JPH0233671A - Binarizing device - Google Patents

Binarizing device

Info

Publication number
JPH0233671A
JPH0233671A JP63183545A JP18354588A JPH0233671A JP H0233671 A JPH0233671 A JP H0233671A JP 63183545 A JP63183545 A JP 63183545A JP 18354588 A JP18354588 A JP 18354588A JP H0233671 A JPH0233671 A JP H0233671A
Authority
JP
Japan
Prior art keywords
difference
image
gradation
circuit
picture element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63183545A
Other languages
Japanese (ja)
Other versions
JP2634064B2 (en
Inventor
Michiaki Miyagawa
宮川 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63183545A priority Critical patent/JP2634064B2/en
Publication of JPH0233671A publication Critical patent/JPH0233671A/en
Application granted granted Critical
Publication of JP2634064B2 publication Critical patent/JP2634064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To detect even a pattern having a small gradation difference at a high speed by obtaining the difference between the gradation value of a noticed picture element of an arithmetic gradation picture and the gradation value of a picture element near the noticed one to compare the obtained difference with the threshold value and deciding the binarizing level of the noticed picture element based on the result of the comparison. CONSTITUTION:A TV camera 4 photographs a work (object) 1 which is carried on a convayor 2. A position sensor 3A detects that the work 1 arrived at a prescribed image pickup position and sends the detection output to a control circuit 18. The sensor 3A also sends a picture fetching signal to an analog switch 6. The signal received from the camera 4 divides one screen into 512X512 picture elements by a picture dividing circuit 8 via the switch 6 and an A/D converter 7 and stores the gradation information on each picture element into a 2-dimensional local memory 9. The output of the memory 9 is inputted to an arithmetic circuit 10 for calculation of the gradation value of each picture element. Then the difference of gradation value is obtained between a noticed picture element and its peripheral one by the difference circuits 13A-13N via a memory 9A and the gradation value memories 12A-12N. This difference of gradation value is compared with the threshold value given from a circuit 15. When said difference exceeds the threshold value, logic 1 is outputted and a logic circuit 17 secures an OR to detect the flaws.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、テレビカメラ等の画像センサからの出力を
濃淡信号に変換した後2値化する2値化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a binarization device that converts an output from an image sensor such as a television camera into a grayscale signal and then binarizes the signal.

〔従来の技術〕[Conventional technology]

従来、この種の2fiff化方法としては、予め定めら
れた固定しきい直と比較する固定2遁化法や、撮像信号
を微分した後固定しきい値と比較する微分2値化法など
が、代表的なものとして知られている。
Conventionally, this type of 2fiff conversion method includes a fixed 2fiff conversion method that compares with a predetermined fixed threshold, and a differential 2fiff conversion method that compares the image signal with a fixed threshold after differentiating it. It is known as a typical example.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの手法は構成が簡単になることや
、処理の高速性の点では非常に秀れているが、濃淡差の
小さいものは検出ができないと云う致命的な欠点をもっ
ている。
However, although these methods are excellent in terms of simple configuration and high-speed processing, they have a fatal drawback in that they cannot detect small differences in shading.

例えば、汚れや傷の検出について考えて見ると、白紙上
にある濃い黒点、よごれ等については可成り小さな黒点
まで、上記の従来手法にて良く検出できる。しかしなが
ら、濃度差の少ない汚れ、f3’lJとして淡い墨色の
汚れや黄色のよごれなどは、欠陥サイズが非常に大きく
ても検出は不可能である。
For example, considering the detection of dirt and scratches, the conventional method described above can effectively detect dark black spots, dirt, etc. on white paper, even if they are quite small. However, it is impossible to detect stains with a small density difference, such as pale ink stains and yellow stains as f3'lJ, even if the defect size is very large.

すなわち、欠陥検出としては濃い濃淡の欠陥は大きいも
のから小さなものまで検出するのは当然であるが、うす
い濃淡の欠陥でもサイズの大きなものについては当然検
出すべきものである。にもか〜わらず、上記従来の手法
ではうすい濃淡の欠陥については、殆んど検出できない
と云うわけである。換言すれば、上記の如き従来の手法
が一般的に用いられて来た背景には、欠陥検査等の観点
からは、対失とするワークがコンベア等で連続的かつ高
速に搬送され、しかも処理時間は1秒当たり数個〜20
 (B+程度と非常に高速性を要求されている点にちり
、か〜る目的には叶っていると云える。
That is, when detecting defects, it is natural to detect dark and light shading defects from large to small, but even light and light shading defects that are large in size should naturally be detected. However, with the above-mentioned conventional method, it is almost impossible to detect defects with light and light shading. In other words, the background to the general use of the conventional methods described above is that, from the perspective of defect inspection, etc., the workpieces to be lost are conveyed continuously and at high speed on a conveyor, etc. Time is several to 20 pieces per second
(It can be said that this purpose has been met, especially since it requires very high speed, at a B+ level.

したがって、この発明はサイズは大きいが濃淡差の小さ
なパターンをも高速に検出するだめの2値化装置を提供
することを目的とする。
Therefore, it is an object of the present invention to provide a binarization device that can detect patterns that are large in size but have a small difference in density at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

移動する物体を撮像する撮像手段と、その撮像信号を画
素毎に少なくともアナログ/ディジタル変換して原濃淡
画像を得る第1の画像抽出手段と、譲原濃淡画像から着
目画素とその周辺の所定数画素の濃淡値の和または積和
を求めてこれを着目測索の演算濃淡値とする操作を原濃
淡画像の全画素について行ない演算濃淡画像を得る第2
の画像抽出手段と、該演算濃淡画像について着目画素の
濃淡値と近傍各画素の濃淡値との差分を求め該差分直を
所定のしきい値と比較する演算手段とを設け、該比較結
果にもとづき着目画素の2値化レベルを決定する。
an image capturing means for capturing an image of a moving object; a first image extracting means for obtaining an original grayscale image by at least analog/digital conversion of the image signal for each pixel; The second step is to obtain a calculated grayscale image by calculating the sum or sum of products of the grayscale values and using this as the calculated grayscale value for the focused search for all pixels of the original grayscale image.
and a calculation means for calculating the difference between the grayscale value of the pixel of interest and the grayscale value of each neighboring pixel in the calculated grayscale image, and comparing the difference value with a predetermined threshold value. First, the binarization level of the pixel of interest is determined.

〔作用〕[Effect]

いま、撮像信号のノイズレベルを±Δnとし、検出すべ
き欠陥の真の信号をδとすると、観測値はδ±Δnとな
る。そこで、欠陥部分がITI I X m 1の二次
元局部空間よシも大きいときは、該空間内のN画素につ
いて重み付けをしない単純和を求めると、欠陥部分の信
号はNδで近似し得る一方、ノイズレベルは(±Δn 
/ N ’/” )で近似される。
Now, if the noise level of the imaging signal is ±Δn and the true signal of the defect to be detected is δ, then the observed value is δ±Δn. Therefore, when the defective part is larger than the two-dimensional local space of ITI I X m 1, if a simple sum without weighting is calculated for N pixels in the space, the signal of the defective part can be approximated by Nδ, while The noise level is (±Δn
/N'/'').

その結果、S/N(信号対雑音比)比がN3/2  だ
け向上し九非常に良画質の画像が得られる。また、同じ
演算が無欠陥部分についても実施されるので、無欠陥部
分からも良画質の画像が得られる。つまシ、S/N比の
高い演算濃淡画像志で演算して傷検出をすれば、S/N
比はNs/xに比例して向上する。例えば、N = 9
 (rn 1−5 )のときは27倍、N = 25 
(rn 1= 5 )のときは125倍に検出感度が向
上する。したがって、A/D変換された画素同志を比較
して2値化するものに比べて、2呟化の感度が格段に向
上し、うすい濃淡差のパターンでも検出が可能となる。
As a result, the S/N (signal-to-noise ratio) ratio is improved by N3/2, and an image of very good quality can be obtained. Furthermore, since the same calculation is performed on the defect-free portion, a high-quality image can also be obtained from the defect-free portion. If you detect flaws by calculating using a calculated grayscale image with a high S/N ratio, the S/N
The ratio improves in proportion to Ns/x. For example, N = 9
(rn 1-5), 27 times, N = 25
When (rn 1 = 5), the detection sensitivity is improved by 125 times. Therefore, compared to a method in which A/D-converted pixels are compared and binarized, the sensitivity of the binarization is significantly improved, and even a pattern with a slight difference in shading can be detected.

〔実IAfす〕[Real IAf]

第1図はこの発明の実施例を示すブロック図、第2図は
画像の取込みタイミングff1jを示すタイムチャート
、第3図は原濃淡画像の着目画素とその周辺画素の関係
例を説明するための説明図、第4図は原濃淡画像と演算
濃淡画像との関係を説明するための説明図、第5図は演
算濃淡画像の着目側)うつ 素とその近傍画素の関係耳を説明するための説明図、第
6図は第1図に示す論理回路の具体し1]を示す回路図
である。なお、第1図において、1はワーク(物体)、
2はコンベア、3,6Aは位置センサ、4はテレビ(T
V)カメラ、5は増幅器、6はアナログスイッチ、7は
アナログ/ディジタル(A/D )変換器、8は画面分
割回路、9,9Aは二次元局部メモリ、10は積和演算
回路、11.12A〜12Nは演算濃淡値メモリ、13
A〜13Nは差分回路、14A〜14Nは比較回路、1
5はしきい値記憶回路、16は演算結果記憶回路、17
は論理回路、18はコントロール回路でちる。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a time chart showing the image capture timing ff1j, and FIG. 3 is a diagram for explaining an example of the relationship between a target pixel of an original grayscale image and its surrounding pixels. Figure 4 is an explanatory diagram for explaining the relationship between the original grayscale image and the calculated grayscale image, and Figure 5 is an explanatory diagram for explaining the relationship between the pixel and its neighboring pixels. The explanatory diagram, FIG. 6, is a circuit diagram showing a specific embodiment 1 of the logic circuit shown in FIG. 1. In addition, in Fig. 1, 1 is a workpiece (object),
2 is a conveyor, 3 and 6A are position sensors, and 4 is a television (T
V) Camera, 5 is an amplifier, 6 is an analog switch, 7 is an analog/digital (A/D) converter, 8 is a screen division circuit, 9 and 9A are two-dimensional local memories, 10 is a product-sum calculation circuit, 11. 12A to 12N are calculation gray value memories, 13
A to 13N are differential circuits, 14A to 14N are comparison circuits, 1
5 is a threshold storage circuit, 16 is a calculation result storage circuit, 17
is a logic circuit, and 18 is a control circuit.

TVカメラの如き二次元撮像装置4は、コンベア20所
定位置を常時撮像する。位置センサ6゜3Aはワーク1
がTVカメラ4の視」内の所定位置に到達したことを検
知し、その出力をコントロール回路18へ送る。コント
ロール回路18では第2図(イ)に示すようなTVカメ
ラの同期信号と(ロ)に示すような位置センサ信号とか
ら、同図(ハ)の如き画像の取込信号を作成する。TV
カメラ4からの信号は、増幅器5により適当なレベルに
増幅される。アナログスイッチ6は第2図(ハ)に示す
取込信号による1Dl!i1面の信号のみを、後段のA
 / D変換器7へ出力する。こ匁では1画面だけのT
V右カメラ号を原始情報として扱うので、移動物体につ
いても適用することができる。
A two-dimensional imaging device 4 such as a TV camera constantly images a predetermined position of the conveyor 20. Position sensor 6°3A is work 1
reaches a predetermined position within the field of view of the TV camera 4, and sends its output to the control circuit 18. The control circuit 18 creates an image capture signal as shown in FIG. 2(c) from the TV camera synchronization signal as shown in FIG. 2(a) and the position sensor signal as shown in FIG. 2(b). TV
The signal from camera 4 is amplified to an appropriate level by amplifier 5. The analog switch 6 outputs 1Dl! according to the input signal shown in FIG. 2 (c). Only the signal on the i1 side is sent to the subsequent stage A.
/ Output to D converter 7. In Komome, there is only one T screen.
Since the V right camera number is treated as source information, it can also be applied to moving objects.

A/D変換変換上7V左カメラg号を例えば8ビツトの
ディジタル信号に変換し、これを画面分割回路8により
例えば横512画素×縦512画素に分割した後、各画
素のa淡情報として二次元局部メモリ9へ送る。二次元
局部メモリ9は、レリえば8 X (512X rn、
)のシフトレジスタをm4段カスケード(縦続)接続し
たものからなシ、着目画素の濃淡情報とその周辺画素の
濃淡情報を同時に出力する。第6図(イ)にm1=6、
(ロ)にml−5としたときの着目画素roと周辺画素
「1の関係をそれぞれ示す。
A/D conversion converts the 7V left camera g into, for example, an 8-bit digital signal, divides this into, for example, 512 pixels horizontally x 512 pixels vertically, and then divides it into two as the a-light information of each pixel. Send to dimensional local memory 9. The two-dimensional local memory 9 is 8X (512X rn,
) is constructed by cascading m4 stages of shift registers, and simultaneously outputs the gradation information of the pixel of interest and the gradation information of its surrounding pixels. In Figure 6 (a) m1=6,
(b) shows the relationship between the pixel of interest ro and the surrounding pixel "1" when ml-5 is set.

二次元局部メモリ9の出力は積和演算回路10へ与えら
れ、着目画素の濃淡値Sroと周辺画素の濃淡値Sr1
とから、例えば第5図(イ)については次の(1)式、
また同図(ロ)については次の(2)式の演算をそれぞ
れ行ない、演算濃淡値S。′を求める。
The output of the two-dimensional local memory 9 is given to the sum-of-products calculation circuit 10, which includes the grayscale value Sro of the pixel of interest and the grayscale value Sr1 of the surrounding pixels.
Therefore, for example, for Figure 5 (a), the following equation (1),
In addition, for the same figure (b), the following equation (2) is calculated, and the calculated gray value S is obtained. Find ′.

So′−に1Sro+に2(s4.+sr2+s、5+
sr4” Sr5 ” Sr6 ” Sr7 ” Sr
8 )  、、、、、、 (1)+5r14+5r15
+5r16+5r17+5r18+5r19+5r20
 )−−(2) このような操作は原浸淡画像の全領域について行なわれ
るので、第4囚のように、原画保工。に関数Fを掛けた
新しい演算濃淡画像ICが得られることになる。画像工
。と工。とではX、yの座標関係は1対1に対応し、濃
淡値がS。がらS。′へと変化しているわけである。な
お、(1)、(,2)式の演算を簡単にするには、 k1= k2− k5= 1 とすれば良い。いずれにしても、積和演算回路10から
は演算濃淡画像I。における各画素の濃淡値が出力され
る。
1 to So'- 2 to Sro+ (s4.+sr2+s, 5+
sr4” Sr5” Sr6” Sr7” Sr
8) ,,,,,, (1)+5r14+5r15
+5r16+5r17+5r18+5r19+5r20
) -- (2) Since such operations are performed on the entire area of the original immersion image, as in the fourth prisoner, the original image security is required. A new calculated grayscale image IC is obtained by multiplying by the function F. Image artist. and engineering. The X, y coordinate relationship is one-to-one, and the shading value is S. GaraS. '. Note that in order to simplify the calculations of equations (1) and (,2), k1=k2−k5=1 may be used. In any case, the calculated grayscale image I is output from the product-sum calculation circuit 10. The gray value of each pixel in is output.

積和演算回路10の出力は、第2の二次元局部メモ’J
9Aに与えられる。二次元局部メモリ9Aは演算濃淡1
tTj像■。にljする局部メモリで、局部空間として
はlT12(例えばrn2 = 5 )で濃淡値はレリ
えば12ピツトとする。この二次元局部メモリ9Aの出
力からは、例えば第5図に示すように、着目画素Roの
濃淡値S1、。と近傍画素Ri(R,〜Ra)の濃淡値
S81が出力される。着目画素R6の濃淡値S、。はメ
モリ11に、また近傍画素Ri の濃淡nur、はメモ
IJ 12 A〜12Nに格納される。
The output of the product-sum calculation circuit 10 is a second two-dimensional local memo 'J
Given to 9A. The two-dimensional local memory 9A is the calculation density 1
tTj image■. It is assumed that the local memory is lj, the local space is lT12 (for example, rn2 = 5), and the gray value is approximately 12 pits. From the output of the two-dimensional local memory 9A, for example, as shown in FIG. 5, the gray value S1 of the pixel of interest Ro. The gray value S81 of the neighboring pixel Ri (R, to Ra) is output. The gray value S of the pixel of interest R6. is stored in the memory 11, and the gray level nur of the neighboring pixel Ri is stored in the memo IJ12A to 12N.

差分回路15A〜13Nは、各近Eカl[!II素につ
いて差分SR,−S□。を演算し、比較回路14A〜1
4Nは各差分をしきい値記憶回路15から与えられるし
きい直αと比較し、例えば、 5RI−8RO〉“ のとき、論理″1#を出力する。その結果は記憶回路1
6に、−旦記憶される。論理回路17は記憶回路16の
出力について、例えばその論理和をとり、論理″1”と
なったところを傷として2値化する。単純論理和をとる
論理回路17のかわりに、第6図の如く方向別に論理積
(AN1〜AN4)をとった後、論理和(OR)をとる
こともできる。こうすれば、単純な論理和よシも有効に
作用させることができる。
The difference circuits 15A to 13N are connected to each near E cal [! Difference SR, -S□ for II element. The comparison circuits 14A to 1
4N compares each difference with the threshold α given from the threshold storage circuit 15, and outputs logic ``1#'' when, for example, 5RI-8RO>''. The result is memory circuit 1
6, -d is stored. The logic circuit 17 performs a logical sum on the output of the memory circuit 16, for example, and binarizes the output with a logic "1" as a flaw. Instead of the logic circuit 17 that takes the simple OR, it is also possible to take the AND (AN1 to AN4) for each direction and then take the OR (OR) as shown in FIG. In this way, even simple logical sums can be made to work effectively.

以上の如き処理は演算濃淡画像の全領域について行なわ
れるので、高S /N、高感度で傷を検出することがで
きる。
Since the above processing is performed on the entire area of the calculated grayscale image, flaws can be detected with high S/N and high sensitivity.

第7図はこの発明の他の実施例を示すブロック図である
FIG. 7 is a block diagram showing another embodiment of the invention.

これは、第1図に示す二次元局部メモリ9のかわりにイ
メージメモリ21.二次元局部濃淡値メモリ22.メモ
リ制御回路23.アドレス演算回路24および着目点座
標発生回路25を設けると〜もに、二次元局部メモリ9
Aのかわりに演算イメージメモリ22A、メモリ制御回
路25A、アドレス演算回路24Aおよび着目点座標発
生回路25Aを設けたもので、それ以外は第1図に示す
ものと同様である。なお、26は演算制御回路であり、
これによυ差分、比較等の演算が各画素毎に、頃次(直
列的に)行なわれる。
This is an image memory 21. instead of the two-dimensional local memory 9 shown in FIG. Two-dimensional local gray value memory 22. Memory control circuit 23. By providing the address calculation circuit 24 and the point-of-interest coordinate generation circuit 25, the two-dimensional local memory 9
A calculation image memory 22A, a memory control circuit 25A, an address calculation circuit 24A, and a point-of-interest coordinate generation circuit 25A are provided in place of A, but the rest is the same as that shown in FIG. In addition, 26 is an arithmetic control circuit,
As a result, calculations such as υ difference and comparison are performed sequentially (serially) for each pixel.

〔発明の効果〕〔Effect of the invention〕

イ)TV左カメラら得られる原濃淡画像に対し、着目画
素とその二次元周辺N画素の濃淡値の積和(または和)
をとったものを着目画素の演算濃淡値とする操作を原濃
淡画像の全てのlff1l素について行なうようにした
ので、S/N比の高い演aS淡画像を得ることができる
b) For the original grayscale image obtained from the TV left camera, the product sum (or sum) of the grayscale values of the pixel of interest and its two-dimensional surrounding N pixels
Since the operation of determining the calculated gray value of the pixel of interest as the calculated gray value of the pixel of interest is performed for all lff1l elements of the original gray image, it is possible to obtain a calculated aS gray image with a high S/N ratio.

口)演i濃淡呟をもとにして2匝化を行なうようにした
ので、従来よりも感度を著しく大幅に(例えば27〜1
25倍)向上させることができる。
(mouth) Since we have made it possible to perform double conversion based on the densities, the sensitivity has been significantly increased compared to the conventional method (for example, 27 to 1
25 times).

ハ)演算α淡直画什について、着目wJ素と近傍画素と
の」淡直の差分を求め、これをしきい直と比軸して2値
化するようにしたので、正常部分の濃淡値にゆるやかな
変化があってもこれを無視することができ、正常部分を
誤って2値化することはない。
C) Calculation α Regarding the light and bright image area, we calculated the difference in light and brightness between the focused wJ element and the neighboring pixels, and binarized this using the threshold value as a ratio, so the gray value of the normal part Even if there is a gradual change in the value, this can be ignored and normal parts will not be erroneously binarized.

二)TVカメラ視野内にワークが到着した直後の1画面
だけを処理対象としているので、ワー、りが移動しても
何ら影響を受けない。
2) Since only one screen immediately after the workpiece arrives within the field of view of the TV camera is targeted for processing, there is no effect even if the workpiece moves.

ホ)処理をパイプライン方式で行なうことができ、高速
化を図ることかでさる。
e) Processing can be performed in a pipeline system, which increases speed.

その結求、従来困難とされていた、サイズが犬きくてう
すい濃淡の欠陥をも、著しく高速かつ高精度に検出可能
となる。
As a result, it is now possible to detect defects with extremely high speed and accuracy, even defects that are large in size and have faint shading, which was previously considered difficult.

【図面の簡単な説明】 第1図はこの発明の実施例を示すブロック図、第2図は
画像の取込みタイミング例を示すタイムチャート、第3
図は原濃淡画像の着目r!A素とその周辺画素の関係例
を説明するための説明図、第4その近fg画素の関係例
を説明するだめの説明図、第6図は第1図に示す論理回
路の具体例を示す回路図、第7図はこの発明の他の実施
例を示すブロック図でちる。 符号説明 1・・・・・・ワーク、2・・・・・・コンベア、5,
3A・・・・・・位置センサ、4・・・・・・TVカメ
ラ、5・・・・・・増幅器、6・・・・・・アナログス
イッチ、7・・・・・・A/D変換器、8・・・・・・
画面分割回路、9,9A・・・・・・二次元局部メモリ
、10・・・・・・積和演發:回路、11,12.12
A〜12N・・・・・・演算濃度(直メモリ、13.1
3A・・・演算結果記1.は回路、17・・曲論理回路
、21・・・・・・イメージメモリ、22・・曲二次元
局部濃淡瞭メモリ、22A・・凹演算イメージメモリ、
23,23A・・・・・・メモリ制御回路、24,24
A・間・アドレス演算回路、25,25A・・曲着目点
座標発生回路、26・・・・・・演算制御回路。 代理人 弁理士 並 木 昭 夫
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a time chart showing an example of image capture timing, and Fig. 3 is a block diagram showing an embodiment of the present invention.
The figure shows the original gradation image. An explanatory diagram for explaining an example of the relationship between the A element and its surrounding pixels, an explanatory diagram for explaining an example of the relationship between the fourth and neighboring fg pixels, and FIG. 6 shows a specific example of the logic circuit shown in FIG. 1. The circuit diagram, FIG. 7, is a block diagram showing another embodiment of the present invention. Code explanation 1...Work, 2...Conveyor, 5,
3A...Position sensor, 4...TV camera, 5...Amplifier, 6...Analog switch, 7...A/D conversion Vessel, 8...
Screen division circuit, 9, 9A... Two-dimensional local memory, 10... Product-sum calculation: circuit, 11, 12.12
A~12N・・・・・・Calculated density (direct memory, 13.1
3A... Calculation results 1. is a circuit, 17...music logic circuit, 21...image memory, 22...music two-dimensional local density memory, 22A...concave calculation image memory,
23, 23A... Memory control circuit, 24, 24
A. Address calculation circuit, 25, 25A.. Track point coordinate generation circuit, 26.. Calculation control circuit. Agent Patent Attorney Akio Namiki

Claims (1)

【特許請求の範囲】 移動する物体を撮像する撮像手段と、 その撮像信号を画素毎に少なくともアナログ/ディジタ
ル変換して原濃淡画像を得る第1の画像抽出手段と、 該原濃淡画像から着目画素とその周辺の所定数画素の濃
淡値の和または積和を求めてこれを着目画素の演算濃淡
値とする操作を原濃淡画像の全画素について行ない演算
濃淡画像を得る第2の画像抽出手段と、 該演算濃淡画像について着目画素の濃淡値とその近傍各
画素の濃淡値との差分を求め該差分値を所定のしきい値
と比較する演算手段と、 を設け、該比較結果にもとづき着目画素の2値化レベル
を決定することを特徴とする2値化装置。
[Scope of Claims] Imaging means for capturing an image of a moving object; first image extraction means for obtaining an original grayscale image by at least analog/digital conversion of the image signal for each pixel; and a pixel of interest from the original grayscale image. and a second image extracting means for obtaining a calculated gradation image by performing an operation for all pixels of the original gradation image to obtain the sum or product sum of the gradation values of a predetermined number of surrounding pixels and to use this as the calculated gradation value of the pixel of interest. , calculating means for calculating the difference between the gray value of the pixel of interest and the gray value of each neighboring pixel in the calculated gray image and comparing the difference value with a predetermined threshold; A binarization device that determines a binarization level of.
JP63183545A 1988-07-25 1988-07-25 Binarization device Expired - Lifetime JP2634064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183545A JP2634064B2 (en) 1988-07-25 1988-07-25 Binarization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183545A JP2634064B2 (en) 1988-07-25 1988-07-25 Binarization device

Publications (2)

Publication Number Publication Date
JPH0233671A true JPH0233671A (en) 1990-02-02
JP2634064B2 JP2634064B2 (en) 1997-07-23

Family

ID=16137687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183545A Expired - Lifetime JP2634064B2 (en) 1988-07-25 1988-07-25 Binarization device

Country Status (1)

Country Link
JP (1) JP2634064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312715A (en) * 2000-04-28 2001-11-09 Denso Corp Optical information reader

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148380A (en) * 1986-12-12 1988-06-21 Fuji Electric Co Ltd Image binarization device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148380A (en) * 1986-12-12 1988-06-21 Fuji Electric Co Ltd Image binarization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312715A (en) * 2000-04-28 2001-11-09 Denso Corp Optical information reader

Also Published As

Publication number Publication date
JP2634064B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
JPH01224881A (en) Pattern inspecting device
JPS62214481A (en) Picture quality deciding device
JP3332208B2 (en) Defect detection method and apparatus for netted glass
JP2710527B2 (en) Inspection equipment for periodic patterns
JPH0233671A (en) Binarizing device
JP3044951B2 (en) Circular container inner surface inspection device
JPH109835A (en) Surface flaw inspection apparatus
JP2988059B2 (en) Circular container inner surface inspection device
JPS5816837B2 (en) pattern detection device
JPS6055474A (en) Detector for difference between images
JP4474006B2 (en) Inspection device
JPH06147855A (en) Image inspection method
JP2710685B2 (en) Defect detection method by visual inspection
JPS62212506A (en) Method for detecting flaw
JPH0713836B2 (en) Binarization circuit
JPH0332723B2 (en)
JP3055323B2 (en) Circular container inner surface inspection device
JPS61126455A (en) Image processing method
JPH0359362B2 (en)
JPS60124783A (en) Picture processing unit
JPH02132567A (en) Binarizing circuit
JPH0774787B2 (en) Multi-layer pattern defect detection method and apparatus
JPH07159139A (en) Inspection for surface of workpiece
JPH0720065A (en) Device for inspecting foreign matter on color filter for appearance
JPH11248646A (en) Device for inspecting inner face of container