WO2019077753A1 - Hydrophilic carbon molded article and production method therefor - Google Patents

Hydrophilic carbon molded article and production method therefor Download PDF

Info

Publication number
WO2019077753A1
WO2019077753A1 PCT/JP2017/038071 JP2017038071W WO2019077753A1 WO 2019077753 A1 WO2019077753 A1 WO 2019077753A1 JP 2017038071 W JP2017038071 W JP 2017038071W WO 2019077753 A1 WO2019077753 A1 WO 2019077753A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon molded
molded body
inorganic oxide
hydrophilic
Prior art date
Application number
PCT/JP2017/038071
Other languages
French (fr)
Japanese (ja)
Inventor
麻理 清水
慶紀 内山
丸山 貴史
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019549090A priority Critical patent/JP7173029B2/en
Priority to PCT/JP2017/038071 priority patent/WO2019077753A1/en
Publication of WO2019077753A1 publication Critical patent/WO2019077753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrophilic carbon molded body and a method for producing the same.
  • a carbon molded body is widely used in various industrial fields because it has excellent heat resistance in a non-oxidizing atmosphere, is resistant to chemical attack, is excellent in conductivity, and has extremely low toxicity to the human body. Since the surface of the carbon molded body is hydrophobic, techniques for hydrophilizing the surface have been studied. As a method of hydrophilizing the surface of the carbon molded body, plasma treatment, UV treatment, ozone treatment and the like can be mentioned.
  • Patent Document 1 the porous carbon molded body is subjected to ozone oxidation treatment, and the oxygen-containing functional group in the through pores is 0.1 ⁇ mol / m 2 to 20 ⁇ mol / m 2 , and the quinone group in the oxygen-containing functional group It is disclosed that a hydrophilic porous carbon molded body can be obtained by setting the ratio of 30% or more.
  • transducing a hydrophilic functional group into the surface of a carbon molded object is mentioned.
  • Patent Document 2 discloses a surface-modified carbon molding modified with a hydrophilic sulfonic acid group.
  • An object of the present invention is to provide a carbon molded body having excellent hydrophilicity over a long period of time and a method for producing the same in view of the above-mentioned circumstances.
  • the hydrophilic carbon molded object provided with the carbon molded object containing a ⁇ 1> carbonaceous material, and the inorganic oxide layer arrange
  • differential thermal analysis DTA
  • DTA differential thermal analysis
  • it has one exothermic peak in a temperature range of 300 ° C. to less than 700 ° C., and one exothermic peak in a temperature range of 700 ° C. to less than 1000 ° C.
  • ⁇ 1> to ⁇ 3 The hydrophilic carbon molded object of any one of>.
  • the hydrophilic carbon molded article according to any one of ⁇ 1> to ⁇ 4> having a volume resistivity of 50 ⁇ m or less.
  • ⁇ 7> The hydrophilic carbon molding according to any one of ⁇ 1> to ⁇ 6>, wherein the average thickness of the inorganic oxide layer is 5 ⁇ m or less. Any one of ⁇ 1>- ⁇ 7> whose content rate of the inorganic oxide contained in the ⁇ 8> above-mentioned inorganic oxide layer is 0.01 mass%-5.0 mass% of the said hydrophilic carbon molded object.
  • the hydrophilic carbon molded article according to item 1. The manufacturing method of the hydrophilic carbon molded object provided with the process of immersing the ⁇ 9> carbon molded object in the liquid containing an inorganic oxide or its precursor, and the process of heating the said carbon molded object taken out from the said liquid.
  • a step of obtaining a carbon molded body composition containing a carbon powder and a binder, a step of molding and processing the carbon molded body composition to obtain a molded article, and the carbon molded body by carbonizing and firing the molded body A method of producing a hydrophilic carbon molding according to claim 9, further comprising:
  • a carbon molded article having excellent hydrophilicity over a long period of time and a method for producing the same are provided.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” may mean that when the region in which the layer is present is observed, it is formed in only a part of the region, in addition to the case where the region is entirely formed. included.
  • the hydrophilic carbon molding of the present disclosure comprises a carbon molding containing a carbonaceous material and an inorganic oxide layer disposed on at least a part of the surface of the carbon molding.
  • the hydrophilic carbon molded body having the above-described configuration exhibits excellent hydrophilicity by the inorganic oxide layer being disposed on at least a part of the surface of the carbon molded body. Furthermore, this hydrophilicity persists over a long period of time.
  • the “hydrophilic carbon molded body” means that the inorganic oxide layer is disposed on at least a part of the surface of the carbon molded body, which is more hydrophilic than the case where the inorganic oxide layer is not provided. Means an improved carbon molding.
  • the method of determining whether the hydrophilicity of the carbon molded body is improved is not particularly limited. For example, it can be determined based on the amount of water absorption within a fixed time, the time required for water absorption of a fixed amount, the contact angle, and the like.
  • the surface of a carbon molded body means the surface of the boundary between the inside of the carbon molded body (the inorganic oxide layer when the inorganic oxide layer is disposed) and the outer side. Therefore, for example, when the carbon compact has pores, the inner wall portion of the pores also corresponds to the "surface of the carbon compact".
  • the material of the carbon molded body is not particularly limited as long as it contains a carbonaceous material.
  • the carbonaceous material include graphite, amorphous carbon, carbon fiber and the like.
  • the carbonaceous material contained in the carbon molded body may be one kind alone or two or more kinds.
  • the carbon molded body may contain components other than the carbonaceous material. In addition, only a part of the region (for example, the surface) may include the carbonaceous material.
  • the carbon compact preferably contains two or more kinds of carbonaceous materials having different crystallinity.
  • a combination of two or more kinds of carbonaceous materials having different crystallinity for example, carbonaceous matter derived from these raw materials when producing a carbon molded body using two or more kinds of raw materials (for example, carbon powder and a binder)
  • a combination of materials may be mentioned.
  • a carbon powder used for manufacture of a carbon molded object artificial graphite, natural graphite, expanded graphite, carbon black, and these mixtures are mentioned, for example.
  • a carbon molded body in which at least a part of the raw material is carbon powder is excellent in heat resistance and chemical resistance, has a low electrical resistance, a low friction coefficient, and tends to have a high thermal conductivity.
  • the carbon powder may be used alone or in combination of two or more.
  • the particle diameter of the carbon powder is not particularly limited, but for example, one having a volume average particle diameter (D50) of 1 ⁇ m to 150 ⁇ m is preferable, and one having a volume average particle diameter (D50) of 5 ⁇ m to 70 ⁇ m is more preferable.
  • D50 volume average particle diameter
  • the volume average particle diameter of the carbon powder is a particle diameter at which integration from the small diameter side is 50% in the volume-based particle size distribution curve obtained by the laser diffraction / scattering method.
  • thermosetting resin examples include epoxy resin, phenol resin, furan resin, polyimide resin, unsaturated polyester resin and the like.
  • extracted components from petroleum, coal and the like include petroleum pitch, coal pitch, synthetic pitch, coal tar and the like. Among these, phenol resins are preferable because they are excellent in moldability and carbonization yield.
  • the binder may be used alone or in combination of two or more.
  • the carbon molded body contains two or more kinds of carbonaceous materials different in crystallinity, for example, the heat generation of two or more DTAs which can be distinguished from each other in differential thermal analysis (DTA) in an air stream. It can be confirmed by whether or not a peak (hereinafter, also simply referred to as "pyrogenic peak”) is observed.
  • a peak hereinafter, also simply referred to as "pyrogenic peak”
  • the plurality of exothermic peaks are “identifiable” means that the peak values of the exothermic peaks are separated by at least 5 ° C., as long as they are distinguishable in terms of measurement accuracy of the device.
  • the differential thermal analysis (DTA) can be performed using a differential thermal-gravity simultaneous measurement apparatus (for example, DTG-60H manufactured by Shimadzu Corporation). Specifically, measurement can be performed at a temperature rising rate of 10 ° C./min under a flow of 200 ml / min of dry air with ⁇ -alumina as a reference.
  • a differential thermal-gravity simultaneous measurement apparatus for example, DTG-60H manufactured by Shimadzu Corporation. Specifically, measurement can be performed at a temperature rising rate of 10 ° C./min under a flow of 200 ml / min of dry air with ⁇ -alumina as a reference.
  • the carbon compact preferably has at least two DTA exothermic peaks in the temperature range of 300 ° C. to 1000 ° C. as measured under the above conditions.
  • the temperature difference between the exothermic peaks is not particularly limited, but the temperature difference between the exothermic peak on the highest temperature side and the exothermic peak on the lowest temperature side is preferably 300 ° C. or less, and 200 ° C. or more and 290 ° C. It is more preferable that the temperature be as follows, particularly preferably 215 ° C. or more and 280 ° C. or less, and most preferably 220 ° C. or more and 275 ° C. or less.
  • the exothermic peak is an exothermic peak observed in a temperature range of 300 ° C. to less than 700 ° C. (hereinafter, may be referred to as “low temperature range”), and a temperature of 700 ° C. to 1000 ° C. It is preferable to include an exothermic peak observed in a range (hereinafter sometimes referred to as “high temperature range”), and one exothermic peak observed in the low temperature range and one exothermic peak observed in the high temperature range It is more preferable to have two in total.
  • the hydrophilic carbon molding may have pores.
  • the proportion of the pores is not particularly limited, but is preferably 10% by volume to 50% by volume, for example, 15% by volume to 45% by volume. %, More preferably 20% to 40% by volume. If the porosity is in the above range, good strength tends to be obtained.
  • the porosity can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
  • an inorganic oxide layer may be formed on the inner wall portion of the pores. In this case, even if the inorganic oxide layer is formed on all the inner wall portions of the pores, the inorganic oxide layer may be formed on only a part.
  • the size of the pores is not particularly limited.
  • the median pore diameter (D50) of the pores is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1.5 ⁇ m to 8 ⁇ m, and still more preferably 2 ⁇ m to 7 ⁇ m.
  • the size of the pores can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
  • the volume resistivity of the hydrophilic carbon molding is not particularly limited. For example, 50 ⁇ m or less is preferable, 1 ⁇ m to 50 ⁇ m is more preferable, 5 ⁇ m to 40 ⁇ m is more preferable, and 10 ⁇ m to 30 ⁇ m is particularly preferable. If the volume resistivity of the hydrophilic carbon molding is in the above range, good conductivity tends to be obtained.
  • the volume resistivity can be adjusted, for example, by the blending ratio of raw materials (eg, carbon powder and binder) at the time of production of the carbon molded body.
  • the bulk density of the hydrophilic carbon molding is not particularly limited. For example, it is preferably 1.20 g / cm 3 to 1.80 g / cm 3 , more preferably 1.25 g / cm 3 to 1.70 g / cm 3 , and 1.3 g / cm 3 to 1. More preferably, it is 65 g / cm 3 . If the bulk density of the hydrophilic carbon molding is in the above range, good strength tends to be obtained.
  • the bulk density can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
  • the bending strength of the hydrophilic carbon molding is not particularly limited.
  • the pressure is preferably 8 MPa or more, more preferably 10 MPa or more, and still more preferably 15 MPa or more.
  • the upper limit of the bending strength is preferably, for example, 50 MPa or less.
  • the bending strength can be adjusted, for example, by the blending ratio of the raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
  • the inorganic oxide layer is disposed on at least a part of the surface of the carbon compact.
  • a method of confirming whether the inorganic oxide layer is disposed on at least a part of the surface of the carbon molded body a method of observing the surface of the carbon molded body with an electron microscope or the like, energy dispersive X-ray analysis (Energy A method of elemental mapping by dispersive X-ray spectrometry (EDX, EDS), a method of elemental analysis by X-ray photoelectron spectroscopy (XPS), and the like can be mentioned, and a suitable one can be selected from these.
  • the type of inorganic oxide contained in the inorganic oxide layer is not particularly limited. From the viewpoint of imparting good hydrophilicity to the surface of the carbon molded body, it contains at least one selected from the group consisting of aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide and niobium oxide. preferable.
  • the inorganic oxide contained in the inorganic oxide layer may be one kind alone or two or more kinds.
  • the inorganic oxide layer may be composed only of an inorganic oxide, and from the viewpoint of imparting good hydrophilicity to the surface of the carbon molded body, the inorganic oxide layer may be composed only of an inorganic oxide or an inorganic oxide
  • the content of is preferably 90% by mass or more.
  • the thickness of the inorganic oxide layer is not particularly limited.
  • the average thickness is preferably 5 ⁇ m or less.
  • the lower limit of the average thickness of the inorganic oxide is not particularly limited, but is preferably 0.05 ⁇ m or more.
  • the average thickness of the inorganic oxide layer is an arithmetic mean value of values measured at any five places.
  • the mass per unit area of the inorganic oxide layer is not particularly limited. For example, it may be between 0.1 mg / m 2 and 1.0 mg / m 2 .
  • the content of the inorganic oxide in the hydrophilic carbon molding is not particularly limited.
  • the content is preferably 0.01% by mass to 5.0% by mass, more preferably 0.05% by mass to 3.0% by mass, based on the whole of the hydrophilic carbon molded body, 0.1% by mass or more Particularly preferred is 2.0% by mass. If the content of the inorganic oxide is in the above range, good hydrophilicity tends to be obtained.
  • the method for producing a hydrophilic carbon molding according to the present disclosure includes the steps of immersing the carbon molding in a liquid containing an inorganic oxide or a precursor thereof, and heating the carbon molding taken out of the liquid. .
  • the inorganic oxide layer can be formed on at least a part of the surface of the carbon molded body. Further, even when the carbon molded body has pores, the liquid containing the inorganic oxide can enter the inside of the pores and form an inorganic oxide layer on the inner wall portion of the pores.
  • a liquid containing an inorganic oxide or a precursor thereof may be prepared, for example, by mixing an inorganic oxide or a substance that becomes an inorganic oxide upon heating (a precursor of an inorganic oxide) into a liquid medium. It can.
  • the inorganic oxide or its precursor may be in a state of being dissolved or dispersed in a liquid medium.
  • liquid medium is not particularly limited.
  • water, alcohol solvents, ether solvents, ester solvents, ketone solvents, aprotic polar solvents, glycol monoether solvents, terpene solvents and the like can be mentioned.
  • the liquid medium may be used alone or in combination of two or more.
  • liquid containing an inorganic oxide or a precursor thereof examples include metal alkoxide solution, metal chelate solution, dispersion liquid of metal oxide fine particles, liquid surface coating agent, liquid coupling agent and the like.
  • the liquid containing the inorganic oxide or the precursor thereof may be prepared by itself or a commercially available product. Examples of commercially available products include dispersions of titanium oxide fine particles such as trade name of Taki Chemical Co., Ltd., Tinoc A-6, M-6, AM-15, CZP-223 and the like.
  • the type of inorganic oxide is not particularly limited.
  • aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide and niobium oxide can be mentioned.
  • titanium oxide is preferable.
  • the type of inorganic oxide precursor is not particularly limited.
  • the alkoxide compound of the element contained in the inorganic oxide mentioned above is mentioned.
  • aluminum alkoxides such as aluminum butoxide and aluminum isopropoxide
  • silane alkoxides such as tetraethoxysilane and tetramethoxysilane
  • tin alkoxides such as tin n-butoxide and tin tetraisopropoxide
  • titanium butoxide Titanium alkoxides such as titanium tetraisopropoxide
  • selenium alkoxides such as sodium tert-butyl selenoxide
  • zirconium alkoxides such as zirconium butoxide, zirconium isopropoxide
  • niobium alkoxides such as niobium butoxide, niobium isopropoxide, etc.
  • titanium alkoxides are preferable, and
  • the method for immersing the carbon compact in a liquid containing an inorganic oxide is not particularly limited, and a known method may be used.
  • the time for immersing the carbonaceous material is also not particularly limited, and can be appropriately adjusted depending on the number and area of the carbon molded body.
  • the temperature of the liquid containing the inorganic oxide at the time of immersing the carbon molded body is also not particularly limited, and cooling or heating may be performed as necessary.
  • the method for heating the carbon compact taken out from the liquid containing the inorganic oxide or the precursor thereof is not particularly limited, and can be performed by a known method.
  • "heating” includes those intended for drying, sintering and the like. From the viewpoint of forming an inorganic oxide layer excellent in hydrophilicity, the heating is preferably performed in this order of drying and sintering.
  • the temperature of drying is not particularly limited, but is preferably 80 ° C. to 250 ° C., more preferably 100 ° C. to 230 ° C., and still more preferably 120 ° C. to 210 ° C.
  • the sintering temperature is not particularly limited, but is, for example, preferably 280 ° C. to 500 ° C., more preferably 290 ° C. to 450 ° C., and still more preferably 300 ° C. to 400 ° C.
  • the heating temperature is not particularly limited, but it is preferably, for example, 80 ° C. to 500 ° C., and 100 ° C. to 400 ° C., from the viewpoint of forming an inorganic oxide layer having excellent hydrophilicity. Is more preferable, and 150.degree. C. to 350.degree. C. is more preferable.
  • the heating step may be performed at a constant temperature from start to finish or may be performed at different temperatures.
  • the heating time is not particularly limited, but may be, for example, 30 minutes to 180 minutes.
  • the method may further comprise the step of making the carbon compact prior to immersion in the liquid comprising the inorganic oxide.
  • the method for producing the carbon molded body is not particularly limited. For example, a step of obtaining a carbon molded body composition containing (A) carbon powder and a binder as shown below, (B) a step of molding and processing the carbon molded body composition to obtain a molded article, and (C) Carbonizing and firing the molded product to obtain a carbon molded product.
  • Step (A) a carbon molded body composition containing carbon powder and a binder is obtained.
  • the carbon molded body composition can be obtained, for example, by mixing the above-described carbon powder and a binder.
  • the mixing method is not particularly limited, and the mixing can be performed by a known method.
  • the blending ratio of the binder is 5% by mass or more of the total of the carbon powder and the binder, the carbon powder and the binder are sufficiently mixed, and the formability becomes good, so that the bending strength of the obtained carbon molded body becomes good. There is a tendency.
  • the blending ratio of the binder is 40% by mass or less of the total of the carbon powder and the binder, the porosity of the carbon compact does not become too low, and the swelling of the carbon compact tends to be suppressed at the time of carbonization and firing.
  • the carbon molded body composition may be mixed with components other than the carbon powder and the binder.
  • a component which does not correspond to a carbon powder and a binder and which is carbonized by carbonization and firing in the step (C), a component which is volatilized in the carbonization and firing, and the like can be mentioned.
  • Step (B) In the step (B), the carbon molded body composition obtained in the step (A) is molded to obtain a molded article.
  • the method of molding is not particularly limited. For example, a method of pouring a carbon molded body composition into a mold and heating and pressing may be mentioned.
  • the heating and pressurizing conditions are not particularly limited.
  • the heating temperature is, for example, preferably 150 ° C. to 250 ° C., more preferably 160 ° C. to 240 ° C., and still more preferably 170 ° C. to 230 ° C.
  • the pressure at the time of pressurization is, for example, preferably 0.5 MPa to 10 MPa, more preferably 1 MPa to 8 MPa, and still more preferably 2 MPa to 5 MPa.
  • the heating and pressurizing time is, for example, preferably 0.1 minutes to 30 minutes, more preferably 0.5 minutes to 20 minutes, and still more preferably 1 minute to 10 minutes.
  • Step (C) In the step (C), the molded product obtained in the step (B) is carbonized and fired to obtain a carbon molded body.
  • the method of carbonization and firing is not particularly limited, but is preferably performed in a vacuum or an inert gas atmosphere.
  • the inert gas is not particularly limited, and nitrogen gas, helium gas, argon gas and the like can be mentioned.
  • the firing temperature is not particularly limited, but is preferably in the range of 800 ° C. to 1500 ° C. When the firing temperature is in the above range, carbonization of the binder tends to be sufficiently promoted, which is also advantageous in terms of energy efficiency at the time of production.
  • Example 1 85 parts by mass of artificial graphite powder having an average particle diameter (D50) of 40 ⁇ m as carbon powder and 15 parts by mass of phenol resin as a binder were mixed to obtain a carbon molded body composition.
  • the resultant was filled in a molding die, and heat compression molding was performed at 190 ° C. and 1000 kN for 5 minutes to produce a molding having a length of 140 mm, a width of 190 mm and a thickness of 2.5 mm.
  • the molded product was fired at 900 ° C. for 60 minutes in an inert gas atmosphere to obtain a carbon molded product.
  • the obtained carbon molded body is cut into a size of 50 mm in length and 50 mm in width, and titanium tetraisopropoxide (Wako Pure Chemical Industries, Ltd., structural formula: [(CH 3 ) 2 CHO] 4 Ti) in methanol In a liquid diluted to 0.5% by mass for 30 minutes.
  • volume Specific Resistance A hydrophilic carbon molded body was sandwiched between two smooth copper plates subjected to gold plating, and the volume specific resistance ( ⁇ m) was measured from the drop in voltage when a constant current was applied.
  • DTA heat generation peak temperature difference Of the two heat generation peaks measured by the TG-DTA measurement device, the value obtained by subtracting the peak temperature on the low temperature side from the peak temperature on the high temperature side was taken as the DTA heat generation peak temperature difference (° C) .
  • [7] Content of Inorganic Oxide The value obtained by subtracting the mass B before immersion from the mass A of the carbon molded body after immersion in the liquid containing titanium tetraisopropoxide is divided by the mass B before immersion The value obtained by multiplying the above value by 100 is defined as the content (mass%) of the inorganic oxide.
  • Example 2 A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except that a carbon molded body having a bulk density different from that of Example 1 was used.
  • Example 3 A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, a fine particle titanium oxide sol (Taki Chemical Co., Ltd., CZP-223) diluted to 2% by mass with methanol was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
  • Example 4 A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, a fine particle titanium oxide sol (Taki Chemical Co., Ltd., AM-15) diluted to 2% by mass with methanol was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
  • Example 5 A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
  • Example 6 A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
  • Example 7 A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
  • Comparative Example 1 Using a carbon compact having a bulk density different from that of Example 1, the carbon compact in a state in which immersion (hydrophilization treatment) in a liquid containing an inorganic oxide was not performed was evaluated in the same manner as in Example 1.
  • the carbon moldings of Examples 1 to 7 which have been subjected to the hydrophilization treatment absorb a certain amount of water as compared with the carbon moldings of Comparative Example 1 which have not been subjected to the hydrophilization treatment. It was found that the time to do so was short and the hydrophilicity was excellent. Furthermore, it was found that the hydrophilicity improvement effect by the hydrophilization treatment continued even after one year.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This hydrophilic carbon molded article is provided with: a carbon molded article containing a carbonaceous material; and an inorganic oxide layer disposed on at least a part of the surface of the carbon molded article.

Description

親水性炭素成形体及びその製造方法Hydrophilic carbon molding and method for producing the same
 本発明は、親水性炭素成形体及びその製造方法に関する。 The present invention relates to a hydrophilic carbon molded body and a method for producing the same.
 炭素成形体は、非酸化性雰囲気下で耐熱性に優れ、薬品に侵されにくく、導電性に優れ、人体に与える毒性も極めて低いことから、様々な工業分野で広く利用されている。
 炭素成形体の表面は疎水性であるため、表面を親水化する技術が検討されている。炭素成形体の表面を親水化する方法としては、プラズマ処理、UV処理、オゾン処理等が挙げられる。例えば、特許文献1には、多孔質の炭素成形体にオゾン酸化処理を行い、貫通気孔内の含酸素官能基を0.1μmol/m~20μmol/m、含酸素官能基中のキノン基の割合を30%以上とすることにより親水性多孔質炭素成形体が得られることが開示されている。その他の親水化処理としては、炭素成形体の表面に親水性の官能基を導入する方法が挙げられる。例えば、特許文献2には、親水性のスルホン酸基により修飾された表面修飾炭素成形体が開示されている。
BACKGROUND ART A carbon molded body is widely used in various industrial fields because it has excellent heat resistance in a non-oxidizing atmosphere, is resistant to chemical attack, is excellent in conductivity, and has extremely low toxicity to the human body.
Since the surface of the carbon molded body is hydrophobic, techniques for hydrophilizing the surface have been studied. As a method of hydrophilizing the surface of the carbon molded body, plasma treatment, UV treatment, ozone treatment and the like can be mentioned. For example, in Patent Document 1, the porous carbon molded body is subjected to ozone oxidation treatment, and the oxygen-containing functional group in the through pores is 0.1 μmol / m 2 to 20 μmol / m 2 , and the quinone group in the oxygen-containing functional group It is disclosed that a hydrophilic porous carbon molded body can be obtained by setting the ratio of 30% or more. As another hydrophilization process, the method of introduce | transducing a hydrophilic functional group into the surface of a carbon molded object is mentioned. For example, Patent Document 2 discloses a surface-modified carbon molding modified with a hydrophilic sulfonic acid group.
特開2007-145653号公報JP 2007-1455653 特開2007-161511号公報Japanese Patent Application Publication No. 2007-161511
 近年、炭素成形体の用途の拡大を背景として、より長期間にわたり親水性が持続する炭素成形体の開発が求められている。
 本発明は、上記事情に鑑み、長期間にわたって優れた親水性を有する炭素成形体及びその製造方法を提供することを課題とする。
In recent years, with the background of the expansion of the use of carbon moldings, development of carbon moldings that maintain hydrophilicity for a longer period of time is required.
An object of the present invention is to provide a carbon molded body having excellent hydrophilicity over a long period of time and a method for producing the same in view of the above-mentioned circumstances.
<1>炭素質材料を含む炭素成形体と、前記炭素成形体の表面の少なくとも一部に配置される無機酸化物層と、を備える、親水性炭素成形体。
<2>前記無機酸化物層が、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化チタン、酸化セレン、酸化ジルコニウム、及び酸化二オブからなる群より選択される少なくとも1種を含む、<1>に記載の親水性炭素成形体。
<3>前記炭素質材料が結晶性の異なる2種以上の炭素質材料を含む、<1>又は<2>に記載の親水性炭素成形体。
<4>示差熱分析(DTA)において300℃以上700℃未満の温度範囲に1つの発熱ピークと、700℃以上1000℃未満の温度範囲に1つの発熱ピークとを有する、<1>~<3>のいずれか1項に記載の親水性炭素成形体。
<5>体積固有抵抗が50μΩm以下である、<1>~<4>のいずれか1項に記載の親水性炭素成形体。
<6>かさ密度が1.20g/cm~1.80g/cmである、<1>~<5>のいずれか1項に記載の親水性炭素成形体。
<7>前記無機酸化物層の平均厚みが5μm以下である、<1>~<6>のいずれか1項に記載の親水性炭素成形体。
<8>前記無機酸化物層に含まれる無機酸化物の含有率が、前記親水性炭素成形体の0.01質量%~5.0質量%である、<1>~<7>のいずれか1項に記載の親水性炭素成形体。
<9>炭素成形体を無機酸化物又はその前駆体を含む液体に浸漬する工程と、前記液体から取り出した前記炭素成形体を加熱する工程と、を備える、親水性炭素成形体の製造方法。
<10>炭素粉末及びバインダーを含有する炭素成形体組成物を得る工程と、前記炭素成形体組成物を成形加工して成形物を得る工程と、前記成形物を炭化焼成して前記炭素成形体を得る工程と、をさらに備える、請求項9に記載の親水性炭素成形体の製造方法。
The hydrophilic carbon molded object provided with the carbon molded object containing a <1> carbonaceous material, and the inorganic oxide layer arrange | positioned at at least one part of the surface of the said carbon molded object.
<2> The inorganic oxide layer according to <1>, wherein the inorganic oxide layer contains at least one selected from the group consisting of aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide, and niobium oxide. Hydrophilic carbon moldings.
The hydrophilic carbon molded object as described in <1> or <2> in which the <3> above-mentioned carbonaceous material contains 2 or more types of carbonaceous materials from which crystallinity differs.
In <4> differential thermal analysis (DTA), it has one exothermic peak in a temperature range of 300 ° C. to less than 700 ° C., and one exothermic peak in a temperature range of 700 ° C. to less than 1000 ° C. <1> to <3 The hydrophilic carbon molded object of any one of>.
The hydrophilic carbon molded article according to any one of <1> to <4>, having a volume resistivity of 50 μΩm or less.
The hydrophilic carbon molded article according to any one of <1> to <5>, having a <6> bulk density of 1.20 g / cm 3 to 1.80 g / cm 3 .
<7> The hydrophilic carbon molding according to any one of <1> to <6>, wherein the average thickness of the inorganic oxide layer is 5 μm or less.
Any one of <1>-<7> whose content rate of the inorganic oxide contained in the <8> above-mentioned inorganic oxide layer is 0.01 mass%-5.0 mass% of the said hydrophilic carbon molded object The hydrophilic carbon molded article according to item 1.
The manufacturing method of the hydrophilic carbon molded object provided with the process of immersing the <9> carbon molded object in the liquid containing an inorganic oxide or its precursor, and the process of heating the said carbon molded object taken out from the said liquid.
<10> A step of obtaining a carbon molded body composition containing a carbon powder and a binder, a step of molding and processing the carbon molded body composition to obtain a molded article, and the carbon molded body by carbonizing and firing the molded body A method of producing a hydrophilic carbon molding according to claim 9, further comprising:
 本発明によれば、長期間にわたって優れた親水性を有する炭素成形体及びその製造方法が提供される。 According to the present invention, a carbon molded article having excellent hydrophilicity over a long period of time and a method for producing the same are provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term “layer” may mean that when the region in which the layer is present is observed, it is formed in only a part of the region, in addition to the case where the region is entirely formed. included.
<親水性炭素成形体>
 本開示の親水性炭素成形体は、炭素質材料を含む炭素成形体と、前記炭素成形体の表面の少なくとも一部に配置される無機酸化物層と、を備える。
<Hydrophilic carbon molding>
The hydrophilic carbon molding of the present disclosure comprises a carbon molding containing a carbonaceous material and an inorganic oxide layer disposed on at least a part of the surface of the carbon molding.
 上記構成を有する親水性炭素成形体は、炭素成形体の表面の少なくとも一部に無機酸化物層が配置されていることにより、優れた親水性を示す。さらに、この親水性は長期間にわたって持続する。 The hydrophilic carbon molded body having the above-described configuration exhibits excellent hydrophilicity by the inorganic oxide layer being disposed on at least a part of the surface of the carbon molded body. Furthermore, this hydrophilicity persists over a long period of time.
 本開示において「親水性炭素成形体」とは、炭素成形体の表面の少なくとも一部に無機酸化物層が配置されていることで、無機酸化物層を備えていない場合と比較して親水性が向上した炭素成形体を意味する。炭素成形体の親水性が向上しているか否かを判断する方法は特に制限されない。例えば、一定時間内の吸水量、一定量の吸水に要する時間、接触角等を基準に判断することができる。 In the present disclosure, the “hydrophilic carbon molded body” means that the inorganic oxide layer is disposed on at least a part of the surface of the carbon molded body, which is more hydrophilic than the case where the inorganic oxide layer is not provided. Means an improved carbon molding. The method of determining whether the hydrophilicity of the carbon molded body is improved is not particularly limited. For example, it can be determined based on the amount of water absorption within a fixed time, the time required for water absorption of a fixed amount, the contact angle, and the like.
 本開示において「炭素成形体の表面」とは、炭素成形体の内部(無機酸化物層が配置されている場合は無機酸化物層)と外部の境界の面を意味する。従って、例えば、炭素成形体が気孔を有している場合は、気孔の内壁部分も「炭素成形体の表面」に該当する。 In the present disclosure, “the surface of a carbon molded body” means the surface of the boundary between the inside of the carbon molded body (the inorganic oxide layer when the inorganic oxide layer is disposed) and the outer side. Therefore, for example, when the carbon compact has pores, the inner wall portion of the pores also corresponds to the "surface of the carbon compact".
(炭素成形体)
 炭素成形体の材質は、炭素質材料を含むものであれば特に制限されない。炭素質材料としては、黒鉛、非晶質炭素、炭素繊維等が挙げられる。炭素成形体に含まれる炭素質材料は、1種のみでも2種以上であってもよい。炭素成形体は、炭素質材料以外の成分を含むものであってもよい。また、一部の領域(例えば、表面)のみが炭素質材料を含むものであってもよい。
(Carbon molded body)
The material of the carbon molded body is not particularly limited as long as it contains a carbonaceous material. Examples of the carbonaceous material include graphite, amorphous carbon, carbon fiber and the like. The carbonaceous material contained in the carbon molded body may be one kind alone or two or more kinds. The carbon molded body may contain components other than the carbonaceous material. In addition, only a part of the region (for example, the surface) may include the carbonaceous material.
 炭素成形体は、結晶性の異なる2種以上の炭素質材料を含むことが好ましい。結晶性の異なる2種以上の炭素質材料の組み合わせとしては、例えば、炭素成形体の製造を2種以上の原料(例えば、炭素粉末とバインダー)を用いて行う場合のこれら原料に由来する炭素質材料の組み合わせが挙げられる。 The carbon compact preferably contains two or more kinds of carbonaceous materials having different crystallinity. As a combination of two or more kinds of carbonaceous materials having different crystallinity, for example, carbonaceous matter derived from these raw materials when producing a carbon molded body using two or more kinds of raw materials (for example, carbon powder and a binder) A combination of materials may be mentioned.
 炭素成形体の製造に用いる炭素粉末としては、例えば、人造黒鉛、天然黒鉛、膨張黒鉛、カーボンブラック、及びこれらの混合物が挙げられる。原料の少なくとも一部が炭素粉末である炭素成形体は、耐熱性及び耐薬品性に優れ、電気抵抗が低く、摩擦係数が低く、熱伝導性が高い傾向にある。炭素粉末は1種を単独で用いても、2種以上を併用してもよい。 As a carbon powder used for manufacture of a carbon molded object, artificial graphite, natural graphite, expanded graphite, carbon black, and these mixtures are mentioned, for example. A carbon molded body in which at least a part of the raw material is carbon powder is excellent in heat resistance and chemical resistance, has a low electrical resistance, a low friction coefficient, and tends to have a high thermal conductivity. The carbon powder may be used alone or in combination of two or more.
 炭素粉末の粒子径は、特に限定されないが、例えば、体積平均粒子径(D50)が1μm~150μmであるものが好ましく、5μm~70μmであるものがより好ましい。炭素粉末の体積平均粒子径(D50)が1μm以上であると、良好な成形性が得られる傾向にあり、150μm以下であると、良好な強度が得られる傾向にある。
 炭素粉末の体積平均粒子径は、レーザー回折・散乱法により得られる体積基準の粒度分布曲線において、小径側からの積算が50%となるときの粒子径とする。
The particle diameter of the carbon powder is not particularly limited, but for example, one having a volume average particle diameter (D50) of 1 μm to 150 μm is preferable, and one having a volume average particle diameter (D50) of 5 μm to 70 μm is more preferable. When the volume average particle diameter (D50) of the carbon powder is 1 μm or more, good moldability tends to be obtained, and when it is 150 μm or less, good strength tends to be obtained.
The volume average particle diameter of the carbon powder is a particle diameter at which integration from the small diameter side is 50% in the volume-based particle size distribution curve obtained by the laser diffraction / scattering method.
 炭素成形体の製造に用いるバインダーとしては、例えば、熱硬化性樹脂、石油、石炭等からの抽出成分などが挙げられる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、フラン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。石油、石炭等からの抽出成分としては、石油ピッチ、石炭ピッチ、合成ピッチ、コールタール等が挙げられる。これらのうち、成形性と炭素化収率に優れることから、フェノール樹脂が好ましい。バインダーは1種を単独で用いても、2種以上を併用してもよい。 As a binder used for manufacture of a carbon molded object, a thermosetting resin, petroleum, the extract component from coal etc., etc. are mentioned, for example. Examples of the thermosetting resin include epoxy resin, phenol resin, furan resin, polyimide resin, unsaturated polyester resin and the like. Examples of extracted components from petroleum, coal and the like include petroleum pitch, coal pitch, synthetic pitch, coal tar and the like. Among these, phenol resins are preferable because they are excellent in moldability and carbonization yield. The binder may be used alone or in combination of two or more.
 炭素成形体が結晶性の異なる2種以上の炭素質材料を含むか否かは、例えば、空気気流中における示差熱分析(Differential Thermal Analysis、DTA)において互いに識別可能な2つ以上のDTAの発熱ピーク(以下、単に「発熱ピーク」とも称する)が観察されるか否かによって確認することができる。ここで、複数の発熱ピークが「識別可能」であるとは、装置の測定精度上、区別可能であればよく、発熱ピークのピーク値が少なくとも5℃以上離れていることを意味する。 Whether or not the carbon molded body contains two or more kinds of carbonaceous materials different in crystallinity, for example, the heat generation of two or more DTAs which can be distinguished from each other in differential thermal analysis (DTA) in an air stream. It can be confirmed by whether or not a peak (hereinafter, also simply referred to as "pyrogenic peak") is observed. Here, that the plurality of exothermic peaks are “identifiable” means that the peak values of the exothermic peaks are separated by at least 5 ° C., as long as they are distinguishable in terms of measurement accuracy of the device.
 前記示差熱分析(DTA)は、示差熱熱重量同時測定装置(例えば、株式会社島津製作所製、DTG-60H)を用いて行うことができる。具体的には、α-アルミナをリファレンスとして、乾燥空気200ml/minの流通下、昇温速度10℃/minで測定を行うことができる。 The differential thermal analysis (DTA) can be performed using a differential thermal-gravity simultaneous measurement apparatus (for example, DTG-60H manufactured by Shimadzu Corporation). Specifically, measurement can be performed at a temperature rising rate of 10 ° C./min under a flow of 200 ml / min of dry air with α-alumina as a reference.
 炭素成形体は、上記条件での測定において、300℃~1000℃の温度範囲に少なくとも2つのDTAの発熱ピークを有することが好ましい。この場合、発熱ピーク間の温度差について特に制限はないが、最も高温側の発熱ピークと、最も低温側の発熱ピークとの温度差が、300℃以内であることが好ましく、200℃以上290℃以下であることがより好ましく、215℃以上280℃以下であることが特に好ましく、220℃以上275℃以下であることが極めて好ましい。 The carbon compact preferably has at least two DTA exothermic peaks in the temperature range of 300 ° C. to 1000 ° C. as measured under the above conditions. In this case, the temperature difference between the exothermic peaks is not particularly limited, but the temperature difference between the exothermic peak on the highest temperature side and the exothermic peak on the lowest temperature side is preferably 300 ° C. or less, and 200 ° C. or more and 290 ° C. It is more preferable that the temperature be as follows, particularly preferably 215 ° C. or more and 280 ° C. or less, and most preferably 220 ° C. or more and 275 ° C. or less.
 体積固有抵抗の観点から、前記発熱ピークは、300℃以上700℃未満の温度範囲(以下、「低温域」と称する場合がある)に観察される発熱ピークと、700℃以上1000℃以下の温度範囲(以下、「高温域」と称する場合がある)に観察される発熱ピークとを含むことが好ましく、低温域に観察される1つの発熱ピークと、高温域に観察される1つの発熱ピーク(合計で2つ)を有することがより好ましい。 From the viewpoint of volume specific resistance, the exothermic peak is an exothermic peak observed in a temperature range of 300 ° C. to less than 700 ° C. (hereinafter, may be referred to as “low temperature range”), and a temperature of 700 ° C. to 1000 ° C. It is preferable to include an exothermic peak observed in a range (hereinafter sometimes referred to as “high temperature range”), and one exothermic peak observed in the low temperature range and one exothermic peak observed in the high temperature range It is more preferable to have two in total.
 親水性炭素成形体は、気孔を有するものであってもよい。親水性炭素成形体が気孔を有する場合、気孔の占める割合(気孔率)は特に限定されるものではないが、例えば、10体積%~50体積%であることが好ましく、15体積%~45体積%であることがより好ましく、20体積%~40体積%であることがさらに好ましい。気孔率が上記の範囲内であると、良好な強度が得られる傾向にある。気孔率は、例えば、炭素成形体の製造時の原料(例えば、炭素粉末及びバインダー)の配合割合によって調節することができる。 The hydrophilic carbon molding may have pores. When the hydrophilic carbon molded product has pores, the proportion of the pores (porosity) is not particularly limited, but is preferably 10% by volume to 50% by volume, for example, 15% by volume to 45% by volume. %, More preferably 20% to 40% by volume. If the porosity is in the above range, good strength tends to be obtained. The porosity can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
 親水性炭素成形体が気孔を有する場合、気孔の内壁部分に無機酸化物層が形成されていてもよい。この場合、気孔の内壁部分のすべてに無機酸化物層が形成されていても、一部にのみ無機酸化物層が形成されていてもよい。 When the hydrophilic carbon molding has pores, an inorganic oxide layer may be formed on the inner wall portion of the pores. In this case, even if the inorganic oxide layer is formed on all the inner wall portions of the pores, the inorganic oxide layer may be formed on only a part.
 親水性炭素成形体が気孔を有する場合、気孔の大きさは特に制限されない。例えば、気孔のメジアン細孔直径(D50)が1μm~10μmであることが好ましく、1.5μm~8μmであることがより好ましく、2μm~7μmであることがさらに好ましい。気孔のメジアン細孔直径(D50)が上記の範囲であると、良好な吸水性が得られる傾向にある。気孔の大きさは、例えば、炭素成形体の製造時の原料(例えば、炭素粉末及びバインダー)の配合割合によって調節することができる。 When the hydrophilic carbon molding has pores, the size of the pores is not particularly limited. For example, the median pore diameter (D50) of the pores is preferably 1 μm to 10 μm, more preferably 1.5 μm to 8 μm, and still more preferably 2 μm to 7 μm. When the median pore diameter (D50) of the pores is in the above range, good water absorption tends to be obtained. The size of the pores can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
 親水性炭素成形体の体積固有抵抗は、特に限定されない。例えば、50μΩm以下であることが好ましく、1μΩm~50μΩmであることがより好ましく、5μΩm~40μΩmであることがさらに好ましく、10μΩm~30μΩmであることが特に好ましい。親水性炭素成形体の体積固有抵抗が上記の範囲であると、良好な導電性が得られる傾向にある。体積固有抵抗は、例えば、炭素成形体の製造時の原料(例えば、炭素粉末及びバインダー)の配合割合によって調節することができる。 The volume resistivity of the hydrophilic carbon molding is not particularly limited. For example, 50 μΩm or less is preferable, 1 μΩm to 50 μΩm is more preferable, 5 μΩm to 40 μΩm is more preferable, and 10 μΩm to 30 μΩm is particularly preferable. If the volume resistivity of the hydrophilic carbon molding is in the above range, good conductivity tends to be obtained. The volume resistivity can be adjusted, for example, by the blending ratio of raw materials (eg, carbon powder and binder) at the time of production of the carbon molded body.
 親水性炭素成形体のかさ密度は、特に限定されない。例えば、1.20g/cm~1.80g/cmであることが好ましく、1.25g/cm~1.70g/cmであることがより好ましく、1.3g/cm~1.65g/cmであることがさらに好ましい。親水性炭素成形体のかさ密度が上記の範囲であると、良好な強度が得られる傾向にある。かさ密度は、例えば、炭素成形体の製造時の原料(例えば、炭素粉末及びバインダー)の配合割合によって調節することができる。 The bulk density of the hydrophilic carbon molding is not particularly limited. For example, it is preferably 1.20 g / cm 3 to 1.80 g / cm 3 , more preferably 1.25 g / cm 3 to 1.70 g / cm 3 , and 1.3 g / cm 3 to 1. More preferably, it is 65 g / cm 3 . If the bulk density of the hydrophilic carbon molding is in the above range, good strength tends to be obtained. The bulk density can be adjusted, for example, by the blending ratio of raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
 親水性炭素成形体の曲げ強度は、特に限定されない。例えば、8MPa以上であることが好ましく、10MPa以上であることがより好ましく、15MPa以上であることがさらに好ましい。曲げ強度の上限は、例えば、50MPa以下であることが好ましい。親水性炭素成形体の曲げ強度が上記の範囲であると、外圧耐性が良好となる傾向にある。曲げ強度は、例えば、炭素成形体の製造時の原料(例えば、炭素粉末及びバインダー)の配合割合によって調節することができる。 The bending strength of the hydrophilic carbon molding is not particularly limited. For example, the pressure is preferably 8 MPa or more, more preferably 10 MPa or more, and still more preferably 15 MPa or more. The upper limit of the bending strength is preferably, for example, 50 MPa or less. When the flexural strength of the hydrophilic carbon molding is in the above range, the external pressure resistance tends to be good. The bending strength can be adjusted, for example, by the blending ratio of the raw materials (for example, carbon powder and binder) at the time of production of the carbon molded body.
(無機酸化物層)
 無機酸化物層は、炭素成形体の表面の少なくとも一部に配置される。無機酸化物層が炭素成形体の表面の少なくとも一部に配置されているか否かを確認する方法としては、炭素成形体の表面を電子顕微鏡等で観察する方法、エネルギー分散型X線分析(Energy dispersive X-ray spectrometry;EDX、EDS)で元素マッピングする方法、X線光電子分光分析(X-ray Photoelectron Spectroscopy;XPS)で元素分析する方法等が挙げられ、これらから適したものを選択できる。
(Inorganic oxide layer)
The inorganic oxide layer is disposed on at least a part of the surface of the carbon compact. As a method of confirming whether the inorganic oxide layer is disposed on at least a part of the surface of the carbon molded body, a method of observing the surface of the carbon molded body with an electron microscope or the like, energy dispersive X-ray analysis (Energy A method of elemental mapping by dispersive X-ray spectrometry (EDX, EDS), a method of elemental analysis by X-ray photoelectron spectroscopy (XPS), and the like can be mentioned, and a suitable one can be selected from these.
 無機酸化物層に含まれる無機酸化物の種類は、特に制限されない。炭素成形体の表面に良好な親水性を付与する観点からは、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化チタン、酸化セレン、酸化ジルコニウム及び酸化ニオブからなる群より選ばれる少なくとも1種を含むことが好ましい。無機酸化物層に含まれる無機酸化物は、1種のみでも2種以上であってもよい。 The type of inorganic oxide contained in the inorganic oxide layer is not particularly limited. From the viewpoint of imparting good hydrophilicity to the surface of the carbon molded body, it contains at least one selected from the group consisting of aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide and niobium oxide. preferable. The inorganic oxide contained in the inorganic oxide layer may be one kind alone or two or more kinds.
 無機酸化物層は、無機酸化物のみからなってもよく、炭素成形体の表面に良好な親水性を付与する観点からは、無機酸化物層は、無機酸化物のみからなるか、無機酸化物の含有率が90質量%以上であることが好ましい。 The inorganic oxide layer may be composed only of an inorganic oxide, and from the viewpoint of imparting good hydrophilicity to the surface of the carbon molded body, the inorganic oxide layer may be composed only of an inorganic oxide or an inorganic oxide The content of is preferably 90% by mass or more.
 無機酸化物層の厚みは、特に制限されない。例えば、平均厚みが5μm以下であることが好ましい。無機酸化物の平均厚みの下限は特に制限されないが、0.05μm以上であることが好ましい。無機酸化物層の平均厚みは、任意の5箇所で測定した値の算術平均値である。
 無機酸化物層の単位面積あたり質量は、特に制限されない。例えば、0.1mg/m~1.0mg/mの間であってもよい。
The thickness of the inorganic oxide layer is not particularly limited. For example, the average thickness is preferably 5 μm or less. The lower limit of the average thickness of the inorganic oxide is not particularly limited, but is preferably 0.05 μm or more. The average thickness of the inorganic oxide layer is an arithmetic mean value of values measured at any five places.
The mass per unit area of the inorganic oxide layer is not particularly limited. For example, it may be between 0.1 mg / m 2 and 1.0 mg / m 2 .
 親水性炭素成形体における無機酸化物の含有率は、特に制限されない。例えば、親水性炭素成形体全体の0.01質量%~5.0質量%であることが好ましく、0.05質量%~3.0質量%であることがより好ましく、0.1質量%~2.0質量%であることが特に好ましい。無機酸化物の含有率が上記の範囲内であると、良好な親水性が得られる傾向にある。 The content of the inorganic oxide in the hydrophilic carbon molding is not particularly limited. For example, the content is preferably 0.01% by mass to 5.0% by mass, more preferably 0.05% by mass to 3.0% by mass, based on the whole of the hydrophilic carbon molded body, 0.1% by mass or more Particularly preferred is 2.0% by mass. If the content of the inorganic oxide is in the above range, good hydrophilicity tends to be obtained.
<親水性炭素成形体の製造方法>
 本開示の親水性炭素成形体の製造方法は、炭素成形体を無機酸化物又はその前駆体を含む液体に浸漬する工程と、前記液体から取り出した前記炭素成形体を加熱する工程と、を備える。
<Method of producing hydrophilic carbon molding>
The method for producing a hydrophilic carbon molding according to the present disclosure includes the steps of immersing the carbon molding in a liquid containing an inorganic oxide or a precursor thereof, and heating the carbon molding taken out of the liquid. .
 上記方法によれば、炭素成形体の表面の少なくとも一部に無機酸化物層を形成することができる。また、炭素成形体が気孔を有している場合であっても、無機酸化物を含む液体が気孔の内部に入り込み、気孔の内壁部分に無機酸化物層を形成することができる。 According to the above method, the inorganic oxide layer can be formed on at least a part of the surface of the carbon molded body. Further, even when the carbon molded body has pores, the liquid containing the inorganic oxide can enter the inside of the pores and form an inorganic oxide layer on the inner wall portion of the pores.
 上記方法において、無機酸化物又はその前駆体を含む液体は、例えば、無機酸化物又は加熱により無機酸化物となる物質(無機酸化物の前駆体)を液状媒体に混合することで調製することができる。無機酸化物又はその前駆体は、液状媒体に溶解した状態であっても分散した状態であってもよい。 In the above method, a liquid containing an inorganic oxide or a precursor thereof may be prepared, for example, by mixing an inorganic oxide or a substance that becomes an inorganic oxide upon heating (a precursor of an inorganic oxide) into a liquid medium. it can. The inorganic oxide or its precursor may be in a state of being dissolved or dispersed in a liquid medium.
 液状媒体の種類は、特に制限されない。例えば、水、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、非プロトン性極性溶媒、グリコールモノエーテル系溶媒、テルペン系溶媒等が挙げられる。液状媒体は1種を単独で用いても、2種以上を併用してもよい。 The type of liquid medium is not particularly limited. For example, water, alcohol solvents, ether solvents, ester solvents, ketone solvents, aprotic polar solvents, glycol monoether solvents, terpene solvents and the like can be mentioned. The liquid medium may be used alone or in combination of two or more.
 無機酸化物又はその前駆体を含む液体として具体的には、金属アルコキシド溶液、金属キレート溶液、金属酸化微粒子の分散液、液状の表面コート剤、液状のカップリング剤等が挙げられる。無機酸化物又はその前駆体を含む液体は、自前で調製しても、市販品を用いてもよい。市販品としては、例えば、多木化学株式会社の商品名、タイノックA-6、M-6、AM-15、CZP-223等の酸化チタン微粒子の分散液が挙げられる。 Specific examples of the liquid containing an inorganic oxide or a precursor thereof include metal alkoxide solution, metal chelate solution, dispersion liquid of metal oxide fine particles, liquid surface coating agent, liquid coupling agent and the like. The liquid containing the inorganic oxide or the precursor thereof may be prepared by itself or a commercially available product. Examples of commercially available products include dispersions of titanium oxide fine particles such as trade name of Taki Chemical Co., Ltd., Tinoc A-6, M-6, AM-15, CZP-223 and the like.
 無機酸化物の種類は、特に制限されない。例えば、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化チタン、酸化セレン、酸化ジルコニウム及び酸化ニオブが挙げられる。これらの中でも、酸化チタンが好ましい。 The type of inorganic oxide is not particularly limited. For example, aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide and niobium oxide can be mentioned. Among these, titanium oxide is preferable.
 無機酸化物の前駆体の種類は、特に制限されない。例えば、上述した無機酸化物に含まれる元素のアルコキシド化合物が挙げられる。具体的には、アルミニウムブトキシド、アルミニウムイソプロポキシド等のアルミニウムアルコキシド類、テトラエトキシシラン、テトラメトキシシラン等のシランアルコキシド類、スズn-ブトキシド、スズテトライソプロポキシド等のスズアルコキシド類、チタンブトキシド、チタンテトライソプロポキシド等のチタンアルコキシド類、ナトリウム-tert-ブチルセレノキシド等のセレンアルコキシド類、ジルコニウムブトキシド、ジルコニウムイソプロポキシド等のジルコニウムアルコキシド類、ニオブブトキシド、ニオブイソプロポキシド等のニオブアルコキシド類などが挙げられる。これらの中でもチタンアルコキシド類が好ましく、チタンブトキシド及びチタンテトライソプロポキシドがより好ましい。 The type of inorganic oxide precursor is not particularly limited. For example, the alkoxide compound of the element contained in the inorganic oxide mentioned above is mentioned. Specifically, aluminum alkoxides such as aluminum butoxide and aluminum isopropoxide, silane alkoxides such as tetraethoxysilane and tetramethoxysilane, tin alkoxides such as tin n-butoxide and tin tetraisopropoxide, titanium butoxide, Titanium alkoxides such as titanium tetraisopropoxide, selenium alkoxides such as sodium tert-butyl selenoxide, zirconium alkoxides such as zirconium butoxide, zirconium isopropoxide, niobium alkoxides such as niobium butoxide, niobium isopropoxide, etc. Can be mentioned. Among these, titanium alkoxides are preferable, and titanium butoxide and titanium tetraisopropoxide are more preferable.
 炭素成形体を、無機酸化物を含む液体に浸漬する方法は、特に限定されるものではなく、公知の方法が用いられる。炭素質材料を浸漬する時間も、特に限定されるものではなく、炭素成形体の数や面積により、適宜調整することができる。炭素成形体を浸漬する際の無機酸化物を含む液体の温度についても、特に限定されるものではなく、必要に応じて冷却又は加温してもよい。 The method for immersing the carbon compact in a liquid containing an inorganic oxide is not particularly limited, and a known method may be used. The time for immersing the carbonaceous material is also not particularly limited, and can be appropriately adjusted depending on the number and area of the carbon molded body. The temperature of the liquid containing the inorganic oxide at the time of immersing the carbon molded body is also not particularly limited, and cooling or heating may be performed as necessary.
 無機酸化物又はその前駆体を含む液体から取り出した炭素成形体を加熱する方法は特に制限されず、公知の方法で行うことができる。
 本開示において「加熱」には、乾燥、焼結等を目的とするものが含まれる。親水性に優れる無機酸化物層を形成する観点からは、加熱は乾燥と焼結をこの順に行うものであることが好ましい。乾燥の温度は、特に制限されないが、例えば、80℃~250℃であることが好ましく、100℃~230℃であることがより好ましく、120℃~210℃であることがさらに好ましい。焼結の温度は、特に制限されないが、例えば、280℃~500℃であることが好ましく、290℃~450℃であることがより好ましく、300℃~400℃であることがさらに好ましい。
The method for heating the carbon compact taken out from the liquid containing the inorganic oxide or the precursor thereof is not particularly limited, and can be performed by a known method.
In the present disclosure, "heating" includes those intended for drying, sintering and the like. From the viewpoint of forming an inorganic oxide layer excellent in hydrophilicity, the heating is preferably performed in this order of drying and sintering. The temperature of drying is not particularly limited, but is preferably 80 ° C. to 250 ° C., more preferably 100 ° C. to 230 ° C., and still more preferably 120 ° C. to 210 ° C. The sintering temperature is not particularly limited, but is, for example, preferably 280 ° C. to 500 ° C., more preferably 290 ° C. to 450 ° C., and still more preferably 300 ° C. to 400 ° C.
 加熱の温度は、特に限定されるものではないが、親水性に優れる無機酸化物層を形成する観点からは、例えば、80℃~500℃であることが好ましく、100℃~400℃であることがより好ましく、150℃~350℃であることがさらに好ましい。加熱工程は、開始から終了まで一定の温度で行っても、異なる温度で行ってもよい。 The heating temperature is not particularly limited, but it is preferably, for example, 80 ° C. to 500 ° C., and 100 ° C. to 400 ° C., from the viewpoint of forming an inorganic oxide layer having excellent hydrophilicity. Is more preferable, and 150.degree. C. to 350.degree. C. is more preferable. The heating step may be performed at a constant temperature from start to finish or may be performed at different temperatures.
 加熱の時間は、特に限定されるものではないが、例えば、30分~180分であってもよい。 The heating time is not particularly limited, but may be, for example, 30 minutes to 180 minutes.
 上記方法はさらに、無機酸化物を含む液体に浸漬する前の炭素成形体を作製する工程を備えてもよい。
 炭素成形体を作製する方法は、特に制限されない。例えば、下記に示すような(A)炭素粉末及びバインダーを含有する炭素成形体組成物を得る工程と、(B)炭素成形体組成物を成形加工して成形物を得る工程と、(C)成形物を炭化焼成して炭素成形体を得る工程と、を備える方法によって作製してもよい。
The method may further comprise the step of making the carbon compact prior to immersion in the liquid comprising the inorganic oxide.
The method for producing the carbon molded body is not particularly limited. For example, a step of obtaining a carbon molded body composition containing (A) carbon powder and a binder as shown below, (B) a step of molding and processing the carbon molded body composition to obtain a molded article, and (C) Carbonizing and firing the molded product to obtain a carbon molded product.
(工程(A))
 工程(A)では、炭素粉末及びバインダーを含有する炭素成形体組成物を得る。炭素成形体組成物は、例えば、上述した炭素粉末とバインダーを混合することで得られる。混合方法は、特に限定されるものではなく、公知の方法により混合することができる。
(Step (A))
In step (A), a carbon molded body composition containing carbon powder and a binder is obtained. The carbon molded body composition can be obtained, for example, by mixing the above-described carbon powder and a binder. The mixing method is not particularly limited, and the mixing can be performed by a known method.
 炭素粉末とバインダーとの配合割合は、特に限定されるものではないが、例えば、炭素化した後の比率(質量基準)として炭素粉末/バインダー=95/5~60/40であることが好ましく、90/10~70/30であることがより好ましく、85/15~75/25であることがさらに好ましい。バインダーの配合割合が炭素粉末とバインダーの合計の5質量%以上であると、炭素粉末とバインダーが十分に混合され、成形性が良好となるため、得られる炭素成形体の曲げ強度が良好となる傾向にある。また、バインダーの配合割合が炭素粉末とバインダーの合計の40質量%以下であると、炭素成形体の気孔率が低くなりすぎず、炭化焼成時に炭素成形体の膨れが抑制される傾向にある。 The blending ratio of the carbon powder and the binder is not particularly limited, but for example, it is preferable that carbon powder / binder = 95/5 to 60/40 as a ratio (mass standard) after carbonation, It is more preferably 90/10 to 70/30, and still more preferably 85/15 to 75/25. When the blending ratio of the binder is 5% by mass or more of the total of the carbon powder and the binder, the carbon powder and the binder are sufficiently mixed, and the formability becomes good, so that the bending strength of the obtained carbon molded body becomes good. There is a tendency. In addition, when the blending ratio of the binder is 40% by mass or less of the total of the carbon powder and the binder, the porosity of the carbon compact does not become too low, and the swelling of the carbon compact tends to be suppressed at the time of carbonization and firing.
 炭素成形体組成物は炭素粉末とバインダー以外の成分を混合してもよい。このような成分としては、炭素粉末とバインダーに該当しない成分であって工程(C)の炭化焼成により炭化する成分、炭化焼成の際に揮発する成分等が挙げられる。 The carbon molded body composition may be mixed with components other than the carbon powder and the binder. As such a component, a component which does not correspond to a carbon powder and a binder and which is carbonized by carbonization and firing in the step (C), a component which is volatilized in the carbonization and firing, and the like can be mentioned.
(工程(B))
 工程(B)では、工程(A)で得られた炭素成形体組成物を成形加工して成形物を得る。成形加工の方法は特に制限されない。例えば、炭素成形体組成物を金型に流し込み、加熱加圧する方法が挙げられる。
(Step (B))
In the step (B), the carbon molded body composition obtained in the step (A) is molded to obtain a molded article. The method of molding is not particularly limited. For example, a method of pouring a carbon molded body composition into a mold and heating and pressing may be mentioned.
 加熱加圧の条件は、特に制限されない。加熱時の温度は、例えば、150℃~250℃であることが好ましく、160℃~240℃であることがより好ましく、170℃~230℃であることがさらに好ましい。加圧時の圧力は、例えば、0.5MPa~10MPaであることが好ましく、1MPa~8MPaであることがより好ましく、2MPa~5MPaであることがさらに好ましい。加熱加圧の時間は、例えば、0.1分~30分であることが好ましく、0.5分~20分であることがより好ましく、1分~10分であることがさらに好ましい。 The heating and pressurizing conditions are not particularly limited. The heating temperature is, for example, preferably 150 ° C. to 250 ° C., more preferably 160 ° C. to 240 ° C., and still more preferably 170 ° C. to 230 ° C. The pressure at the time of pressurization is, for example, preferably 0.5 MPa to 10 MPa, more preferably 1 MPa to 8 MPa, and still more preferably 2 MPa to 5 MPa. The heating and pressurizing time is, for example, preferably 0.1 minutes to 30 minutes, more preferably 0.5 minutes to 20 minutes, and still more preferably 1 minute to 10 minutes.
(工程(C))
 工程(C)では、工程(B)で得られた成形物を炭化焼成して炭素成形体を得る。炭化焼成の方法は、特に制限されないが、真空又は不活性ガス雰囲気中で行うことが好ましい。不活性ガスは、特に限定されないが、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。焼成温度は、特に限定されないが、800℃~1500℃の範囲であることが好ましい。焼成温度が上記の範囲であると、バインダーの炭化が充分に進む傾向にあり、製造時におけるエネルギー効率の点からも有利である。
(Step (C))
In the step (C), the molded product obtained in the step (B) is carbonized and fired to obtain a carbon molded body. The method of carbonization and firing is not particularly limited, but is preferably performed in a vacuum or an inert gas atmosphere. The inert gas is not particularly limited, and nitrogen gas, helium gas, argon gas and the like can be mentioned. The firing temperature is not particularly limited, but is preferably in the range of 800 ° C. to 1500 ° C. When the firing temperature is in the above range, carbonization of the binder tends to be sufficiently promoted, which is also advantageous in terms of energy efficiency at the time of production.
 以下、実施例に基づいて本開示の実施形態をより具体的に説明するが、本開示はこれらの実施例に制限されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, embodiments of the present disclosure will be more specifically described based on examples, but the present disclosure is not limited to these examples. In addition, unless there is particular notice, "part" and "%" are mass references.
<実施例1>
 炭素粉末として平均粒子径(D50)が40μmの人造黒鉛粉末85質量部と、バインダーとしてフェノール樹脂15質量部とを混合し、炭素成形体組成物を得た。これを成形用金型に充填し、190℃、1000kNで5分間の熱圧成形を行い、長さ140mm、幅190mm、厚み2.5mmの成形物を作製した。この成形物を不活性ガス雰囲気下、900℃で60分間焼成して炭素成形体を得た。
Example 1
85 parts by mass of artificial graphite powder having an average particle diameter (D50) of 40 μm as carbon powder and 15 parts by mass of phenol resin as a binder were mixed to obtain a carbon molded body composition. The resultant was filled in a molding die, and heat compression molding was performed at 190 ° C. and 1000 kN for 5 minutes to produce a molding having a length of 140 mm, a width of 190 mm and a thickness of 2.5 mm. The molded product was fired at 900 ° C. for 60 minutes in an inert gas atmosphere to obtain a carbon molded product.
 得られた炭素成形体を、長さ50mm、幅50mmの大きさに切断し、チタンテトライソプロポキシド(和光純薬工業株式会社、構造式:[(CHCHO]Ti)をメタノールで0.5質量%に希釈した液体に30分間浸漬した。 The obtained carbon molded body is cut into a size of 50 mm in length and 50 mm in width, and titanium tetraisopropoxide (Wako Pure Chemical Industries, Ltd., structural formula: [(CH 3 ) 2 CHO] 4 Ti) in methanol In a liquid diluted to 0.5% by mass for 30 minutes.
 浸漬後、炭素成形体を取り出し、表面の溶媒を自然乾燥した後、150℃に設定した乾燥機で60分間加熱(乾燥)した。その後、350℃で60分間加熱(焼結)し、無機酸化物層が形成された炭素成形体(親水性炭素成形体)を得た。 After immersion, the carbon molded body was taken out, the solvent on the surface was naturally dried, and then heated (dried) for 60 minutes with a dryer set at 150 ° C. Thereafter, heating (sintering) was performed at 350 ° C. for 60 minutes to obtain a carbon molded body (hydrophilic carbon molded body) having the inorganic oxide layer formed thereon.
 得られた親水性炭素成形体(長さ50mm、幅50mm、厚み2.5mm)について、下記の測定を実施した。結果を表1に示す。 The following measurement was implemented about the obtained hydrophilic carbon molded object (50 mm in length, 50 mm in width, 2.5 mm in thickness). The results are shown in Table 1.
[1]かさ密度
 親水性炭素成形体を100℃に設定した乾燥機で60分間乾燥させた後、質量を測定した。また、親水性炭素成形体の寸法を測定し、体積を算出した。得られた質量を体積で割ることで、かさ密度(g/cm)を算出した。
[1] Bulk Density The hydrophilic carbon molding was dried for 60 minutes in a dryer set at 100 ° C., and then the mass was measured. In addition, the dimensions of the hydrophilic carbon molding were measured, and the volume was calculated. The bulk density (g / cm 3 ) was calculated by dividing the obtained mass by volume.
[2]体積固有抵抗
 金めっきを施した平滑な銅板2枚の間に親水性炭素成形体を挟み込み、一定の電流を流した際の電圧の降下から体積固有抵抗(μΩm)を測定した。
[2] Volume Specific Resistance A hydrophilic carbon molded body was sandwiched between two smooth copper plates subjected to gold plating, and the volume specific resistance (μΩm) was measured from the drop in voltage when a constant current was applied.
[3]曲げ強度
 JIS K-6911(2006)に記載された3点曲げ試験により、曲げ強度(MPa)を測定した。
[3] Bending Strength The bending strength (MPa) was measured by the three-point bending test described in JIS K-6911 (2006).
[4]DTA発熱ピーク温度差
 TG-DTA測定装置で測定された2つの発熱ピークのうち、高温側のピーク温度から低温側のピーク温度を引いた値をDTA発熱ピーク温度差(℃)とした。
[4] DTA heat generation peak temperature difference Of the two heat generation peaks measured by the TG-DTA measurement device, the value obtained by subtracting the peak temperature on the low temperature side from the peak temperature on the high temperature side was taken as the DTA heat generation peak temperature difference (° C) .
[5]メジアン細孔直径
 水銀圧入法により親水性炭素成形体の気孔の大きさ(メジアン細孔直径、μm)を測定し、データ処理により算出した。
[5] Median Pore Diameter The pore size (median pore diameter, μm) of the hydrophilic carbon molding was measured by mercury porosimetry, and it was calculated by data processing.
[6]気孔率
 水銀圧入法により親水性炭素成形体の気孔率(体積%)を測定し、データ処理により算出した。
[6] Porosity The porosity (volume%) of the hydrophilic carbon molding was measured by the mercury intrusion method, and calculated by data processing.
[7]無機酸化物の含有率
 チタンテトライソプロポキシドを含む液体への浸漬後の炭素成形体の質量Aから、浸漬前の質量Bを差し引いて得られた値を浸漬前の質量Bで割った値に100を乗じた値を無機酸化物の含有率(質量%)とした。
[7] Content of Inorganic Oxide The value obtained by subtracting the mass B before immersion from the mass A of the carbon molded body after immersion in the liquid containing titanium tetraisopropoxide is divided by the mass B before immersion The value obtained by multiplying the above value by 100 is defined as the content (mass%) of the inorganic oxide.
[8]吸水時間(製造直後)
 製造直後の親水性炭素成形体に、10μLの純水をマイクロピペットで滴下し、吸水した時間をタイマーで測定した。面内5箇所で同様に測定し、算術平均値を求めた。
[8] Water absorption time (immediately after production)
10 μL of pure water was dropped by a micropipette on the hydrophilic carbon molding immediately after production, and the time of water absorption was measured by a timer. It measured similarly in five places in a surface, and calculated | required the arithmetic mean value.
[9]吸水時間(製造から1年経過後)
 室温(20℃~30℃)で1年間保管した親水性炭素成形体に、10μLの純水をマイクロピペットで滴下し、吸水した時間をタイマーで測定した。面内5箇所で同様に測定し、算術平均値を求めた。
[9] Water absorption time (one year after production)
10 μL of pure water was dropped by a micropipette on the hydrophilic carbon molded body stored at room temperature (20 ° C. to 30 ° C.) for one year, and the time of water absorption was measured by a timer. It measured similarly in five places in a surface, and calculated the arithmetic mean value.
<実施例2>
 かさ密度が実施例1と異なる炭素成形体を使用したこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 2
A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except that a carbon molded body having a bulk density different from that of Example 1 was used.
<実施例3>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体として、微粒子酸化チタンゾル(多木化学株式会社、CZP-223)をメタノールで2質量%に希釈したものを用いたこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 3
A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, a fine particle titanium oxide sol (Taki Chemical Co., Ltd., CZP-223) diluted to 2% by mass with methanol was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
<実施例4>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体として、微粒子酸化チタンゾル(多木化学株式会社、AM-15)をメタノールで2質量%に希釈したものを用いたこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 4
A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, a fine particle titanium oxide sol (Taki Chemical Co., Ltd., AM-15) diluted to 2% by mass with methanol was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
<実施例5>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体として、微粒子酸化チタンゾル(多木化学株式会社、M-6)をメタノールで1質量%に希釈したものを用いたこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 5
A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
<実施例6>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体として、微粒子酸化チタンゾル(多木化学株式会社、M-6)をメタノールで1質量%に希釈したものを用いたこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 6
A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
<実施例7>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体として、微粒子酸化チタンゾル(多木化学株式会社、M-6)をメタノールで1質量%に希釈したものを用いたこと以外は、実施例1と同様にして親水性炭素成形体を作製し、評価した。
Example 7
A carbon compact having a bulk density different from that of Example 1 was used, and as a liquid containing an inorganic oxide, one obtained by diluting fine particle titanium oxide sol (Taki Chemical Co., Ltd., M-6) with methanol to 1% by mass was used. A hydrophilic carbon molded body was produced and evaluated in the same manner as in Example 1 except for the above.
<比較例1>
 かさ密度が実施例1と異なる炭素成形体を用い、無機酸化物を含む液体への浸漬(親水化処理)を施さない状態の炭素成形体について、実施例1と同様にして評価した。
Comparative Example 1
Using a carbon compact having a bulk density different from that of Example 1, the carbon compact in a state in which immersion (hydrophilization treatment) in a liquid containing an inorganic oxide was not performed was evaluated in the same manner as in Example 1.
 以上の結果を以下の表にまとめる。 The above results are summarized in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、親水化処理を実施した実施例1~7の炭素成形体は、親水化処理を実施していない比較例1の炭素成形体に比べて、一定量の水を吸収する時間が短く、親水性に優れていることがわかった。さらに、親水化処理による親水性の向上効果は1年経過後も持続することがわかった。 As shown in Table 1, the carbon moldings of Examples 1 to 7 which have been subjected to the hydrophilization treatment absorb a certain amount of water as compared with the carbon moldings of Comparative Example 1 which have not been subjected to the hydrophilization treatment. It was found that the time to do so was short and the hydrophilicity was excellent. Furthermore, it was found that the hydrophilicity improvement effect by the hydrophilization treatment continued even after one year.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 All documents, patent applications, and technical standards described herein are as specific and individually as individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (10)

  1.  炭素質材料を含む炭素成形体と、前記炭素成形体の表面の少なくとも一部に配置される無機酸化物層と、を備える、親水性炭素成形体。 A hydrophilic carbon molded body, comprising: a carbon molded body containing a carbonaceous material; and an inorganic oxide layer disposed on at least a part of the surface of the carbon molded body.
  2.  前記無機酸化物層が、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化チタン、酸化セレン、酸化ジルコニウム、及び酸化二オブからなる群より選択される少なくとも1種を含む、請求項1に記載の親水性炭素成形体。 The hydrophilicity according to claim 1, wherein the inorganic oxide layer comprises at least one selected from the group consisting of aluminum oxide, silicon oxide, tin oxide, titanium oxide, selenium oxide, zirconium oxide, and niobium oxide. Carbon moldings.
  3.  前記炭素質材料が結晶性の異なる2種以上の炭素質材料を含む、請求項1又は請求項2に記載の親水性炭素成形体。 The hydrophilic carbon molded object according to claim 1 or 2 in which said carbonaceous material contains two or more sorts of carbonaceous materials from which crystallinity differs.
  4.  示差熱分析(DTA)において300℃以上700℃未満の温度範囲に1つの発熱ピークと、700℃以上1000℃未満の温度範囲に1つの発熱ピークとを有する、請求項1~請求項3のいずれか1項に記載の親水性炭素成形体。 The differential thermal analysis (DTA) according to any one of claims 1 to 3, which has one exothermic peak in a temperature range of 300 ° C to less than 700 ° C and one exothermic peak in a temperature range of 700 ° C to less than 1000 ° C. The hydrophilic carbon molded article according to any one of the preceding claims.
  5.  体積固有抵抗が50μΩm以下である、請求項1~請求項4のいずれか1項に記載の親水性炭素成形体。 The hydrophilic carbon molding according to any one of claims 1 to 4, which has a volume resistivity of 50 μΩm or less.
  6.  かさ密度が1.20g/cm~1.80g/cmである、請求項1~請求項5のいずれか1項に記載の親水性炭素成形体。 A bulk density of 1.20g / cm 3 ~ 1.80g / cm 3, hydrophilic carbon molded body according to any one of claims 1 to 5.
  7.  前記無機酸化物層の平均厚みが5μm以下である、請求項1~請求項6のいずれか1項に記載の親水性炭素成形体。 The hydrophilic carbon molded article according to any one of claims 1 to 6, wherein the average thickness of the inorganic oxide layer is 5 μm or less.
  8.  前記無機酸化物層に含まれる無機酸化物の含有率が、前記親水性炭素成形体の0.01質量%~5.0質量%である、請求項1~請求項7のいずれか1項に記載の親水性炭素成形体。 The content rate of the inorganic oxide contained in the said inorganic oxide layer is 0.01 mass%-5.0 mass% of the said hydrophilic carbon molded object in any one of Claims 1-7. The hydrophilic carbon molded object as described.
  9.  炭素成形体を無機酸化物又はその前駆体を含む液体に浸漬する工程と、前記液体から取り出した前記炭素成形体を加熱する工程と、を備える、親水性炭素成形体の製造方法。 A method for producing a hydrophilic carbon molded body, comprising: a step of immersing a carbon molded body in a liquid containing an inorganic oxide or a precursor thereof; and a step of heating the carbon molded body taken out of the liquid.
  10.  炭素粉末及びバインダーを含有する炭素成形体組成物を得る工程と、前記炭素成形体組成物を成形加工して成形物を得る工程と、前記成形物を炭化焼成して前記炭素成形体を得る工程と、をさらに備える、請求項9に記載の親水性炭素成形体の製造方法。 A step of obtaining a carbon molding composition containing carbon powder and a binder, a step of molding the carbon molding composition to obtain a molding, and a step of carbonizing and sintering the molding to obtain the carbon molding The method for producing a hydrophilic carbon molding according to claim 9, further comprising
PCT/JP2017/038071 2017-10-20 2017-10-20 Hydrophilic carbon molded article and production method therefor WO2019077753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019549090A JP7173029B2 (en) 2017-10-20 2017-10-20 Hydrophilic carbon molded article and method for producing the same
PCT/JP2017/038071 WO2019077753A1 (en) 2017-10-20 2017-10-20 Hydrophilic carbon molded article and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038071 WO2019077753A1 (en) 2017-10-20 2017-10-20 Hydrophilic carbon molded article and production method therefor

Publications (1)

Publication Number Publication Date
WO2019077753A1 true WO2019077753A1 (en) 2019-04-25

Family

ID=66173235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038071 WO2019077753A1 (en) 2017-10-20 2017-10-20 Hydrophilic carbon molded article and production method therefor

Country Status (2)

Country Link
JP (1) JP7173029B2 (en)
WO (1) WO2019077753A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207484A (en) * 1985-03-12 1986-09-13 Taki Chem Co Ltd Antioxidant for carbonaceous material
JPH03265582A (en) * 1990-03-16 1991-11-26 Tokai Carbon Co Ltd Production of oxidation resistant carbon material
JPH0551262A (en) * 1991-08-26 1993-03-02 Kawasaki Steel Corp Bottom board for sintering treatment
JPH05319928A (en) * 1992-05-15 1993-12-03 Tokai Carbon Co Ltd Production of highly functional carbon/ceramic composite material
JP2009227491A (en) * 2008-03-20 2009-10-08 Mitsubishi Electric Corp Ceramics coating graphite and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849824B2 (en) * 2004-05-17 2012-01-11 イビデン株式会社 Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell
JP6658226B2 (en) * 2016-04-05 2020-03-04 日立化成株式会社 Sliding material, sliding member, and method of manufacturing sliding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207484A (en) * 1985-03-12 1986-09-13 Taki Chem Co Ltd Antioxidant for carbonaceous material
JPH03265582A (en) * 1990-03-16 1991-11-26 Tokai Carbon Co Ltd Production of oxidation resistant carbon material
JPH0551262A (en) * 1991-08-26 1993-03-02 Kawasaki Steel Corp Bottom board for sintering treatment
JPH05319928A (en) * 1992-05-15 1993-12-03 Tokai Carbon Co Ltd Production of highly functional carbon/ceramic composite material
JP2009227491A (en) * 2008-03-20 2009-10-08 Mitsubishi Electric Corp Ceramics coating graphite and manufacturing method

Also Published As

Publication number Publication date
JP7173029B2 (en) 2022-11-16
JPWO2019077753A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
Lallave et al. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers
JP2011032490A (en) Method for production of porous body
JP6891017B2 (en) Porous carbon material and its manufacturing method
JP2020502037A (en) Porous ceramic products of titanium suboxide
CN104649709A (en) Method for manufacturing porous silicon carbide ceramic
JP2005162555A (en) Spherical aluminum nitride and its manufacturing method
JP5335174B2 (en) Porous body, manufacturing method thereof, and composite material using porous body
WO2019077753A1 (en) Hydrophilic carbon molded article and production method therefor
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
JP5246729B2 (en) Manufacturing method of carbon / phenolic resin composite material, carbon / phenolic resin composite material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, secondary battery electrode, electric double layer capacitor
JP7464388B2 (en) Sintered body of covalent organic framework, manufacturing method thereof, and electrode material using the sintered body
TWI566819B (en) Making carbon articles from coated particles
JP7394575B2 (en) Covalent organic structure composition, fired product thereof, and manufacturing method thereof
JP5046572B2 (en) Niobium monoxide
JPS5831729A (en) Manufacture of composite material and composite material obtained through said method
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
CN111960846A (en) Nano porous material and preparation method thereof
JP6922327B2 (en) Graphite and its manufacturing method, and mixtures
WO2024048375A1 (en) Boron nitride powder and resin composition
KR102556548B1 (en) Multilayer tubular silicon oxide/graphene composite and a method for manufacturing the same.
JPH0665628B2 (en) Method for producing porous silicon carbide material
JP2008044822A (en) Method of manufacturing porous glassy carbon material and porous glassy carbon material
EP4227282A1 (en) Sisic member and heating device
JP5939543B2 (en) Method for producing porous carbon material
Wang et al. Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg (OH) 2-coated Cu 2 O powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929320

Country of ref document: EP

Kind code of ref document: A1