JPH0141693B2 - - Google Patents

Info

Publication number
JPH0141693B2
JPH0141693B2 JP60203116A JP20311685A JPH0141693B2 JP H0141693 B2 JPH0141693 B2 JP H0141693B2 JP 60203116 A JP60203116 A JP 60203116A JP 20311685 A JP20311685 A JP 20311685A JP H0141693 B2 JPH0141693 B2 JP H0141693B2
Authority
JP
Japan
Prior art keywords
powder
alloy
hard
alloy powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60203116A
Other languages
Japanese (ja)
Other versions
JPS6263646A (en
Inventor
Osamu Mayama
Tomomi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60203116A priority Critical patent/JPS6263646A/en
Publication of JPS6263646A publication Critical patent/JPS6263646A/en
Publication of JPH0141693B2 publication Critical patent/JPH0141693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、すぐれた耐摩耗性を有し、かつ耐
食性および耐熱性にもすぐれたFe系焼結合金製
内燃機関用弁座の製造法に関するものである。 〔従来の技術〕 従来、内燃機関用弁座として、別途粉砕するこ
とにより用意した微細なFe−Cr合金粉末やFe−
Mo合金粉末、さらにFe−V合金粉末などのうち
の1種以上からなる硬質Fe合金粉末と、粒度:
−100meshの通常の粒度を有するFe粉末と、同
−350meshの通常の粒度を有する炭素粉末とを所
定の配合組成に配合し、通常の条件で、混合し、
圧粉体にプレス成形し、これを焼結することによ
つて製造された実質的に配合組成と同一の成分組
成を有し、この素地中に微細な硬質Fe合金粒子
が分散した組織を略するFe系焼結合金製内燃機
関用弁座が知られている。 〔発明が解決しようとする問題点〕 しかし、上記の従来Fe系焼結合金製内燃機関
用弁座においては、近年の内燃機関に使用される
燃料の多様化、さらにエンジンの高性能化に伴
い、その使用条件が苛酷になりつつあることと合
まつて、その素地中に分散する硬質Fe合金粒子
が素地との密着性に劣るために、使用中に脱落し
易く、この脱落した硬質Fe合金粒子が摩耗粉と
なつて弁および弁座の摩耗を助長するほか、耐食
性および耐熱性に劣るものであることから、十分
満足する耐摩耗性を示さず、かつ相手攻撃性も高
いなどの問題点がある。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、苛酷な条件下での使用に際しても、すぐれた
耐摩耗性となじみ性を示す内燃機関用弁座を開発
すべく研究を行なつた結果、 まず、原料粉末として、いずれも粒度:−
100meshの通常のFe−Cr合金粉末、Fe−Mo合金
粉末、Fe−W合金粉末、Fe−V合金粉末、Fe−
Nb合金粉末、Fe−Ta合金粉末、およびFe−Ti
合金粉末のうちの1種または2種以上からなる硬
質Fe合金粉末と、粒度:−200meshの通常の粒
度を有するNi粉末およびCo粉末のうちの1種ま
たは2種とを用意し、これを原料粉末を、重量%
で(以下%は重量%を示す)、 Ni粉末およびCo粉末のうちの1種または2
種:20〜50%、 硬質Fe合金粉末:残り、 からなる組成に1次配合し、ボールミルあるいは
アトライターなどを用いて粉砕混合して前記硬質
Fe合金粉末の平均粒径を40μm以下とし、 さらに、これに加えて原料粉末として、粒度:
−200meshの通常の粒度を有する炭素粉末と、同
−150meshの通常の粒度を有するFe粉末を用い、 炭素粉末:0.5〜1.5%、 硬質Fe合金粉末:9〜24%、 Ni粉末および/またはCo粉末:0.5〜20%、 Fe粉末:残り、 からなる組成に2次配合し、通常の条件で、ダブ
ルコーン混合機やマイニユート混合機などを用い
て混合し、この場合混合物粉末における硬質Fe
合金粉末とNiおよびCo粉末とはあまり分離しな
い状態にあり、さらにこれを圧粉体にプレス成形
して、焼結することにより製造したFe系焼結合
金は、これを内燃機関用弁座として用いた場合、
硬質Fe合金粒子が、上記の1次配合にて、これ
の周辺に存在し、かつこれとぬれ性が著しく良好
なNiおよびCoによつて素地中に強固に結合した
組織を有するので、これが使用中に脱落すること
が著しく抑制されるようになると共に、Niおよ
びCoの含有によつて耐食性および耐熱性、さら
になじみ性が向上するようになることから、すぐ
れた耐摩耗性を示すという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 まず、原料粉末として、Fe−Cr合金粉末、Fe
−Mo合金粉末、Fe−W合金粉末、Fe−V合金粉
末、Fe−Nb合金粉末、Fe−Ta合金粉末、およ
びFe−Ti合金粉末のうちの1種または2種以上
からなる硬質Fe合金粉末とNi粉末およびCo粉末
のうちの1種または2種(以下密着性促進粉末と
いう)とを用意し、これら原料粉末を、 密着性促進粉末:20〜50%、 硬質Fe合金粉末:残り、 からなる組成に1次配合し、粉砕混合して前記硬
質Fe合金粉末の平均粒径を40μm以下とし、 さらに、これに加えて原料粉末として炭素粉末
およびFe粉末を用い、 炭素粉末:0.5〜1.5%、 硬質Fe合金粉末:9〜24%、 密着性促進粉末:0.5〜20%、 Fe粉末:残り、 からなる組成に2次配合し、通常の条件で、混合
した後、圧粉体にプレス成形し、焼結することに
より、実質的に上記2次配合組成と同時成分組成
を有し、かつ、素地中に密着性促進成分によつて
結合された微細な硬質Fe合金粒子が分散した組
織を有するFe系焼結合金で構成された内燃機関
用弁座を製造する方法に特徴を有するものであ
る。 つぎに、この発明の方法において、製造条件を
上記の通り限定した理由を説明する。 (a) 1次配合組成における密着性促進粉末の割合 1次配合に続く粉砕混合で、これらの粉末で
硬質Fe合金粉末の表面が万遍なく取り囲まれ
た状態とする必要があるが、その割合が20%未
満では取り囲みが不充分であり、一方その割合
は50%までで十分であり、50%を越えた割合の
配合は不必要であり、経済性を考慮して、その
割合を20〜50%と定めた。 (b) 硬質Fe合金粉末の平均粒径 粉砕が不十分で硬質Fe合金粉末の粒径が平
均粒径で40μmを越えて粗いと、焼結後の合金
組織中に粗大な硬質Fe合金粒子が存在するよ
うになり、この組大粒が使用中に亀裂の起点と
なり、脱落するようになるばかりでなく、一般
に通常の粒度である−100meshの硬質Fe合金
粉末を原料粉末として用いた場合、その平均粒
径が40μmを越えた粗い状態では密着性促進粉
末との混合が未だ不十分であることから、その
平均粒径を40μm以下と定めた。 (c) 2次配合組成 (1) 炭素粉末 炭素粉末には、焼結時に素地に固溶して、
これを強靭化し、かつ炭化物を形成して耐摩
耗性を向上させる作用があるが、その割合が
0.5%未満では前記作用に所望の効果が得ら
れず、一方その割合が1.5%を越えると、脆
化が著しくなることから、その割合を0.5〜
1.5%と定めた。 (2) 硬質Fe合金粉末 硬質Fe合金粉末には、上記の通り焼結後
の合金素地に均一に分散して耐摩耗性を向上
させる作用があるが、その割合が9%未満で
は所望の耐摩耗性向上効果が得られず、一
方、その割合が24%を越えると、相手部材で
ある弁の摩耗が著しくなることから、その割
合を9〜24%と定めた。 (3) 密着性促進粉末 密着性促進粉末には、混合粉末中で微細に
粉砕された硬質Fe合金粉末の周囲に存在し、
焼結時に硬質Fe合金粉末とよくぬれ、これ
によつて硬質Fe合金粒子の素地に対する密
着性を著しく向上させる作用があるほか、合
金の耐熱性および耐食性を向上させ、さらに
素地に固溶して弁とのなじみ性を向上させる
作用があるが、その割合が0.5%未満では前
記作用に所望の効果が得られず、一方その割
合が20%を越えても前記作用により一層の向
上効果は現われず、経済性を考慮して、その
割合を0.5〜20%と定めた。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 まず、原料粉末として、いずれも−100meshの
粒度を有するFe−Cr合金(Cr:60%含有)粉末、
Fe−Mo合金(Mo:60%含有)粉末、Fe−W合
金(W:80%含有)粉末、Fe−V合金(V:50
%含有)粉末、Fe−Nb−Ta合金(Nb:60%、
Ta:10%含有)粉末、およびFe−Ti合金(Ti:
45%含有)粉末からなる硬質Fe合金粉末、同じ
く−200meshのNi粉末およびCo粉末を用意し、
これら原料粉末を、それぞれ第1表に示される1
次配合組成に配合し、ボールミル中で、2〜4時
間の範囲内の所定時間粉砕混合を行なつて、前記
硬質Fe合金粉末の平均粒径を第1表に示される
もの(この場合の硬質Fe合金粉末の平均粒径は
焼結後の合金組織を観察することにより推定)と
した1次混合粉末A〜Jを得、ついで、同様に原
料粉末として用意した粒度:−150meshの環元
Fe粉末と同−200meshの黒鉛粉末を、前記1次
混合粉末A〜Jのそれぞれに、第2表に示される
2次配合組
[Industrial Field of Application] The present invention relates to a method for manufacturing a valve seat for an internal combustion engine made of an Fe-based sintered alloy that has excellent wear resistance, corrosion resistance, and heat resistance. [Prior art] In the past, fine Fe-Cr alloy powder or Fe-Cr alloy powder prepared by separately pulverizing was used as a valve seat for internal combustion engines.
Hard Fe alloy powder made of one or more of Mo alloy powder, Fe-V alloy powder, etc., and particle size:
Fe powder having a normal particle size of -100mesh and carbon powder having a normal particle size of -350mesh are blended into a predetermined composition and mixed under normal conditions,
It has substantially the same composition as the compounding composition manufactured by press-forming it into a green compact and sintering it, and it is an abbreviation for the structure in which fine hard Fe alloy particles are dispersed in this base material. Valve seats for internal combustion engines made of Fe-based sintered alloys are known. [Problems to be solved by the invention] However, in the conventional valve seats for internal combustion engines made of Fe-based sintered alloys, the problem has been In addition to the fact that the conditions for its use are becoming harsher, the hard Fe alloy particles dispersed in the substrate have poor adhesion to the substrate, so they tend to fall off during use, and the hard Fe alloy particles that have fallen off tend to fall off during use. Particles become abrasion particles that promote wear on valves and valve seats, and because they have poor corrosion resistance and heat resistance, they do not exhibit sufficient wear resistance and are highly aggressive to opponents. There is. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a valve seat for internal combustion engines that exhibits excellent wear resistance and conformability even when used under severe conditions. As a result of conducting research to develop the raw material powder, the particle size of both powders was: -
100mesh regular Fe-Cr alloy powder, Fe-Mo alloy powder, Fe-W alloy powder, Fe-V alloy powder, Fe-
Nb alloy powder, Fe-Ta alloy powder, and Fe-Ti
A hard Fe alloy powder made of one or more of alloy powders and one or two of Ni powder and Co powder having a normal particle size of -200 mesh are prepared, and this is used as a raw material. Powder, weight%
(hereinafter % indicates weight %), one or two of Ni powder and Co powder
Seeds: 20 to 50%, hard Fe alloy powder: remainder, first blended into a composition consisting of, and crushed and mixed using a ball mill or attritor to form the hard
The average particle size of the Fe alloy powder is 40 μm or less, and in addition to this, as a raw material powder, the particle size:
Using carbon powder with a normal particle size of -200mesh and Fe powder with a normal particle size of -150mesh, carbon powder: 0.5 to 1.5%, hard Fe alloy powder: 9 to 24%, Ni powder and/or Co Powder: 0.5 to 20%, Fe powder: remainder, mixed in a composition consisting of a double cone mixer, a minute mixer, etc. under normal conditions. In this case, hard Fe in the mixed powder
The alloy powder is hardly separated from the Ni and Co powders, and the Fe-based sintered alloy produced by press-forming this into a green compact and sintering it can be used as a valve seat for internal combustion engines. When used,
Hard Fe alloy particles exist in the vicinity of the above primary mixture, and have a structure strongly bonded to the base material by Ni and Co, which have extremely good wettability. The knowledge that it exhibits excellent wear resistance is achieved by significantly suppressing the occurrence of falling into the steel, and the inclusion of Ni and Co improves corrosion resistance, heat resistance, and conformability. I got it. This invention was made based on the above knowledge, and firstly, Fe-Cr alloy powder, Fe-Cr alloy powder, Fe
- Hard Fe alloy powder consisting of one or more of Mo alloy powder, Fe-W alloy powder, Fe-V alloy powder, Fe-Nb alloy powder, Fe-Ta alloy powder, and Fe-Ti alloy powder and one or two types of Ni powder and Co powder (hereinafter referred to as adhesion promoting powder), and these raw material powders are divided into: adhesion promoting powder: 20 to 50%, hard Fe alloy powder: the remainder, and The hard Fe alloy powder is first blended into a composition of , hard Fe alloy powder: 9 to 24%, adhesion promoting powder: 0.5 to 20%, Fe powder: remainder, and after mixing under normal conditions, press forming into a green compact. Then, by sintering, a structure having substantially the same component composition as the above-mentioned secondary compound composition and in which fine hard Fe alloy particles bonded by an adhesion promoting component are dispersed in the matrix is formed. The present invention is characterized by a method of manufacturing a valve seat for an internal combustion engine made of an Fe-based sintered alloy. Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be explained. (a) Proportion of adhesion-promoting powder in the primary blending composition It is necessary to ensure that the surface of the hard Fe alloy powder is evenly surrounded by these powders during the pulverization and mixing following the primary blending. If the ratio is less than 20%, the enclosing is insufficient; on the other hand, the ratio up to 50% is sufficient, and a ratio exceeding 50% is unnecessary, and considering economic efficiency, the ratio should be increased from 20 to It was set at 50%. (b) Average particle size of hard Fe alloy powder If grinding is insufficient and the average particle size of the hard Fe alloy powder exceeds 40 μm, coarse hard Fe alloy particles will be present in the alloy structure after sintering. Not only do these large grains become the starting point of cracks and fall off during use, but when hard Fe alloy powder of -100mesh, which is a normal grain size, is used as a raw material powder, the average Since mixing with the adhesion promoting powder is still insufficient if the particle size is coarse and exceeds 40 μm, the average particle size was set at 40 μm or less. (c) Secondary composition (1) Carbon powder Carbon powder contains solid solution in the base material during sintering.
It has the effect of toughening this and forming carbides to improve wear resistance, but the proportion of
If the ratio is less than 0.5%, the desired effect cannot be obtained, while if the ratio exceeds 1.5%, embrittlement becomes significant.
It was set at 1.5%. (2) Hard Fe alloy powder As mentioned above, hard Fe alloy powder has the effect of uniformly dispersing into the alloy matrix after sintering and improving wear resistance, but if its proportion is less than 9%, the desired wear resistance cannot be achieved. The effect of improving wear resistance cannot be obtained, and on the other hand, if the ratio exceeds 24%, the wear of the valve, which is a mating member, becomes significant, so the ratio was set at 9 to 24%. (3) Adhesion promoting powder The adhesion promoting powder exists around the finely ground hard Fe alloy powder in the mixed powder,
It wets well with the hard Fe alloy powder during sintering, which has the effect of significantly improving the adhesion of the hard Fe alloy particles to the base material, and also improves the heat resistance and corrosion resistance of the alloy. It has the effect of improving compatibility with the valve, but if the proportion is less than 0.5%, the desired effect will not be obtained, and on the other hand, if the proportion exceeds 20%, the effect of further improvement will not appear due to the above effect. First, considering economic efficiency, the ratio was set at 0.5 to 20%. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. First, as raw material powder, Fe-Cr alloy (containing 60% Cr) powder, each having a particle size of -100mesh,
Fe-Mo alloy (Mo: 60% content) powder, Fe-W alloy (W: 80% content) powder, Fe-V alloy (V: 50%)
% containing) powder, Fe-Nb-Ta alloy (Nb: 60%,
Ta: 10%) powder, and Fe-Ti alloy (Ti:
Prepare a hard Fe alloy powder consisting of a powder containing 45% (containing 45%), Ni powder and Co powder of -200mesh,
Each of these raw material powders was
The average particle size of the hard Fe alloy powder was determined by blending it into the following composition and pulverizing it in a ball mill for a predetermined time within the range of 2 to 4 hours. The average particle size of the Fe alloy powder was estimated by observing the alloy structure after sintering) to obtain the primary mixed powders A to J, and then the ring element with a particle size of -150mesh was prepared in the same way as a raw material powder.
Fe powder and graphite powder of -200mesh were added to each of the above primary mixed powders A to J in the secondary combination shown in Table 2.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第2表に示される結果から、本発明弁座1〜10
は、従来弁座1〜10に比して相対的に硬さおよび
圧環強さとも僅かに高い値を示すにすぎないが、
弁座としての耐摩耗性については一段とすぐれた
結果を示すことが明らかである。 上述のように、この発明の方法によれば、素地
中に微細に分散する硬質Fe合金粒子がCoおよび
Niの介在によつて素地に対して強固に結合し、
かつNiおよびCoの含有によつて耐食性、耐熱性、
およびなじみ性が向上した硬質Fe焼結合金製内
燃機関用弁座を製造することができ、したがつ
て、これを実用に供した場合にはすぐれた耐摩耗
性を示し、長期に亘つてすぐれた性能を発揮する
など工業上有用な効果が得られるのである。
From the results shown in Table 2, the present invention valve seats 1 to 10
shows only slightly higher values of hardness and radial crushing strength than conventional valve seats 1 to 10,
It is clear that the valve seat shows even better results in terms of wear resistance. As mentioned above, according to the method of the present invention, hard Fe alloy particles finely dispersed in the matrix are mixed with Co and
Strongly bonded to the substrate due to the presence of Ni,
In addition, the content of Ni and Co provides corrosion resistance, heat resistance,
It is possible to manufacture a valve seat for an internal combustion engine made of a hard Fe sintered alloy with improved conformability. Therefore, when it is put into practical use, it exhibits excellent wear resistance and has excellent long-term performance. Industrially useful effects such as improved performance can be obtained.

Claims (1)

【特許請求の範囲】 1 まず、原料粉末として、Fe−Cr合金粉末、
Fe−Mo合金粉末、Fe−W合金粉末、Fe−V合
金粉末、Fe−Nb合金粉末、Fe−Ta合金粉末、
およびFe−Ti合金粉末のうちの1種または2種
以上からなる硬質Fe合金粉末と、Ni粉末および
Co粉末のうちの1種または2種からなる密着性
促進粉末を用意し、これら原料粉末を、 密着性促進粉末:20〜50%、 硬質Fe合金粉末:残り、 からなる組成に1次配合し、粉砕混合して前記硬
質Fe合金粉末の平均粒径を40μm以下とし、 さらに、これに加えて原料粉末として炭素粉末
およびFe粉末を用い、 炭素粉末:0.5〜1.5%、 硬質Fe合金粉末:9〜24%、 密着性促進粉末:0.5〜20%、 Fe粉末:残り、 からなる組成(以上重量%)に2次配合し、通常
の条件で、混合した後、圧粉体にプレス成形し、
焼結することを特徴とする素地中にぬれ性促進成
分によつて結合された微細な硬質Fe合金粒子が
分散した組織を有するFe系焼結合金製内燃機関
用弁座の製造法。
[Claims] 1. First, as raw material powder, Fe-Cr alloy powder,
Fe-Mo alloy powder, Fe-W alloy powder, Fe-V alloy powder, Fe-Nb alloy powder, Fe-Ta alloy powder,
and hard Fe alloy powder consisting of one or more of Fe-Ti alloy powder, Ni powder and
An adhesion promoting powder made of one or two types of Co powder is prepared, and these raw material powders are first mixed into a composition consisting of adhesion promoting powder: 20 to 50%, hard Fe alloy powder: the remainder. , the average particle size of the hard Fe alloy powder is 40 μm or less by pulverization and mixing, and in addition to this, carbon powder and Fe powder are used as raw material powders, carbon powder: 0.5 to 1.5%, hard Fe alloy powder: 9 ~24%, adhesion promoting powder: 0.5~20%, Fe powder: the rest, and after mixing under normal conditions, press-form into a green compact,
A method for manufacturing a valve seat for an internal combustion engine made of an Fe-based sintered alloy, which has a structure in which fine hard Fe alloy particles bonded by a wettability promoting component are dispersed in a matrix characterized by sintering.
JP60203116A 1985-09-13 1985-09-13 Production of valve seat made of fe sintered alloy for internal combustion engine Granted JPS6263646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203116A JPS6263646A (en) 1985-09-13 1985-09-13 Production of valve seat made of fe sintered alloy for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203116A JPS6263646A (en) 1985-09-13 1985-09-13 Production of valve seat made of fe sintered alloy for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6263646A JPS6263646A (en) 1987-03-20
JPH0141693B2 true JPH0141693B2 (en) 1989-09-07

Family

ID=16468663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203116A Granted JPS6263646A (en) 1985-09-13 1985-09-13 Production of valve seat made of fe sintered alloy for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6263646A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69313253T3 (en) * 1992-11-27 2001-03-15 Toyota Jidosha K.K., Toyota Iron alloy powder for sintering, sintered iron alloy with abrasion resistance and process for producing the same
GB9405946D0 (en) * 1994-03-25 1994-05-11 Brico Eng Sintered valve seat insert
JP3130222B2 (en) 1995-02-14 2001-01-31 三菱電機株式会社 Method for analyzing minute foreign matter, analyzer, and method for producing semiconductor element or liquid crystal display element using the same
JP2813147B2 (en) * 1995-02-14 1998-10-22 三菱電機株式会社 Method for analyzing minute foreign matter, analyzer and method for producing semiconductor element or liquid crystal display element using the same
GB2325005B (en) * 1997-05-08 2000-10-11 Brico Eng Method of forming a component
JP5119006B2 (en) * 2008-03-04 2013-01-16 株式会社神戸製鋼所 Mixed powder for powder metallurgy and sintered iron powder

Also Published As

Publication number Publication date
JPS6263646A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
KR20040030358A (en) Process for producing valve seat made of Fe-based sintered alloy
JPS5925959A (en) Valve seat made of sintered alloy
JP2000297356A (en) High temperature wear resistant sintered alloy
JPH0141693B2 (en)
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
JPH09209095A (en) Iron-base sintered alloy excellent in wear resistance
JPS60224762A (en) Iron sintered alloy for valve sheet
JPS60251258A (en) Iron system sintered alloy for valve sheet
JPH0555592B2 (en)
JP3353484B2 (en) Method for producing Fe-based sintered alloy valve seat showing excellent wear resistance
JPH0115583B2 (en)
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0543913A (en) Fe base sintered alloy valve seat with extremely low attackability against object
JPH0543915A (en) Fe base sintered alloy valve seat with high strength
JP2629941B2 (en) Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same
JP3257212B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine intake
JPS60125347A (en) Sintered al alloy for sliding member
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material
JP2643739B2 (en) Two-layer valve seat made of iron-based sintered alloy for internal combustion engine
JPS59229465A (en) Fe-base sintered alloy having wear resistance
JPH08120306A (en) Production of iron-base sintered alloy valve seat excellent in wear resistance
JPH0431014B2 (en)
JP2833116B2 (en) Sintered alloy for valve seat
JPH07188873A (en) Valve seat made of iron base sintered alloy for internal combustion engine