and high-speed sliding. It is required that the camshaft, which is a member, not be damaged. Conventionally, the manufacturing of mechanical parts that are subjected to such loads and sliding has been done using (a) cast iron whose parts that are subjected to loading and sliding are chilled during casting, and (b) hard particles made of tungsten carbide, molybdenum carbide, etc. Materials such as sintered alloys that are dispersed to improve hardness have been used, but materials (a) above do not exhibit satisfactory wear resistance, and materials (b) above do not exhibit sufficient wear resistance. Because it is extremely hard, it causes damage to the mating member, and the degree of this wear increases as the amount of dispersed hard particles increases and the particle size increases. If the particle size is made finer, the wear resistance of itself will decrease, which is undesirable.
(b) Since the material is manufactured by a normal sintering method, it usually has a low density, which results in problems such as insufficient toughness and progression of matrix fracture. There is. [Purpose of the research and findings based on the research] From the above-mentioned viewpoints, the present inventors conducted research in order to obtain an alloy that has excellent wear resistance and toughness and causes almost no wear on mating parts. As a result, it contained, in weight% (hereinafter % indicates weight%), C: 1 to 3%, Cr: 10.1 to 20%, Nb: 0.2 to 5%, and further Mo: 0.5 to 10. %, W: 0.5-10%, V: 0.2-5%, Ta: 0.2-5%, containing one or more of the following (but
Total amount of carbide-forming components consisting of Mo, W, V, and Ta: 20% or less), and if necessary, one or two of the following: Ni: 0.5 to 10%, Co: 0.5 to 10%. In the Fe-based sintered alloy, which has a composition of Fe and unavoidable impurities, the wear resistance is improved by the hard carbide particles uniformly dispersed in the matrix.
In addition, the average particle size of the carbide particles is 3 to 3, since acicular carbides are reduced by the action of the Nb component.
Since it is relatively fine at 50 μm, the matrix, which is softer than the carbide particles, wears out in the early stages of use, forming a smooth worn surface at an early stage, resulting in extremely good compatibility with the mating part, and
Since the surface pressure on the friction surface is uniformly dispersed in the fine carbide particles, it improves not only the wear itself but also the wear of the mating member, and the inclusion of Nb improves sinterability. As the alloy is further improved and has a dense structure with a theoretical density ratio of 90% or more, it has extremely high toughness, and as a result, there is no matrix fracture due to lack of toughness. Ni and Co contained
They discovered that the matrix can be further strengthened and its compatibility can be significantly improved depending on the ingredients. [Components of the invention] Therefore, this invention was made based on the above knowledge, and contains C: 1 to 3%, Cr: 10.1 to 20%, and Nb: 0.2 to 5%. , Mo: 0.5-10%, W: 0.5-10%, V: 0.2-5%, Ta: 0.2-5%, containing one or more of the following (however,
Total amount of carbide-forming components consisting of Mo, W, V, and Ta: 20% or less), and if necessary, one or two of the following: Ni: 0.5 to 10%, Co: 0.5 to 10%. The remainder is Fe and unavoidable impurities (wt%), and the theoretical density ratio is 90% or more, and carbide particles with an average particle size of 3 to 50 μm are uniformly distributed in the matrix. This is a Fe-based sintered alloy with a dispersed structure. [Reason for technical limitation] Next, in the Fe-based sintered alloy of the present invention,
The reason why the component composition range, theoretical density ratio, and average particle size of carbide particles are numerically limited as described above will be explained. (a) The C component contains Cr and Nb components, and further combines with the above carbide-forming components to form carbide,
It has the effect of improving the wear resistance of the alloy, but if its content is less than 1%, the amount of carbide precipitated is too small to ensure the desired excellent wear resistance, while if it exceeds 3%. When it is included,
If the amount of carbide precipitated becomes too large, it will cause significant wear on the mating member and also cause a decrease in toughness, so the content should be reduced to 1 to 3.
%. (b) Cr The Cr component combines with C to precipitate high-hardness Cr carbide with a Vickers hardness of 1000 to 1800, which further improves the wear resistance of the alloy, and also forms a solid solution in the matrix. , has the effect of significantly improving its heat resistance, but its content is
If the content is less than 10.1%, the desired effect cannot be obtained, while if the content exceeds 20%, the wear of the mating member becomes severe and alloy embrittlement occurs. 10.1~
It was set at 20%. (c) Nb The Nb component combines with the C component to form a high hardness carbide with a Vickers hardness of 2300 to 3300 to improve the wear resistance of the alloy. It has the effect of suppressing the formation of carbides and making them finer, thereby improving conformability, as well as improving sinterability and densifying the structure, but if the content is less than 0.2%, the above effects are insufficient. In other words, the average particle size of carbide particles is 50 μm.
Not only is it impossible to reduce the content to less than 5%, but it is also difficult to make the structure dense, and on the other hand, if the content exceeds 5%, a large amount of hard and fine carbide particles with an average particle size of less than 3 μm will be formed. This will result in significant wear and tear on the mating parts.
Its content was set at 0.2-5%. (d) Carbide-forming components These components include, in combination with the C component, W and Mo are composite carbides having a Bitkers hardness of 1000 to 3000, and V and Ta are MC having a Bitkers hardness of 2300 to 3300. In addition to forming type carbides and improving the wear resistance of the mote alloy,
It dissolves in the matrix and has the effect of improving heat resistance, but the content is
%, W: less than 0.5%, V: less than 0.2%, and Ta: less than 0.2%, the desired effect cannot be obtained, while Mo: 10%, W: 10%, V: 5
If the content exceeds Mo: 0.5% and Ta: 5%, not only will the degree of wear on the mating member increase, but also the grindability will deteriorate.
-10%, W: 0.5-10%, V: 0.2-5%, and Ta: 0.2-5%. In addition, if the total amount of these carbide-forming components exceeds 20%, the amount of precipitated carbides will similarly become too large and cause significant wear on the mating component, so the total amount of these carbide-forming components should be reduced to 20% or less. It was determined that (e) Ni and Co As mentioned above, Ni and Co components are selectively included in order to further strengthen the matrix and improve compatibility, but if their content is less than 0.5% each, the desired addition content is reduced. No effect was obtained, and on the other hand, no further improvement was observed even if the content exceeded 10% of each, so the upper limit was set at 10% in consideration of economic efficiency. (f) Theoretical density ratio of the alloy When the theoretical density ratio is less than 90%, the strength of the matrix is low and voids are present, and the crack propagation is promoted by the notch effect of the voids. Therefore, the matrix on the friction surface is extensively destroyed, resulting in significant wear, so it must have a theoretical density ratio of 90% or more. (g) Average particle size of carbide particles If the average particle size is less than 3 μm, it is too fine to ensure the desired excellent wear resistance, whereas if the average particle size is larger than 50 μm, the carbide particles The average particle size was set at 3 to 50 μm because cleavage and peeling occur, and if this continues, not only will the matrix be destroyed, but the mating member will also be significantly worn out. [Examples and Confirmation of Effects] Next, the Fe-based sintered alloy of the present invention will be explained using Examples and in comparison with Comparative Examples. First, iron oxide powder is used as the main raw material, and a predetermined amount of metal oxide powder and carbon powder of each component are blended into it, and then hydrogen reduction (co-reduction method using carbon and hydrogen) is performed to form an alloy powder. from alloy powder
After forming a green compact at a pressure of 5 ton/cm 2 , this green compact is sintered in a vacuum at a predetermined temperature within the range of 1120 to 1180°C, each having the component composition shown in Table 1. A sintered body is manufactured, and then this sintered body is
Temperature: After heating to 1000℃ and quenching, temperature:
Alloys 1 to 23 of the present invention and Comparative Alloys 1 to 6 were produced by heat treatment maintained at 540 to 560°C for 1 hour. In addition, for Comparative Alloys 1 to 6, one of the constituent components (components marked with * in Table 1) was

【表】【table】

【表】 の発明の範囲から外れた組成をもつものである。 つぎに、この結果得られた本発明合金1〜23お
よび比較合金1〜6について、炭化物粒子の平均
粒径、理論密度比、ビツカース硬さ、および抗折
力を測定すると共に、これをロツカーアームのパ
ツト面に使用して、運転時間:100時間(スプリ
ング荷重:110Kg)の摩耗試験を行ない、その摩
耗量と相手部材であるカムの摩耗量を測定した。
これらの結果を第1表に合せて示した。また、第
1表には、従来材料としてパツト面をチル処理し
た鋳鉄の同一条件での摩耗試験結果も示した。 第1表に示される結果から、本発明合金1〜23
は、いずれも従来材料に比して、著しくすぐれた
耐摩耗性を有し、かつ相手部材の摩耗もきわめて
小さいのに対して、比較合金1〜6に見られるよ
うに、CおよびCr成分の含有量が本発明範囲か
ら外れて低い場合には十分な耐摩耗性が得られ
ず、一方CおよびCr成分の含有量が高い方に外
れると、相対的に相手部材の摩耗がはげしくな
り、またNb成分の含有量が低い方に外れると、
所望の炭化物粒子の微細化および組織の緻密化を
はかることができないことから、炭化物粒子の平
均粒径が50μmを越えて大きくなり、相手部材を
著しく損耗させるばかりでなく、理論密度化も90
%未満となつてしまつて自体の摩耗もはげしくな
り、一方Nb含有量が5%を越えると、平均粒
径:1μmの微細な炭化物粒子が多量に存在する
ようになることから、相手部材の損耗が著しくな
ることが明らかである。 上述のように、この発明のFe基焼結合金は、
すぐれた耐摩耗性と、相手部材に及ぼす損耗度合
がきわめて小さい特性を有するのである。
It has a composition outside the scope of the invention shown in [Table]. Next, the average grain size, theoretical density ratio, Vickers hardness, and transverse rupture strength of the carbide particles were measured for the resulting invention alloys 1 to 23 and comparative alloys 1 to 6. A wear test was conducted on the pad surface for 100 hours of operation (spring load: 110 kg), and the amount of wear and the amount of wear on the cam, which is the mating member, was measured.
These results are also shown in Table 1. Table 1 also shows the results of a wear test under the same conditions for conventional material, cast iron whose part surface was chilled. From the results shown in Table 1, the invention alloys 1 to 23
All of these alloys have significantly superior wear resistance compared to conventional materials, and the wear of mating parts is also extremely small. However, as seen in Comparative Alloys 1 to 6, If the content is low and outside the range of the present invention, sufficient wear resistance cannot be obtained, while if the content of C and Cr components is high, the wear of the mating member becomes relatively severe, and If the content of Nb component deviates to the lower side,
Since it is not possible to achieve the desired refinement of the carbide particles and densification of the structure, the average grain size of the carbide particles becomes larger than 50 μm, which not only causes significant wear on the mating member but also reduces the theoretical density to 90 μm.
If the Nb content is less than 5%, the wear of the mating member will be severe, while if the Nb content exceeds 5%, there will be a large amount of fine carbide particles with an average particle size of 1 μm, which will cause wear and tear on the mating member. It is clear that the As mentioned above, the Fe-based sintered alloy of this invention is
It has excellent wear resistance and minimal wear and tear on the mating member.

Claims (1)

【特許請求の範囲】 1 C:1〜3%、 Cr:10.1〜20%、 Nb:0.2〜5%、 を含有し、さらに、 Mo:0.5〜10%、 W:0.5〜10%、 V:0.2〜5%、 Ta:0.2〜5%、 のうちの1種または2種以上を含有し(ただし
Mo、W、V、およびTaからなる炭化物形成成分
の合量:20%以下)、残りがFeと不可避不純物か
らなる組成(以上重量%)を有し、かつ理論密度
比:90%以上をもつと共に、素地中に平均粒径:
3〜50μmの炭化物粒子が均一に分散した組織を
もつことを特徴とする耐摩耗性を有するFe基焼
結合金。 2 C:1〜3%、 Cr:10.1〜20%、 Nb:0.2〜5%、 を含有し、 Mo:0.5〜10%、 W:0.5〜10%、 V:0.2〜5%、 Ta:0.2〜5%、 のうちの1種または2種以上を含有し(ただし
Mo、W、V、およびTaからなる炭化物形成成分
の合量:20%以下)、さらに Ni:0.5〜10%、 Co:0.5〜10%、 のうちの1種または2種を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ理論密度比:90%以上をもつと共に、素
地中に平均粒径:3〜50μmの炭化物粒子が均一
に分散した組織をもつことを特徴とする耐摩耗性
を有するFe基焼結合金。
[Claims] 1 Contains C: 1 to 3%, Cr: 10.1 to 20%, Nb: 0.2 to 5%, and further contains Mo: 0.5 to 10%, W: 0.5 to 10%, V: Contains one or more of the following: 0.2-5%, Ta: 0.2-5% (but
The total amount of carbide-forming components consisting of Mo, W, V, and Ta: 20% or less), the remainder consisting of Fe and unavoidable impurities (weight% or more), and the theoretical density ratio: 90% or more In addition, the average particle size in the matrix:
A wear-resistant Fe-based sintered alloy characterized by a structure in which carbide particles of 3 to 50 μm are uniformly dispersed. 2 Contains C: 1-3%, Cr: 10.1-20%, Nb: 0.2-5%, Mo: 0.5-10%, W: 0.5-10%, V: 0.2-5%, Ta: 0.2 ~5%, containing one or more of the following (but
The total amount of carbide-forming components consisting of Mo, W, V, and Ta: 20% or less), Ni: 0.5 to 10%, Co: 0.5 to 10%, and one or two of the following. has a composition (weight%) consisting of Fe and unavoidable impurities, has a theoretical density ratio of 90% or more, and has a structure in which carbide particles with an average particle size of 3 to 50 μm are uniformly dispersed in the matrix. Fe-based sintered alloy with wear resistance.
JP10138084A 1984-05-18 1984-05-18 TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN Expired - Lifetime JPH0233784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138084A JPH0233784B2 (en) 1984-05-18 1984-05-18 TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138084A JPH0233784B2 (en) 1984-05-18 1984-05-18 TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11062378A Division JPS5940217B2 (en) 1978-09-11 1978-09-11 Fe-based sintered alloy with wear resistance

Publications (2)

Publication Number Publication Date
JPS59229465A JPS59229465A (en) 1984-12-22
JPH0233784B2 true JPH0233784B2 (en) 1990-07-30

Family

ID=14299176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138084A Expired - Lifetime JPH0233784B2 (en) 1984-05-18 1984-05-18 TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN

Country Status (1)

Country Link
JP (1) JPH0233784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916444B1 (en) * 2002-02-12 2005-07-12 Alloy Technology Solutions, Inc. Wear resistant alloy containing residual austenite for valve seat insert
US7611590B2 (en) 2004-07-08 2009-11-03 Alloy Technology Solutions, Inc. Wear resistant alloy for valve seat insert used in internal combustion engines

Also Published As

Publication number Publication date
JPS59229465A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US3916497A (en) Heat resistant and wear resistant alloy
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
JPH028350A (en) Heat-resistant and wear-resistant ferrous sintered alloy
US3917463A (en) Nickel-base heat resistant and wear resistant alloy
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
JP2000297356A (en) High temperature wear resistant sintered alloy
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
US4844024A (en) Heat resistant and wear resistant iron-base sintered alloy
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JP2634103B2 (en) High temperature bearing alloy and method for producing the same
JPH0233784B2 (en) TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPH0116297B2 (en)
JP3434527B2 (en) Sintered alloy for valve seat
JPH0312137B2 (en)
JP3661823B2 (en) High temperature wear resistant sintered alloy
JPH0141693B2 (en)
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS60121250A (en) Sintered al alloy for friction and sliding members
KR910009972B1 (en) Carbide-dispersed type fe-base sintered alloy excellent in wear resistance
JP2541238B2 (en) Method for producing iron-based sintered alloy with excellent wear resistance
JP2531625B2 (en) Fe-based sintered alloy with excellent wear resistance
JPS63203754A (en) Sintered iron alloy having wear resistance at high temperature
JPH0559163B2 (en)
JP3763605B2 (en) Sintered alloy material for valve seats