JPH02315B2 - - Google Patents

Info

Publication number
JPH02315B2
JPH02315B2 JP60050182A JP5018285A JPH02315B2 JP H02315 B2 JPH02315 B2 JP H02315B2 JP 60050182 A JP60050182 A JP 60050182A JP 5018285 A JP5018285 A JP 5018285A JP H02315 B2 JPH02315 B2 JP H02315B2
Authority
JP
Japan
Prior art keywords
aluminum
basic aluminum
antioxidant
carbon
glycolate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60050182A
Other languages
Japanese (ja)
Other versions
JPS61207484A (en
Inventor
Shin Yamamoto
Ikushi Shirafuji
Kyoshi Takamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP60050182A priority Critical patent/JPS61207484A/en
Publication of JPS61207484A publication Critical patent/JPS61207484A/en
Publication of JPH02315B2 publication Critical patent/JPH02315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は炭玠質玠材の酞化防止剀に関する。 炭玠質玠材は䞀般に熱に察しお極めお安定な物
性を有しおおり、倚くの甚途に広く䜿甚されおい
る。しかし、かかる炭玠質玠材は酞化性雰囲気で
600℃以䞊で䜿甚される堎合は玠材が酞化し、消
耗する。そのため埓来から炭玠質玠材の耐酞化性
を向䞊させるべく倚くの研究がなされ、モリブデ
ン酞塩、リン酞塩、ホり酞塩を浞透充填させる方
法、雰囲気制埡を行ないPVD法Physical
Vapour Deposit法、CVD法Chemical
Vapour Deposit法により炭玠質玠材衚面を被
芆する方法が考察されおいる。これらのうち、
PVD法、CVD法は雰囲気制埡や倧型品の凊理が
困難であり、凊理時間圓りの被芆局厚が薄いため
に長時間の凊理を芁し、たた再珟性が悪く、高䟡
ずなり工業的でない。他方、各皮無機酞塩を浞
透、充填させる方法は安䟡であり倚甚されおいる
が、リン酞塩被芆局に耐氎性を付䞎するためには
500℃以䞊の熱凊理を行なうこずを芁し、たたこ
れにより被芆された補品を、高枩雰囲気で䜿甚す
るず、1600℃たで安定ずされおいるりん酞アルミ
ニりムでさえも炭玠がりん酞塩を還元し、P2O5
を、揮散し補品及び呚蟺の機噚等を汚染する。近
幎、補品玠材の高玔床化が進められる䞭でP2O5
の混入は殊に嫌われおいる。 たた、硬化剀ずしお比范的リン酞塩ず反応性の
良いアルカリ土類金属塩を甚い、耐氎性、吞湿性
を防止し500℃以䞊の熱凊理工皋を省略するこず
も行なわれおいるが、硬化剀ずの反応性が高いた
めに䜜業性が悪く、たた硬化䜜甚により増粘する
ために炭玠質玠材にリン酞塩が浞透せず、䜿甚䞭
に被芆局が脱萜し、溶融補品を汚染するこずで問
題ずな぀おいる。 本発明はこのような埓来方法の欠点に鑑み、酞
化防止性胜の優れた酞化防止剀を開発すべく鋭意
研究を重ねた結果、塩基性乳酞アルミニりムたた
は塩基性グリコヌル酞アルミニりムが、優れた酞
化防止性胜を有するこずを芋い出し、曎にはこれ
らのものずホり酞、シリカゟルたたは、アルミナ
ゟルずの䜵甚、又は、これらのものず金属シリコ
ンずカヌボンブラツクずの䜵甚により、塩基性乳
酞アルミニりムたたは塩基性グリコヌル酞アルミ
ニりム、単味の䜿甚によるよりも曎に䞀段を酞化
防止性胜が向䞊するこずを芋い出し、本発明を完
成したものである。 本発明に䜿甚する塩基性乳酞アルミニりム、塩
基性グリコヌルアルミニりムは、Al2O3乳酞
モル比0.2〜2.0及びAl2O3グリコヌル酞モ
ル比0.2〜1.0の組成を有するものであり、その
補法ずしおは、特願昭56−161867号に蚘茉の劂
く、氎可溶性アルミニりム塩ずアルカリ金属ある
いはアンモニりム炭酞塩、重炭玠塩等を反応さ
せ、たたはアルミン酞アルカリず炭酞ガスずを反
応させ生成沈殿するアルミナ氎和物を乳酞又はグ
リコヌル酞に溶解するこずにより補造するこずが
できる。 たた䞊蚘炭酞塩に代えお氎酞化アンモニりム、
氎酞化ナトリりムを䜿甚するこずもできる。 曎にたた、硫酞アルミニりムず乳酞たたは乳酞
アルミニりムあるいは、グリコヌル酞たたはグリ
コヌル酞アルミニりムの混合溶液にカルシりム化
合物、バリりム化合物等の氎䞍溶性硫酞塩を圢成
する化合物を添加するこずによ぀おも補造するこ
ずができる。 たた別の補法ずしおは、特願昭58−155951号に
蚘茉の劂く濃床10〜30重量の乳酞たたはグリコ
ヌル酞ず比衚面積3.0×10-4m2以䞊の金属
アルミニりムずをモル比で3.0以䞊で
反応させるこずによ぀おも補造するこずができ
る。 本発明では塩基性の乳酞アルミニりムたたはグ
リコヌル酞アルミニりムを䜿甚するが、乳酞アル
ミニりム、あるいはグリコヌル酞アルミニりムの
正塩は塗垃埌の塗膜が䞍均䞀であり、加熱時に塗
膜に亀裂を生じ、本発明で云う炭玠質玠材の酞化
防止効果はほずんど期埅できない。 たた他のアルミニりム塩ずしお、塩化アルミニ
りム、酢酞アルミニりム、リンゎ酞アルミニり
ム、ク゚ン酞アルミニりム、酒石酞アルミニりム
等の正塩及び塩基性塩があるが、これらのものも
塗膜の匷床が匱く亀裂を生じ易く、酞化防止効果
をほずんど有しないものならず塩化アルミニりム
は加熱䞭に塩玠ガスを発生するこずより炉を損傷
し、たたシナり酞アルミニりムは分解ガスが有害
であり䜿甚に適さない。曎に酢酞アルミニりムは
酢酞臭が匷く䜜業環境を悪くし、高玚脂肪族カル
ボン酞や芳銙族カルボン酞は熱分解性が悪く、耇
雑なガス分解生成物を生じ䜜業環境を悪化する。
他方リンゎ酞アルミニりム、ク゚ン酞アルミニり
ム、酒石酞アルミニりムは、高塩基性塩が埗難
く、Al2O3濃床が䜎きに過ぎ、塗膜匷床が䜎くな
り、酞化防止効果が䜎䞋する。 本発明に䜿甚する炭玠質玠材に぀いお云えば炭
玠質玠材は特に限定するものではないが、コヌク
ス、黒鉛等の炭玠材料を有機質結合剀ず混緎成型
したものを焌成しお埗た炭玠質補品、たたはこの
焌成埌の補品を曎に高枩で黒鉛化させた入造黒鉛
や倩然鱗片状黒鉛などからなる黒鉛質補品、
たたはマグネシアやアルミナず黒鉛ずを混合し耇
合化させた補品たたは機胜性を重芖したような可
撓性黒鉛材料や液面センサヌ、黒鉛治具、ロケツ
トノズル挿入䜓などである。 本発明酞化防止剀はこの様な炭玠質玠材補品に
コヌテむングするだけで充分であるが、成型時に
有機質結合剀の代替品ずしお利甚するこずもでき
る。 コヌテむング方法に぀いおは特に限定するもの
ではないが、乳酞アルミニりム溶液を炭玠質玠材
補品の衚面に、はけ塗りや吹付け塗垃する方法、
あるいはその氎溶液に浞挬しお含浞させる方法、
たたは密閉容噚䞭で枛圧させる方法がある。それ
を110℃皋床の䜎枩で也燥させるだけで吞湿性の
少ない酞化防止膜が生成する。しかし、より耐氎
性を望む堎合は、300℃以䞊で熱凊理を行なうこ
ずが望たしい。 本発明の塩基性乳酞アルミニりム、又は塩基性
グリコヌル酞アルミニりムの䜿甚に際しおはこれ
らのAl2O3濃床は6.0〜15.0重量の範囲のものを
䜿甚する。 即ち、䞋限以䞋ではAl2O3濃床が䜎きに過ぎ本
発明の炭玠質玠材の酞化防止効果が期埅できず、
たた䞊限を䞊廻る濃床は溶液粘床の増加により塗
垃等の堎合に塗膜が䞍均䞀ずなり、クラツク等の
生成原因ずなり奜たしくない。尚、粉末状の䞊蚘
アルミニりム塩を氎に溶解しお䜿甚しおもよい。 本第の発明は、塩基性乳酞アルミニりムたた
は塩基性グリコヌル酞アルミニりムを単味で炭玠
質玠材の酞化防止剀ずしお䜿甚するものである
が、本第及び第の発明により、本発明の酞化
防止効果は曎に向䞊する。 本第の発明は、本第の発明にホり酞、シリ
カゟルたたはアルミナゟルから遞ばれた䞀皮たた
はそれ以䞊を加えたものであり、殊に塗膜の膜匷
床を向䞊せしめ、以぀お炭玠質玠材の酞化防止効
果を高めるこずをその目的ずするものである。 即ち、酞化防止剀を炭玠質玠材に塗垃する堎合
においお、炭玠質玠材の皮類等によ぀おは塩基性
乳酞アルミニりム、塩基性グリコヌル酞アルミニ
りム単味では䜿甚䞭に膜にクラツクが生成するこ
ずがある。本発明者らは、この原因に぀いお究明
した結果、尚膜匷床が充分でないこずを぀きずめ
た。そこで、匷床を改善する方法に぀いお考究し
た結果、䞊蚘化合物を䜿甚すればクラツク発生が
回避され、その結果、酞化防止効果が䞀段ず向䞊
するこずを発芋し、本第の発明を完成したもの
である。 本発明に䜿甚するホり酞、シリカゟル、アルミ
ナゟルは通垞垂販されおいるものを䜿甚すればよ
く、その䜿甚量固圢分ずしおは塩基性乳酞ア
ルミニりム、塩基性グリコヌル酞アルミニりムの
Al2O3に察しお30〜140重量が適圓である。䞋
限以䞋ではクラツク発生防止効果、即ち酞化防止
効果の向䞊を期埅するこずができず、䞊限を䞊廻
るずゟルがゲル化し、塗膜が䞍均䞀ずなり酞化防
止効果は䜎䞋する。 ホり酞の添加量は䞍溶解の状態でも良いが、溶
解させお也燥時に均䞀にホり酞が入぀おいる方が
より奜たしい。塩基性乳酞アルミニりム、たたは
塩基性グリコヌル酞アルミニりムにホり酞を溶解
させるず、ホり乳酞アルミニりム、たたはホりグ
リコヌル酞アルミニりムを生成するこずよりホり
酞の氎に察する溶解床よりもはるかに倚くの量を
加えお溶液状態を保぀こずができ、膜の増匷効果
も加わり、より優れた酞化防止効果を発揮する。 たたこれらの䜿甚態様ずしおは、䞊蚘アルミニ
りム塩に混合しお䜿甚するのが最もよいが、これ
らを炭玠質玠材に予じめ添加混合しおおいおもよ
い。 本第の発明は、塩基性乳酞アルミニりムたた
は塩基性グリコヌル酞アルミニりムず金属シリコ
ンずカヌボンブラツクずからなる炭玠質玠材の酞
化防止剀に関し、金属シリコンずカヌボンブラツ
クの䜿甚により、炭玠質玠材を1000℃以䞊の高枩
で䜿甚する堎合においお、極めお良奜な酞化防止
効果を発揮する。 塩基性乳酞アルミニりム、塩基性グリコヌル酞
アルミニりム単味では、炭玠質玠材補品が高枩で
䜿甚されるず次第に酞化防止効果は䜎䞋する。殊
にその傟向は倧略1000℃以䞊で著しい。かかる炭
玠質玠材補品の高枩䜿甚においお、金属シリコン
ずカヌボンブラツクを䜿甚するず、䞊蚘アルミニ
りム塩単味に比べ、酞化防止効果は著しく改善さ
れる。しかも䞡者の䜿甚により高導電性が附䞎さ
れる結果、殊に炭玠質補品が電極等である堎合に
は奜たしい。 金属シリコンずカヌボンブラツクの䜿甚割合
は、䞊蚘アルミニりム塩のAl2O3に察し、合量で
100〜500重量、金属シリコンずカヌボンブラツ
クの䜿甚割合は重量比で0.38〜0.60の範
囲で良い。即ち、この範囲においお高枩酞化防止
効果が最もよく発揮され、導電性の点からも最良
である。 尚、カヌボンブラツクの皮類に぀いおは、アセ
チレンブラツク、フアヌネスブラツクのSAF
HAFが䜿甚に適する。 本発明ではこれらの化合物ず塩基性乳酞アルミ
ニりムずの組合せ䜿甚により、炭玠質玠材の酞化
防止に優れた効果を有するものであるが、これら
のものに他の化合物ずしお、ホり砂、アルミナ、
炭化ケむ玠、ゞルコン、チタン金属、タングステ
ン金属、リン酞アルミニりム、ヘキサメタリン酞
゜ヌダ等や有機酞等のアルミニりム安定剀、ケむ
酞゜ヌダ、アルミン酞゜ヌダなども䜵甚するこず
ができる。 たた本発明の酞化防止剀は、前蚘炭玠質玠材以
倖にもマグネシアヌカヌボンレンガの酞化防止コ
ヌテむング剀、鉛筆甚粘結剀ずしお利甚できる。 以䞋に本発明の実斜䟋を挙げお曎に説明する
が、本発明はこれに限定されるものではない。 尚、本実斜䟋は特にこずわらない限り、は党
お重量を瀺す。 実斜䟋  コヌクス60郚、黒鉛20郚、有機暹脂20郚を混緎
成圢し、900℃で仮焌、2400℃で黒鉛化凊理した
炭玠補品を䟛詊品ずしお甚いた。これを25×25×
25に切断以䞋これを炭玠詊片ず云う
し、オヌトクレヌブ䞭で×10-3mmHg以䞋にお
炭玠詊片䞭の空気を脱気し、続いおこれに塩基性
乳酞アルミニりム氎溶液Al2O312Al2O3
乳酞モル比0.6を加え炭玠詊片を浞挬した。こ
れをオヌトクレヌブ䞭でN2ガス10Kgcm2で30分
間加圧し、オヌトクレヌブから取り出した埌110
℃で也燥した。凊理剀の含浞量は浞挬前ず也燥埌
の炭玠詊片の重量増加から求めた。 たた別に塩基性乳酞アルミニりム氎溶液に替え
塩基性グリコヌル酞アルミニりム氎溶液
Al2O312Al2O3グリコヌル酞モル比0.5
を䜿甚し、前蚘ず同様に詊隓を行な぀た。 これらを管状加熱炉内に斌お500mlmin流量
の空気䞭で800℃、時間の加熱を行ない加熱前
埌の炭玠詊片の重量倉化からその重量枛少率を求
めた。 たた比范䟋ずしお、本発明の酞化防止剀で凊理
を行わない炭玠詊隓片に぀いおも同様に重量枛少
率を求めた。これらの結果を第衚に瀺した。
The present invention relates to an antioxidant for carbonaceous materials. Carbonaceous materials generally have extremely stable physical properties against heat, and are widely used in many applications. However, such carbonaceous materials cannot be used in an oxidizing atmosphere.
If used at temperatures above 600℃, the material will oxidize and wear out. For this reason, much research has been conducted to improve the oxidation resistance of carbonaceous materials, using the PVD method (Physical
Vapor Deposit method), CVD method (Chemical
A method of coating the surface of carbonaceous materials using the vapor deposit method is being considered. Of these,
The PVD method and the CVD method are difficult to control the atmosphere and process large products, require a long processing time because the coating layer thickness per processing time is thin, have poor reproducibility, are expensive, and are not industrially practical. On the other hand, the method of infiltrating and filling various inorganic salts is inexpensive and widely used, but in order to impart water resistance to the phosphate coating layer,
It requires heat treatment at 500℃ or higher, and if a product coated with this process is used in a high-temperature atmosphere, carbon reduces the phosphate, even with aluminum phosphate, which is said to be stable up to 1600℃. P2O5 _
evaporates and contaminates the product and surrounding equipment. In recent years, as product materials have become more highly purified, P 2 O 5
Contamination with is particularly disliked. In addition, alkaline earth metal salts, which are relatively reactive with phosphates, are used as hardening agents to prevent water resistance and moisture absorption, and to omit the heat treatment process at temperatures above 500°C. Workability is poor due to high reactivity with carbonaceous materials, and phosphates do not penetrate into carbonaceous materials due to increased viscosity due to curing action, resulting in the coating layer falling off during use and contaminating the molten product. It's becoming a problem. In view of the shortcomings of the conventional methods, the present invention has been made through intensive research to develop an antioxidant with excellent antioxidant properties, and as a result, basic aluminum lactate or basic aluminum glycolate has excellent antioxidant properties. Furthermore, by using these in combination with boric acid, silica sol, or alumina sol, or in combination with metal silicon and carbon black, basic aluminum lactate or basic aluminum glycolate, The present invention was completed based on the discovery that the antioxidant performance was further improved compared to the use of a single ingredient. The basic aluminum lactate and basic glycol aluminum used in the present invention have a composition of Al2O3 / lactic acid (molar ratio) of 0.2 to 2.0 and Al2O3 /glycolic acid (molar ratio) of 0.2 to 1.0. As described in Japanese Patent Application No. 56-161867, the manufacturing method is to react a water-soluble aluminum salt with an alkali metal, ammonium carbonate, heavy carbonate, etc., or to react an alkali aluminate with carbon dioxide gas. It can be produced by dissolving the precipitated alumina hydrate in lactic acid or glycolic acid. Also, in place of the above carbonate, ammonium hydroxide,
Sodium hydroxide can also be used. Furthermore, it can also be produced by adding a compound that forms a water-insoluble sulfate, such as a calcium compound or a barium compound, to a mixed solution of aluminum sulfate and lactic acid, or aluminum lactate, or glycolic acid or aluminum glycolate. . Another manufacturing method is to combine lactic acid or glycolic acid A with a concentration of 10 to 30% by weight and metal aluminum B with a specific surface area of 3.0 x 10 -4 m 2 /g or more, as described in Japanese Patent Application No. 155951/1982. It can also be produced by reacting with /A (molar ratio) of 3.0 or more. In the present invention, basic aluminum lactate or aluminum glycolate is used. However, with aluminum lactate or a normal salt of aluminum glycolate, the coating film after application is uneven and cracks occur in the coating film when heated. The anti-oxidation effect of the carbonaceous material mentioned above can hardly be expected. Other aluminum salts include normal salts and basic salts such as aluminum chloride, aluminum acetate, aluminum malate, aluminum citrate, and aluminum tartrate, but these also have weak coating film strength and are prone to cracking. Aluminum chloride has almost no antioxidant effect and damages the furnace by generating chlorine gas during heating, and aluminum oxalate is not suitable for use because its decomposition gas is harmful. Furthermore, aluminum acetate has a strong acetic acid odor, which worsens the working environment, and higher aliphatic carboxylic acids and aromatic carboxylic acids have poor thermal decomposition properties, producing complex gas decomposition products, which worsens the working environment.
On the other hand, with aluminum malate, aluminum citrate, and aluminum tartrate, it is difficult to obtain a highly basic salt, and the Al 2 O 3 concentration is too low, resulting in a low coating film strength and a reduced antioxidant effect. The carbonaceous material used in the present invention is not particularly limited, but carbonaceous products obtained by kneading and molding carbon materials such as coke and graphite with an organic binder, or Graphite products made of cast graphite and natural (scaly) graphite, which are made by graphitizing this fired product at a higher temperature,
Alternatively, there are composite products made by mixing magnesia or alumina with graphite, or flexible graphite materials with emphasis on functionality, liquid level sensors, graphite jigs, rocket nozzle inserts, etc. Although it is sufficient to coat such carbonaceous material products with the antioxidant of the present invention, it can also be used as a substitute for an organic binder during molding. The coating method is not particularly limited, but methods include brushing or spraying an aluminum lactate solution onto the surface of the carbonaceous material product;
Or a method of impregnating it by immersing it in the aqueous solution,
Alternatively, there is a method of reducing the pressure in a closed container. Simply drying it at a low temperature of around 110°C creates an antioxidant film with low moisture absorption. However, if higher water resistance is desired, it is desirable to perform heat treatment at 300°C or higher. When using basic aluminum lactate or basic aluminum glycolate of the present invention, the Al 2 O 3 concentration thereof is in the range of 6.0 to 15.0% by weight. That is, below the lower limit, the Al 2 O 3 concentration is too low and the antioxidant effect of the carbonaceous material of the present invention cannot be expected.
Further, a concentration exceeding the upper limit is undesirable because it increases the viscosity of the solution, resulting in non-uniformity of the coating film during coating and the formation of cracks. Incidentally, the above-mentioned powdered aluminum salt may be used after being dissolved in water. The first invention uses basic aluminum lactate or basic aluminum glycolate alone as an antioxidant for carbonaceous materials. The prevention effect is further improved. The second invention is one in which one or more selected from boric acid, silica sol, and alumina sol is added to the first invention, and it particularly improves the film strength of the coating film, and thereby improves the strength of the carbonaceous material. Its purpose is to enhance the antioxidant effect of. In other words, when applying an antioxidant to a carbonaceous material, depending on the type of carbonaceous material, cracks may form in the film during use if only basic aluminum lactate or basic aluminum glycolate is used. . As a result of investigating the cause of this, the present inventors found that the membrane strength was still insufficient. Therefore, as a result of researching ways to improve the strength, the inventors discovered that the use of the above compound would avoid the occurrence of cracks, and as a result, the antioxidant effect would be further improved, thus completing the present second invention. . As the boric acid, silica sol, and alumina sol used in the present invention, commercially available ones may be used, and the amount used (as solid content) is that of basic aluminum lactate and basic aluminum glycolate.
30 to 140% by weight based on Al 2 O 3 is suitable. Below the lower limit, no improvement in crack prevention effect, ie, improvement in the antioxidant effect, can be expected, while above the upper limit, the sol will gel, the coating will become uneven, and the antioxidant effect will decrease. Although the amount of boric acid added may be in an undissolved state, it is more preferable to dissolve the boric acid so that the boric acid is uniformly contained during drying. Dissolving boric acid in basic aluminum lactate, or basic aluminum glycolate, produces aluminum borate, or aluminum borate, by adding an amount much greater than the solubility of boric acid in water. The condition can be maintained, and the film is also strengthened to provide even better antioxidant effects. The best way to use these is to mix them with the aluminum salt, but they may also be added and mixed to the carbonaceous material in advance. The third invention relates to an antioxidant for a carbonaceous material consisting of basic aluminum lactate or basic aluminum glycolate, metal silicon, and carbon black. When used at high temperatures above, it exhibits extremely good antioxidant effects. When using basic aluminum lactate or basic aluminum glycolate alone, the antioxidant effect gradually decreases when carbonaceous material products are used at high temperatures. This tendency is especially remarkable at temperatures above about 1000°C. When such carbonaceous material products are used at high temperatures, the use of metallic silicon and carbon black significantly improves the antioxidant effect compared to the use of aluminum salt alone. Moreover, the use of both imparts high conductivity, which is particularly preferred when the carbonaceous product is an electrode or the like. The ratio of metal silicon and carbon black to be used is the total amount of Al 2 O 3 of the above aluminum salt.
100 to 500% by weight, and the ratio of metal silicon to carbon black may be in the range of 1/0.38 to 1/0.60 in terms of weight ratio. That is, in this range, the high-temperature oxidation prevention effect is best exhibited, and it is also the best from the viewpoint of electrical conductivity. Regarding the types of carbon black, acetylene black, SAF of furnace black,
HAF is suitable for use. In the present invention, by using a combination of these compounds and basic aluminum lactate, it has an excellent effect of preventing oxidation of carbonaceous materials, but in addition to these compounds, borax, alumina,
Silicon carbide, zircon, titanium metal, tungsten metal, aluminum phosphate, sodium hexametaphosphate, etc., aluminum stabilizers such as organic acids, sodium silicate, sodium aluminate, etc. can also be used in combination. In addition to the above-mentioned carbonaceous materials, the antioxidant of the present invention can be used as an antioxidant coating agent for magnesia carbon bricks and a caking agent for pencils. The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. In this example, unless otherwise specified, all percentages are by weight. Example 1 A carbon product prepared by kneading and molding 60 parts of coke, 20 parts of graphite, and 20 parts of organic resin, calcined at 900°C, and graphitized at 2400°C was used as a test product. This is 25×25×
Cut to 25m/m (hereinafter referred to as carbon specimen)
Then, the air in the carbon specimen was degassed at 1×10 -3 mmHg or less in an autoclave, and then a basic aluminum lactate aqueous solution (Al 2 O 3 12%, Al 2 O 3 /
lactic acid molar ratio 0.6) was added and the carbon specimen was immersed. This was pressurized with N2 gas 10Kg/ cm2 for 30 minutes in an autoclave, and after being removed from the autoclave,
Dry at °C. The amount of treatment agent impregnated was determined from the weight increase of the carbon specimen before immersion and after drying. Separately, replace the basic aluminum lactate aqueous solution with a basic aluminum glycolate aqueous solution (Al 2 O 3 12%, Al 2 O 3 /glycolic acid molar ratio 0.5).
The test was conducted in the same manner as above. These were heated in a tubular heating furnace at 800° C. for 1 hour in air at a flow rate of 500 ml/min, and the weight loss rate was determined from the weight change of the carbon specimens before and after heating. Furthermore, as a comparative example, the weight loss rate was determined in the same manner for a carbon test piece that was not treated with the antioxidant of the present invention. These results are shown in Table 1.

【衚】 実斜䟋  実斜䟋で䜿甚したず同じ炭玠詊片25×25×
25を甚い、第衚に瀺す各皮濃床の塩基
性乳酞アルミニりム氎溶液Al2O3乳酞モル比
0.6を甚い、実斜䟋ず同様に炭玠詊片を浞挬
凊理した。たた同様にこれらを加熱し、炭玠詊片
の重量枛少率を求めた結果を第衚に瀺した。
[Table] Example 2 The same carbon specimen used in Example 1 (25×25×
25 m/m) and basic aluminum lactate aqueous solutions (Al 2 O 3 /lactic acid molar ratio) with various concentrations shown in Table 2.
0.6), the carbon specimen was immersed in the same manner as in Example 1. In addition, these were heated in the same manner, and the weight loss rate of the carbon specimens was determined, and the results are shown in Table 2.

【衚】 実斜䟋  塩基性乳酞アルミニりム氎溶液Al2O315
Al2O3乳酞モル比0.33の100郚にシリカゟル
SiO230觊媒化成(æ ª)補、商品名カタロむド
SA25郚及び氎25郚を加えた混合溶液にSiC埮
粉を加え、混錬し玄2000cpsのペヌスト液を調補
した。たた同様にしお䞊蚘塩基性乳酞アルミニり
ム100郚にホり酞4.5郚、シリカゟルSiO230
25郚及び氎20.5郚を加えた混合溶液にSiC埮粉を
加えお混緎し、玄2000cpsのペヌスト液を調補し
た。たた曎には、䞊蚘塩基性乳酞アルミニりム
100郚にアルミナゟルAl2O32530郚、ホり
酾4.5郚及び氎15.5郚を加えた混合溶液に適量の
SiC埮粉を加え、玄2000cpsのペヌスト液を調補
した。これらを50×50×50の黒鉛電極玄
210に塗垃量玄230m2になるようにはけ塗
りを行な぀た。 これらを管状加熱炉内で500mlminの流量で
空気を通しながら800℃及び1200℃で時間加熱
し、加熱前埌の黒鉛電極の重量倉化から重量枛少
率を求めた。たた、䜵せお衚面状態を芳察した。
これらの結果を第衚に瀺した。
[Table] Example 3 Basic aluminum lactate aqueous solution (Al 2 O 3 15%,
Silica sol (SiO 2 30%, manufactured by Catalysts Kasei Co., Ltd., trade name Cataloid) was added to 100 parts of Al 2 O 3 /lactic acid molar ratio 0.33).
SiC fine powder was added to a mixed solution of 25 parts of SA) and 25 parts of water and kneaded to prepare a paste liquid of approximately 2000 cps. Similarly, 100 parts of the above basic aluminum lactate, 4.5 parts of boric acid, and silica sol (30% SiO 2 ) were added.
SiC fine powder was added to a mixed solution of 25 parts of SiC and 20.5 parts of water and kneaded to prepare a paste liquid of approximately 2000 cps. Furthermore, the above basic aluminum lactate
Add an appropriate amount to a mixed solution of 100 parts, 30 parts of alumina sol (Al 2 O 3 25%), 4.5 parts of boric acid, and 15.5 parts of water.
A paste liquid of approximately 2000 cps was prepared by adding SiC fine powder. These were connected to a graphite electrode of 50 x 50 x 50 m/m (approximately
210 g) was brushed to a coating amount of approximately 230 g/m 2 . These were heated in a tubular heating furnace at 800°C and 1200°C for 1 hour while passing air at a flow rate of 500ml/min, and the weight loss rate was determined from the change in weight of the graphite electrode before and after heating. In addition, the surface condition was also observed.
These results are shown in Table 3.

【衚】 実斜䟋  塩基性グリコヌル酞アルミニりムAl2O312
Al2O3グリコヌル酞モル比0.33の溶液100
郚に察しお、ホり酞、シリカゟルSiO230
を第衚の様な割合に混合溶解した。炭玠詊片
25×25×25を入れたオヌトクレヌブを
×10-3mmHg以䞋に枛圧し、脱気を行ないその
埌、導入管から前蚘の溶液を加え、N2ガス雰囲
æ°—äž‹10Kgcm2で加圧し、充分炭玠詊片に溶液を浞
挬させた。 この炭玠詊片を取り出し、110℃也燥し重量増
加から凊理剀の含浞量を求め、たた管状加熱炉内
に斌お、500mlmin流量の空気䞭で800℃時
間の加熱を行ない、加熱前埌の炭玠詊片の重量倉
化からその重量枛少率を求めた。これらの結果を
第衚に瀺した。 尚、比范䟋では凊理溶液が増粘又はゲル化し、
炭玠詊片ぞの含挬は非垞に困難であ぀た。
[Table] Example 4 Basic aluminum glycolate (Al 2 O 3 12
%, Al 2 O 3 / glycolic acid molar ratio 0.33) solution 100
per part, boric acid, silica sol (SiO 2 30%)
were mixed and dissolved in the proportions shown in Table 4. The autoclave containing the carbon specimen (25 x 25 x 25 m/m) was depressurized to 1 x 10 -3 mmHg or less and degassed. Then, the above solution was added from the inlet tube, and the autoclave was heated to 10 kg/m under an N 2 gas atmosphere. The carbon specimen was sufficiently immersed in the solution under pressure of cm 2 . This carbon specimen was taken out, dried at 110℃, the amount of treatment agent impregnated was determined from the increase in weight, and heated at 800℃ for 3 hours in air at a flow rate of 500ml/min in a tubular heating furnace. The weight reduction rate was determined from the change in weight of the carbon specimen before and after. These results are shown in Table 4. In addition, in the comparative example, the treatment solution thickened or gelled,
It was very difficult to impregnate carbon specimens.

【衚】 実斜䟋  塩基性乳酞アルミニりム溶液Al2O310
Al2O3乳酞モル比0.69100郚に察しお、カヌ
ボンブラツク東海カヌボン(æ ª)補、商品名シヌス
ト6007.8郚金属シリコン埮粉18.2郚を加えお混
緎し、これを炭玠詊片25×25×25に、
はけ塗りし、110℃で也燥、凊理剀の塗垃量を求
めた。 たた、これを管状加熱炉内に斌お、500ml
min流量の空気䞭で、1000℃1300℃で各々時
間の加熱を行ない、加熱前埌の炭玠詊片の重量倉
化からその重量枛少率を求めた。曎にこれの導電
性を枬定した。導電性の枬定法は前蚘500℃で熱
凊理を行な぀た炭玠詊片を銅電極で接觊面の面圧
を40Kgcm2ではさみ、その接觊抵抗を枬定する方
法により行な぀た。各組成の凊理剀に぀き同様に
詊隓を行ない、結果を第衚に瀺した。
[Table] Example 5 Basic aluminum lactate solution (Al 2 O 3 10%,
To 100 parts (Al 2 O 3 /lactic acid molar ratio 0.69 g), 7.8 parts of carbon black (manufactured by Tokai Carbon Co., Ltd., trade name: SEAST 600) and 18.2 parts of metal silicon fine powder were added and kneaded, and this was mixed into carbon specimens. (25×25×25m/m),
It was brushed, dried at 110°C, and the amount of treatment agent applied was determined. In addition, this was placed in a tubular heating furnace at a rate of 500ml/
Heating was performed at 1000°C and 1300°C for 1 hour each in air at a flow rate of min, and the weight loss rate was determined from the weight change of the carbon specimen before and after heating. Furthermore, the conductivity of this was measured. The conductivity was measured by holding the carbon specimen heat-treated at 500° C. between copper electrodes at a contact pressure of 40 kg/cm 2 and measuring the contact resistance. Similar tests were conducted for each composition of treatment agents, and the results are shown in Table 5.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  塩基性乳酞アルミニりムたたは塩基性グリコ
ヌル酞アルミニりムからなる炭玠質玠材の酞化防
止剀。  塩基性乳酞アルミニりムたたは塩基性グリコ
ヌル酞アルミニりムずホり酞、シリカゟルたたは
アルミナゟルから遞ばれた䞀皮たたはそれ以䞊ず
からなる炭玠質玠材の酞化防止剀。  塩基性乳酞アルミニりムたたは塩基性グリコ
ヌル酞アルミニりムず金属シリコンずカヌボンブ
ラツクずからなる炭玠質玠材の酞化防止剀。
[Scope of Claims] 1. An antioxidant made of carbonaceous material consisting of basic aluminum lactate or basic aluminum glycolate. 2. A carbonaceous material antioxidant comprising basic aluminum lactate or basic aluminum glycolate and one or more selected from boric acid, silica sol, or alumina sol. 3. An antioxidant made of carbonaceous material consisting of basic aluminum lactate or basic aluminum glycolate, metal silicon, and carbon black.
JP60050182A 1985-03-12 1985-03-12 Antioxidant for carbonaceous material Granted JPS61207484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050182A JPS61207484A (en) 1985-03-12 1985-03-12 Antioxidant for carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050182A JPS61207484A (en) 1985-03-12 1985-03-12 Antioxidant for carbonaceous material

Publications (2)

Publication Number Publication Date
JPS61207484A JPS61207484A (en) 1986-09-13
JPH02315B2 true JPH02315B2 (en) 1990-01-05

Family

ID=12852047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050182A Granted JPS61207484A (en) 1985-03-12 1985-03-12 Antioxidant for carbonaceous material

Country Status (1)

Country Link
JP (1) JPS61207484A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633234A1 (en) * 1993-07-08 1995-01-11 Societe Des Terres Refractaires Du Boulonnais Agent for protecting carbon containing refractories against oxidation, comprising a mixture of a borate compound and an amine derivative as well as process of manufacturing of said refractories
RU2415077C1 (en) 2006-12-13 2011-03-27 ТакО КеЌОкал КП., ЛтЎ. Heat-sensitive aluminium phosphate solution, preparation method and use thereof
WO2019077753A1 (en) * 2017-10-20 2019-04-25 日立化成株匏䌚瀟 Hydrophilic carbon molded article and production method therefor

Also Published As

Publication number Publication date
JPS61207484A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
EP1910595B1 (en) Phosphate coated inorganic fiber and methods of preparation and use
CA1268785A (en) Glass ceramic precursor compositions containing titanium diboride
JPS58185488A (en) Oxidation-resistant and corrosion-resistant solid carbon product and manufacture
RU2136636C1 (en) Method of protection of porous carbon-containing material from oxidation and material obtained by this method
CN111204782A (en) Nitrite intercalation hydrotalcite material, aqueous resin composite coating and preparation method thereof
US4011107A (en) Boron diffusion coating process
JPH02315B2 (en)
CN111253170A (en) Method for preparing silicified graphite structure material
JP5339321B2 (en) Oxidation-resistant graphite material and method for producing the same
JP3130456B2 (en) Oxidation resistant carbon material and method for producing the same
AU722168B2 (en) Carbon bodies resistant to deterioration by oxidizing gases
JP2950598B2 (en) Method for producing zircon-based coating composition and zircon-based oxide-coated graphite molded article
SU1558993A1 (en) Paste for protection of components from gas cementation
US3370967A (en) Refractory graphite and method of producing the same
JPH02205622A (en) Paint for preventing high-temperature decarburization of carbon steel
RU2779171C1 (en) Method for protecting metallurgical graphitised electrodes against high-temperature oxidation
SU1721121A1 (en) Chromizing steel products by coating process
JPS6230681A (en) Non-gas-permeable ceramic sintered body and manufacture
JP2950608B2 (en) Method for producing zircon-based coating composition and zircon-based oxide-coated graphite molded article
JP2950610B2 (en) Method for producing zircon-based coating composition and zircon-based oxide-coated graphite molded article
JPH0649627B2 (en) SiO 2 bottom impregnated hot-air stove ceramic burner brick
JP2950609B2 (en) Method for producing zircon-based coating composition and zircon-based oxide-coated graphite molded article
CN112940592A (en) Graphene high-strength heat-insulation composite material and preparation method thereof
JP5343197B2 (en) Water resistant material
JPH08268734A (en) Improvement of heat resistance of ceramic fiber and ceramic fiber-containing heat insulator