JPH0312137B2 - - Google Patents

Info

Publication number
JPH0312137B2
JPH0312137B2 JP59101381A JP10138184A JPH0312137B2 JP H0312137 B2 JPH0312137 B2 JP H0312137B2 JP 59101381 A JP59101381 A JP 59101381A JP 10138184 A JP10138184 A JP 10138184A JP H0312137 B2 JPH0312137 B2 JP H0312137B2
Authority
JP
Japan
Prior art keywords
based sintered
wear
carbide
average particle
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59101381A
Other languages
Japanese (ja)
Other versions
JPS59229466A (en
Inventor
Juichi Saito
Masayuki Iijima
Hachiro Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10138184A priority Critical patent/JPS59229466A/en
Publication of JPS59229466A publication Critical patent/JPS59229466A/en
Publication of JPH0312137B2 publication Critical patent/JPH0312137B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、すぐれた耐摩耗性を有し、内燃機
関のバルブロツカアームのパツト面の形成やタペ
ツトなどの摺動部材の製造に使用した場合に、相
手部材であるカムシヤフトを損傷することなく、
それ自体もすぐれた耐摩耗性を示すFe基焼結合
金に関するものである。 〔従来技術およびその問題点〕 一般に、例えば内燃機関のバルブロツカアーム
のパツト面は、強い衝撃荷重と高速摺動を受ける
ものであるため、前記パツト面を形成する材料に
は耐摩耗性と相手部材であるカムシヤフトを損耗
させない性質が要求される。 従来、このような荷重と摺動を受ける内燃機関
の摺動部材の製造には、 (a) 鋳造に際して荷重および摺動を受ける部分を
チル化した鋳造、 (b) 炭化タングステン、炭化モリブデンなどから
なり硬質粒子を分散させて硬さ向上をはかつた
焼結合金、 などの材料が使用されているが、上記(a)材料は満
足する耐摩耗性を示さず、また上記(b)材料におい
ては、それ自体非常に硬質であるため相手部材を
損耗させ、しかもこの損耗度合は分散硬質粒子の
量が多く、その粒径が大きいほど増大するもので
あり、このようなことから逆に分散硬質粒子の量
を少なく、かつその粒子を微細にすれば、それ自
体の耐摩耗性が低下して望ましくないなどの問題
点を有するものである。 〔研究に基く知見事項および発明の構成要件〕 本発明者等は、上述のような観点から、すぐれ
た耐摩耗性および靭性を有すると共に、相手部材
に及ぼす損耗がほとんど皆無の合金を得べく研究
を行なつた結果、成分組成を、重量%で、 C:1.6〜3%、Cr:10.1〜20%、 Mo:1.6〜10%、V:0.2〜5%、 を含有し、さらに必要に応じて、 Ni:0.5〜10%、Co:0.5〜10%、 のうちの1種または2種を含有し、残りがFeと
不可避不純物からなる組成で構成すると共に、製
造に際しては、粉末冶金法を適用し、例えば原料
粉末として共還元法により製造した合金粉末を使
用すると、理論密度比:90%以上を有し、かつマ
トリツクス素地中に平均粒子:3〜50μmの硬い
炭化物粒子が均一に分散した組織を有するFe基
焼結合金が得られるようになり、しかもこの結果
得られたFe基焼結合金は、マトリツクス中に均
一に分散した硬い炭化物粒子によつてすぐれた耐
摩耗性を有するほか、前記炭化物粒子の平均粒径
が3〜50μmと比較的微細なので、使用初期にお
いて炭化物粒子より軟いマトリツクスが摩耗して
早期に平滑な摩耗面を形成することから、相手部
材に対するなじみ性がきわめて良好になると共
に、摩擦面の面圧が微細な炭化物粒子に一様に分
散されるようになることから、それ自体は勿論の
こと、相手部材の摩耗も改善し、さらに理論密度
比:90%以上をもつ緻密なものであるため靱性が
きわめて高く、したがつて靱性不足に帰因するマ
トリツクス破壊も皆無であるなどのすぐれた特性
を有するものであるという知見を得たのである。 〔技術的限定理由〕 ついで、この発明のFe基焼結合金において、
成分組成範囲、理論密度比、および炭化物粒子の
平均粒径を上記の通り数値限定した理由を説明す
る。 (a) C C成分には、Cr、Mo、およびVと結合して
炭化物を形成し、合金の耐摩耗性を向上させる
作用があるが、その含有量が1.6%未満では、
炭化物の析出量が十分でなく、所望のすぐれた
耐摩耗性を確保することができず、一方3%を
越えて含有させると、炭化物の析出量が多くな
りすぎて相手部材が著しく摩耗するようになる
と共に、靱性低下をきたすようになることか
ら、その含有量を1.6〜3%と定めた。 (b) Cr Cr成分には、Cと結合してビツカース硬
さ:1000〜1800をもつた高硬度Cr炭化物を析
出し、合金の耐摩耗性を一段と改善すると共
に、マトリツクス中に固溶して、その耐熱性を
一層向上させる作用があるが、その含有量が
10.1%未満では、前記作用に所望の効果が得ら
れず、一方20%を越えて含有させると、相手部
材の摩耗が激しくなると共に、合金脆化が発生
するようになることから、その含有量を10.1〜
20%と定めた。 (c) MoおよびV MoおよびV成分には、それぞれ微細な炭化
物(Moはビツカー硬さHv:1000〜3000を有す
る複合炭化物、VはHv:2300〜3300を有する
MC型炭化物)を形成して、合金の耐摩耗性を
改善すると共に、マトリツクスに固溶して耐熱
性を向上させる作用があるが、その含有量が、
それぞれMo:1.6%未満、V:0.2%未満では、
前記作用に所望の向上効果が得られず、一方
Mo:10%およびV:5%をそれぞれ越えて含
有させると、相手部材を損耗させる度合が激し
くなるばかりでなく被研削性も劣化するように
なることから、その含有量をMo:1.6〜10%、
V:0.2〜5%と定めた。 (d) Ni、Co NiおよびCo成分は、より一層のマトリツク
ス強化となじみ性改善をはかるために選択的に
含有されるが、その含有量がそれぞれ0.5%未
満では所望の添加含有効果が得られず、一方そ
れぞれ10%を越えて含有させても、より一層の
改善効果は見られず、経済性を考慮して、その
含有量をそれぞれNi:0.5〜10%、Co:0.5〜10
%と定めた。 (e) 合金の理論密度比 その理論密度比が90%未満では、マトリツク
スの強度が低く、空孔も存在し、前記空孔のも
つ切欠き効果によつてクラツク伝播が促進され
るようになることから、摩耗面における前記マ
トリツクスは大幅に破壊され、この結果摩耗が
著しくなるので、90%以上の理論密度比をもつ
ようにしなければならない。 (f) 炭化物粒子の平均粒径 その平均粒径が3μm未満では、細かすぎて
所望のすぐれた耐摩耗性を確保することができ
ず、一方50μmを越えて大きな平均粒径にする
と、炭化物粒子にへき開や剥離が発生し、これ
が連続するとマトリツクスに破壊が起るばかり
でなく、相手部材をも著しく損耗するようにな
ることから、その平均粒径3〜50μmと定めた
のである。 〔実施例および効果の確認〕 つぎに、この発明のFe基焼結合金を実施例に
より比較例と対比しながら説明する。 まず、酸化鉄粉末を主原料として使用し、これ
に各成分の金属酸化物粉末と炭素粉末を所定量配
合した後、水素還元(炭素と水素による共還元
法)して合金粉末とし、ついでこの合金粉末から
5ton/cm2の圧力で圧粉体を成形した後、この圧粉
体を真空中、1120〜1180℃の範囲内の所定温度で
焼結して、それぞれ第1表に示される成分組成を
もつた焼結体を製造し、引続いてこの焼結体に、
温度:1000℃に加熱して焼入れした後、温度:
540〜560℃に1時間保持の熱処理を施すことによ
つて本発明Fe基焼結合金1〜17と比較Fe基焼結
合金1〜6をそれぞれ製造した。 なお、比較Fe基焼結合金1〜6は、構成成分
のうちのいずれかの成分(第1表に※印を付した
成分)がこの発明の範囲から外れた組成をもつも
のである。 つぎに、この結果得られた本発明Fe基焼結合
金1〜17および比較Fe基焼結合金1〜6につい
て、炭化物粒子の平均粒径、理論密度比、ビツカ
ース硬さ、および抗折力を測定すると共に、これ
をロツカーアームのパツト面に使用して、運転時
間:100時間(スプリング荷重:75Kg)の摩耗試
験を行ない、その最大摩耗深さと相手部材である
カムの最大摩耗深さを測定した。これらの結果を
第1表に合せて示した。また、第1表には、従来
材料としてパツト面をチル処理した鋳鉄の同一条
件での摩耗試験結果も示した。
[Industrial Application Field] This invention has excellent wear resistance, and when used for forming the part surface of a valve blocker arm of an internal combustion engine or manufacturing a sliding member such as a tappet, it can be used as a mating member. without damaging the camshaft.
The present invention relates to an Fe-based sintered alloy which itself exhibits excellent wear resistance. [Prior art and its problems] In general, for example, the part surface of a valve locker arm of an internal combustion engine is subjected to strong impact loads and high-speed sliding. It is required that the camshaft, which is a member, not be damaged. Conventionally, sliding parts for internal combustion engines that are subjected to such loads and sliding have been manufactured by (a) casting in which the parts subject to loading and sliding are chilled during casting, and (b) materials such as tungsten carbide, molybdenum carbide, etc. Materials such as sintered alloys that have hardness improved by dispersing hard particles have been used, but the above (a) materials do not exhibit satisfactory wear resistance, and the above (b) materials do not have satisfactory wear resistance. is itself very hard and causes damage to the mating member, and the degree of this wear increases as the amount of dispersed hard particles increases and the particle size increases; If the amount of particles is reduced and the particles are made finer, the wear resistance of the material itself decreases, which is undesirable. [Findings based on research and constituent elements of the invention] From the above-mentioned viewpoints, the present inventors conducted research to obtain an alloy that has excellent wear resistance and toughness, and causes almost no wear on mating parts. As a result, the component composition contained, in weight%, C: 1.6 to 3%, Cr: 10.1 to 20%, Mo: 1.6 to 10%, V: 0.2 to 5%, and further added as necessary. It contains one or two of the following: Ni: 0.5-10%, Co: 0.5-10%, and the remainder is Fe and unavoidable impurities. For example, when an alloy powder produced by a co-reduction method is used as a raw material powder, it has a theoretical density ratio of 90% or more, and hard carbide particles with an average particle size of 3 to 50 μm are uniformly dispersed in the matrix substrate. Fe-based sintered alloys with a microstructure can now be obtained, and the resulting Fe-based sintered alloys have excellent wear resistance due to the hard carbide particles uniformly dispersed in the matrix. Since the average particle diameter of the carbide particles is relatively fine at 3 to 50 μm, the matrix, which is softer than the carbide particles, wears out in the early stages of use and quickly forms a smooth worn surface, resulting in extremely good compatibility with the mating member. At the same time, the surface pressure on the friction surface is uniformly dispersed into the fine carbide particles, which improves not only the wear itself but also the wear of the mating member, and furthermore, the theoretical density ratio: 90% or more They found that it has excellent properties such as extremely high toughness because it is dense and has no matrix fractures due to lack of toughness. [Reason for technical limitation] Next, in the Fe-based sintered alloy of the present invention,
The reason why the component composition range, theoretical density ratio, and average particle size of carbide particles are numerically limited as described above will be explained. (a) C The C component combines with Cr, Mo, and V to form carbides and has the effect of improving the wear resistance of the alloy, but if its content is less than 1.6%,
The amount of carbide precipitated is insufficient and the desired excellent wear resistance cannot be ensured. On the other hand, if the content exceeds 3%, the amount of carbide precipitated becomes too large and the mating member may wear out significantly. The content was set at 1.6 to 3% because the toughness decreases as the content increases. (b) Cr The Cr component combines with C to precipitate high-hardness Cr carbide with a Vickers hardness of 1000 to 1800, which further improves the wear resistance of the alloy, and also forms a solid solution in the matrix. , has the effect of further improving its heat resistance, but its content is
If the content is less than 10.1%, the desired effect cannot be obtained, while if the content exceeds 20%, the wear of the mating member becomes severe and alloy embrittlement occurs. 10.1~
It was set at 20%. (c) Mo and V Mo and V components each contain fine carbides (Mo is a composite carbide with a Bitker hardness of Hv: 1000 to 3000, and V has a Hv of 2300 to 3300).
It has the effect of forming MC type carbide (MC type carbide) and improving the wear resistance of the alloy, as well as improving heat resistance by solid solution in the matrix.
When Mo: less than 1.6% and V: less than 0.2%, respectively,
The desired effect of improving the above action cannot be obtained, and on the other hand,
If the content exceeds Mo: 10% and V: 5%, the degree of wear on the mating member will not only increase, but also the grindability will deteriorate, so the content should be adjusted to Mo: 1.6 to 10 %,
V: determined to be 0.2 to 5%. (d) Ni, Co Ni and Co components are selectively included in order to further strengthen the matrix and improve conformability, but if their content is less than 0.5% each, the desired effect of addition cannot be obtained. On the other hand, even if the content exceeds 10% of each, no further improvement effect is observed, and in consideration of economic efficiency, the contents are changed to Ni: 0.5 to 10% and Co: 0.5 to 10.
%. (e) Theoretical density ratio of the alloy When the theoretical density ratio is less than 90%, the strength of the matrix is low and voids are present, and the crack propagation is promoted by the notch effect of the voids. Therefore, the matrix on the worn surface is destroyed to a large extent, resulting in significant wear, so it must have a theoretical density ratio of 90% or more. (f) Average particle size of carbide particles If the average particle size is less than 3 μm, it is too fine to ensure the desired excellent wear resistance, whereas if the average particle size is larger than 50 μm, the carbide particles Since cleavage and peeling occur continuously, not only will the matrix be destroyed, but also the mating member will be significantly worn out, so the average particle diameter was set at 3 to 50 μm. [Examples and Confirmation of Effects] Next, the Fe-based sintered alloy of the present invention will be explained using Examples and in comparison with Comparative Examples. First, iron oxide powder is used as the main raw material, and a predetermined amount of metal oxide powder and carbon powder of each component are blended into it, and then hydrogen reduction (co-reduction method using carbon and hydrogen) is performed to form an alloy powder. from alloy powder
After forming a green compact at a pressure of 5 ton/cm 2 , this green compact is sintered in vacuum at a predetermined temperature within the range of 1120 to 1180°C to form a green compact with the composition shown in Table 1. A sintered body is manufactured, and then this sintered body is
Temperature: After heating to 1000℃ and quenching, temperature:
Fe-based sintered alloys 1 to 17 of the present invention and comparison Fe-based sintered alloys 1 to 6 were produced by heat treatment maintained at 540 to 560°C for 1 hour, respectively. In Comparative Fe-based sintered alloys 1 to 6, one of the constituent components (components marked with * in Table 1) has a composition outside the scope of the present invention. Next, for the resulting Fe-based sintered alloys 1 to 17 of the present invention and comparative Fe-based sintered alloys 1 to 6, the average particle diameter of carbide particles, theoretical density ratio, Vickers hardness, and transverse rupture strength were determined. At the same time, we conducted a wear test using this on the part surface of the Rocker arm for 100 hours of operation (spring load: 75Kg), and measured the maximum wear depth and the maximum wear depth of the mating member, the cam. . These results are also shown in Table 1. Table 1 also shows the results of a wear test under the same conditions for conventional material, cast iron whose part surface was chilled.

【表】【table】

【表】 第1表に示される結果から、本発明Fe基焼結
合金1〜17は、いずれも従来チル鋳鉄に比して、
著しくすぐれた耐摩耗性を有し、かつ相手部材の
摩耗もきわめて小さいのに対して、比較Fe基焼
結合金1〜6に見られるように、CおよびCr成
分、さらに炭化物形成成分であるMoおよびVの
含有量が本発明範囲から外れて低い場合には十分
な耐摩耗性が得られず、一方CおよびCr成分、
並びにMoおよびV成分の含有量が高い方に外れ
ると、相手的に相手部材の摩耗がはげしくなるこ
とが明らかである。 上述のように、この発明のFe基焼結合金は、
すぐれた耐摩耗性と、相手部材に及ぼす損耗度合
がきわめて小さい特性を有するのである。
[Table] From the results shown in Table 1, the Fe-based sintered alloys 1 to 17 of the present invention all have lower
Although it has extremely excellent wear resistance and wear of the mating member is extremely small, as seen in comparative Fe-based sintered alloys 1 to 6, C and Cr components, as well as Mo, which is a carbide-forming component, If the content of C and V is low and out of the range of the present invention, sufficient wear resistance cannot be obtained; on the other hand, C and Cr components,
It is also clear that when the contents of Mo and V components are on the high side, the wear of the mating member becomes more severe. As mentioned above, the Fe-based sintered alloy of this invention is
It has excellent wear resistance and minimal wear and tear on the mating member.

Claims (1)

【特許請求の範囲】 1 C:1.6〜3%、Cr:10.1〜20%、 Mo:1.6〜10%、V:0.2〜5%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ理論密度比:90%以上をもつと共に、 素地中に平均粒径:3〜50μmの炭化物粒子が
均一に分散した組織をもつことを特徴とする内燃
機関の摺動部材用Fe基焼結合金。 2 C:1.6〜3%、Cr:10.1〜20%、 Mo:1.6〜10%、V:0.2〜5%、 を含有し、さらに、 Ni:0.5〜10%、Co:0.5〜10%、 のうちの1種または2種、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ理論密度比:90%以上をもつと共に、 素地中に平均粒径:3〜50μmの炭化物粒子が
均一に分散した組織をもつことを特徴とする内燃
機関の摺動部材用Fe基焼結合金。
[Scope of claims] 1 C: 1.6 to 3%, Cr: 10.1 to 20%, Mo: 1.6 to 10%, V: 0.2 to 5%. % by weight), a theoretical density ratio of 90% or more, and a structure in which carbide particles with an average particle size of 3 to 50 μm are uniformly dispersed in the base material. Fe-based sintered alloy for parts. 2 Contains C: 1.6 to 3%, Cr: 10.1 to 20%, Mo: 1.6 to 10%, V: 0.2 to 5%, and further contains Ni: 0.5 to 10%, Co: 0.5 to 10%, Contains one or two of these, with the remainder consisting of Fe and unavoidable impurities (weight%), and has a theoretical density ratio of 90% or more, and has an average particle size of 3 in the matrix. An Fe-based sintered alloy for sliding members of internal combustion engines, characterized by having a structure in which carbide particles of ~50 μm are uniformly dispersed.
JP10138184A 1984-05-18 1984-05-18 Fe-base sintered alloy for sliding member of internal-combustion engine Granted JPS59229466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138184A JPS59229466A (en) 1984-05-18 1984-05-18 Fe-base sintered alloy for sliding member of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138184A JPS59229466A (en) 1984-05-18 1984-05-18 Fe-base sintered alloy for sliding member of internal-combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11062378A Division JPS5940217B2 (en) 1978-09-11 1978-09-11 Fe-based sintered alloy with wear resistance

Publications (2)

Publication Number Publication Date
JPS59229466A JPS59229466A (en) 1984-12-22
JPH0312137B2 true JPH0312137B2 (en) 1991-02-19

Family

ID=14299194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138184A Granted JPS59229466A (en) 1984-05-18 1984-05-18 Fe-base sintered alloy for sliding member of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59229466A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928508A (en) * 1972-07-13 1974-03-14
JPS50101205A (en) * 1974-01-12 1975-08-11
JPS5386605A (en) * 1977-06-20 1978-07-31 Toyota Motor Corp Sintered alloy having wear resistance at high temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928508A (en) * 1972-07-13 1974-03-14
JPS50101205A (en) * 1974-01-12 1975-08-11
JPS5386605A (en) * 1977-06-20 1978-07-31 Toyota Motor Corp Sintered alloy having wear resistance at high temperature

Also Published As

Publication number Publication date
JPS59229466A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JPH028350A (en) Heat-resistant and wear-resistant ferrous sintered alloy
JPH0559500A (en) Secondary hardening type high temperature wear resistant sintered alloy
JPS62211355A (en) Wear-resisting ferrous sintered alloy
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JP2000297356A (en) High temperature wear resistant sintered alloy
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
US4844024A (en) Heat resistant and wear resistant iron-base sintered alloy
JP3434527B2 (en) Sintered alloy for valve seat
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPH07113141B2 (en) Abrasion resistant iron-based sintered alloy
JPH0116297B2 (en)
JPH0233784B2 (en) TAIMAMOSEIOJUSURUFEKISHOKETSUGOKIN
JPH0312137B2 (en)
JP2017137535A (en) Manufacturing method of abrasion resistant iron-based sintered alloy, molded article for sintered alloy and abrasion resistant iron-based sintered alloy
JPS62177159A (en) Sintered alloy member having excellent wear resistance
JPS6025499B2 (en) Rocker arm for internal combustion engine
JPH0116905B2 (en)
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JP2541238B2 (en) Method for producing iron-based sintered alloy with excellent wear resistance
JP7143899B2 (en) Method for producing copper-based sintered body
JPS63203754A (en) Sintered iron alloy having wear resistance at high temperature
JPH10310851A (en) Sintered alloy with high temperature wear resistance