JPH0665628B2 - Method for producing porous silicon carbide material - Google Patents

Method for producing porous silicon carbide material

Info

Publication number
JPH0665628B2
JPH0665628B2 JP1261513A JP26151389A JPH0665628B2 JP H0665628 B2 JPH0665628 B2 JP H0665628B2 JP 1261513 A JP1261513 A JP 1261513A JP 26151389 A JP26151389 A JP 26151389A JP H0665628 B2 JPH0665628 B2 JP H0665628B2
Authority
JP
Japan
Prior art keywords
amount
silicon
silicon carbide
aggregate
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1261513A
Other languages
Japanese (ja)
Other versions
JPH03126670A (en
Inventor
晴裕 長田
彰治 片山
芳博 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP1261513A priority Critical patent/JPH0665628B2/en
Publication of JPH03126670A publication Critical patent/JPH03126670A/en
Publication of JPH0665628B2 publication Critical patent/JPH0665628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマエッチング装置用電極として用いら
れる導電性を有する多孔質炭化珪素質材料の製造方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a porous silicon carbide material having conductivity used as an electrode for a plasma etching apparatus.

〔従来の技術〕[Conventional technology]

導電性を有する多孔質炭化珪素質材料の製法として、炭
化珪素粒子表面に炭化性樹脂をコーティングして成形
し、炭化性樹脂を炭化させた後、溶融金属珪素を溶浸さ
せる方法が提案されている。
As a method for producing a porous silicon carbide material having conductivity, a method has been proposed in which the surface of a silicon carbide particle is coated with a carbonizing resin to be molded, the carbonizing resin is carbonized, and then molten metal silicon is infiltrated. There is.

この方法において、溶浸させる溶融金属珪素の量として
は、有機物炭化物の2.5倍前後の量に対して未反応珪素
が材料全体の2重量%以上となる量を加えた量と規定さ
れている。
In this method, the amount of molten metallic silicon to be infiltrated is defined as an amount of about 2.5 times the amount of organic carbide and the amount of unreacted silicon that is 2% by weight or more of the entire material.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

この未反応珪素の量は、出来上がった材料の電気的、機
械的特性に大きく影響し、その最適量は、使用する骨材
粒子の粒子径の大小、成形体密度の大小により変化する
ことが経験的に知られている。
The amount of unreacted silicon has a great influence on the electrical and mechanical properties of the finished material, and the optimum amount varies depending on the size of the aggregate particles used and the density of the compact. Known to be.

したがって、新たな製品製造においては溶融金属珪素の
溶浸量を変更した試料を作製して各々の試料の特性を測
定し、溶融金属珪素の溶浸量の最適値を決めるという方
法を採らざるを得ず、余分な材料及び工数を必要とす
る。
Therefore, in the production of a new product, there is no choice but to adopt a method in which samples with different molten metal infiltration amounts are prepared, the characteristics of each sample are measured, and the optimum value of the molten metal silicon infiltration amount is determined. No, it requires extra materials and man-hours.

本発明の目的は、上記した課題を解決し、炭化珪素粒子
表面に炭化性樹脂をコーティングして成形し、炭化性樹
脂を炭化させた後、溶融金属珪素を溶浸させる際に電気
的・機械的特性に優れた多孔質炭化珪素質材料とするた
めの溶融金属珪素の溶浸量を極めて簡便に設定できる方
法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to coat the surface of a silicon carbide particle with a carbonizing resin, to mold the carbonized resin, and then to electrically and mechanically infiltrate molten metal silicon. It is an object of the present invention to provide a method capable of extremely easily setting the infiltration amount of molten metal silicon for obtaining a porous silicon carbide material having excellent dynamic characteristics.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記のような問題点を解決すべく鋭意研究した結果、材
料の重要特性であるガスの通気性、材料強度、電気抵抗
は、一定量の溶融金属珪素溶浸量を境にして特性値の変
化が小さくなることがわかった。
As a result of earnest research to solve the above problems, the gas permeability, material strength, and electric resistance, which are important characteristics of the material, change in the characteristic values with a certain amount of molten metal silicon infiltration amount as a boundary. Was found to be smaller.

これらの特性の変化は、材料中の未反応珪素の量による
ものである。
The change in these properties is due to the amount of unreacted silicon in the material.

そして、各特性の変化が小さくなるところの変曲点での
材料中の未反応珪素の量と、水銀ポロシメーターで測定
した骨材の成形体のミクロ細孔量が一致することを見出
した。
Then, it was found that the amount of unreacted silicon in the material at the inflection point where the change in each characteristic becomes small and the amount of micropores of the compact of the aggregate measured by the mercury porosimeter match.

本発明は上記した知見に基づいて達成されたもので骨材
として炭化珪素粒子を用い、骨材の成形体に骨材のバイ
ンダーとして溶融金属珪素を溶浸させる多孔質炭化珪素
質材料の製造方法において、前記バインダーとして溶浸
させる溶融金属珪素の量を、骨材の成形体中の所定孔径
以下のミクロ細孔の累積細孔体積によって求めるもので
あり、すなわち、骨材の成形体(溶融金属珪素を溶浸さ
せる前の状態)のミクロ細孔の量を水銀ポロシメーター
により測定し求め、これに原料配合中の有機物炭化物を
炭化珪素化するのに必要な珪素を加えた量を、溶融金属
珪素の溶浸量とするものである。
The present invention has been achieved based on the above findings, and a method for producing a porous silicon carbide material in which silicon carbide particles are used as an aggregate and molten metal silicon is infiltrated into a molded body of the aggregate as a binder of the aggregate. In the above, the amount of molten metal silicon to be infiltrated as the binder is obtained by the cumulative pore volume of micropores having a predetermined pore diameter or less in the aggregate formed body, that is, the aggregate formed body (molten metal The amount of micropores (before infiltration of silicon) was measured by a mercury porosimeter, and the amount of silicon added to convert the organic carbide in the raw material mixture into silicon carbide was added to the molten metal silicon. The infiltration amount of

〔作用〕[Action]

本発明は、骨材の成形体のミクロ細孔を、水銀ポロシメ
ーター等による手段で測定し、この測定により得られた
ミクロ細孔量と原料配合中の有機物炭化物を炭化珪素化
するのに必要な量を計算によって求めることができる。
The present invention measures the micropores of a molded body of an aggregate by means of a mercury porosimeter or the like, and the amount of the micropores obtained by this measurement and the amount of the organic carbide in the raw material mixture necessary for silicon carbide conversion The amount can be calculated.

したがって、溶融金属珪素の最適溶浸量を求めるのに珪
素溶浸量を変化させた多数の試料を製作して特性を測定
することなく、溶融金属の溶浸量を求めることができ、
これによって電気的、機械的特性に優れた多孔質炭化珪
素質材料を簡便に、かつ確実に製造できる。
Therefore, in order to obtain the optimum infiltration amount of molten metal silicon, it is possible to obtain the infiltration amount of the molten metal without producing a large number of samples with different silicon infiltration amounts and measuring the characteristics,
This makes it possible to easily and reliably manufacture a porous silicon carbide material having excellent electrical and mechanical properties.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 平均粒子経100μmの炭化珪素粒子の表面に炭化率5
0重量%のフェノール樹脂を炭化珪素粒子90重量部に
対し10重量部コーティングして成形し、1500℃で
2時間真空中で樹脂を炭化し、嵩密度1.9g/cm3の骨材
の成形体を作成した。
Example 1 A carbonization rate of 5 was obtained on the surface of silicon carbide particles having an average particle size of 100 μm.
90 parts by weight of 0% by weight phenolic resin is coated on 10 parts by weight of silicon carbide particles and molded, and the resin is carbonized in a vacuum at 1500 ° C. for 2 hours to obtain a molded body of aggregate having a bulk density of 1.9 g / cm 3. It was created.

この成形体の水銀ポロシメーターによる細孔測定結果を
第1図に示す。
FIG. 1 shows the results of pore measurement of this molded product using a mercury porosimeter.

マクロ細孔とミクロ細孔の2種類の細孔があり、ミクロ
細孔を第1図に示すように細孔径10μm以下としたと
きの累積細孔体積は約0.032cc/gであるから、ミ
クロ細孔の成形体1cc当たりのミクロ細孔量は、0.0
32cc/g×1.9g/cm3(嵩密度)=0.06cc/ccと
なる。
There are two types of pores, macropores and micropores, and the cumulative pore volume when the micropores have a pore diameter of 10 μm or less as shown in FIG. 1 is about 0.032 cc / g, The amount of micropores per 1cc of molded product of micropores is 0.0
32 cc / g × 1.9 g / cm 3 (bulk density) = 0.06 cc / cc.

次に、この嵩密度1.9g/cm3の成形体に異なる量の溶融
金属珪素を溶浸させた試料を作成し、通気性、曲げ強
さ、電気抵抗を測定し、金属珪素溶浸後の未反応珪素量
との関係を求めた。
Next, a sample in which different amounts of molten metallic silicon were infiltrated into this molded body having a bulk density of 1.9 g / cm 3 was prepared, and the air permeability, bending strength, and electric resistance were measured. The relationship with the amount of unreacted silicon was determined.

溶融金属珪素の溶浸は、金属珪素粉末を水中に分散させ
ペースト状とし、成形体表面に必要量を塗布し乾燥した
後、真空炉中で1500℃真空雰囲気で2時間熱処理し
て行った。
The molten metal silicon was infiltrated by dispersing the metal silicon powder in water to form a paste, applying a required amount on the surface of the molded body, drying it, and then heat-treating it in a vacuum furnace at 1500 ° C. for 2 hours in a vacuum atmosphere.

未反応珪素量は、熱処理後の材料の見掛け密度及び嵩密
度を測定し、その値から以下の(1)式により算出した。
The amount of unreacted silicon was calculated by measuring the apparent density and bulk density of the material after the heat treatment and using the values from the following equation (1).

未反応珪素量 ST(cccc) =BD×[(3,647/AD)−1,136〕……
(1) BD:珪素溶浸後の高密度 AD:珪素溶浸後の見掛密度 まず、通気率と未反応珪素量との関係を第2図に示す。
Unreacted Silicon Amount ST ( cc / cc ) = BD × [(3,647 / AD) -1,136] ...
(1) BD: High Density After Silicon Infiltration AD: Apparent Density After Silicon Infiltration First, FIG. 2 shows the relationship between the air permeability and the amount of unreacted silicon.

第2図から明らかなように未反応珪素量が第1図のミク
ロ細孔量0.06ccccを超えると通気率が急激に減少
している。
As is clear from FIG. 2, when the amount of unreacted silicon exceeds the amount of micropores of 0.06 cc / cc shown in FIG. 1, the air permeability sharply decreases.

次に曲げ強さと未反応珪素量との関係を第3図に示し、
電気抵抗と未反応珪素量との関係を第4図に示す。
Next, the relationship between the bending strength and the amount of unreacted silicon is shown in FIG.
The relationship between the electrical resistance and the amount of unreacted silicon is shown in FIG.

第3図及び第4図から明らかなように、いずれも未反応
珪素量0.06ccccが変曲点となっており、いずれの
特性も水銀ポロシメーターで求めたミクロ細孔量に一致
している。
As is clear from FIGS. 3 and 4, the inflection point is 0.06 cc / cc of unreacted silicon in all cases, and all the characteristics are in agreement with the micropore amount obtained by the mercury porosimeter. ing.

実施例2 平均粒子径100μmの炭化珪素粒子の表面に炭化率5
0重量%のフェノール樹脂を炭化珪素粒子90重量部に
対し10重量部コーティングして成形し、1500℃で
2時間真空中で樹脂を炭化し、嵩密度2.0g/cm3
骨材の成形体を作成した。
Example 2 A carbonization rate of 5 was obtained on the surface of silicon carbide particles having an average particle diameter of 100 μm.
90 parts by weight of 0% by weight phenolic resin is coated on 90 parts by weight of silicon carbide particles and molded, and the resin is carbonized in a vacuum at 1500 ° C. for 2 hours to mold an aggregate having a bulk density of 2.0 g / cm 3. Created the body.

この成形体のミクロ細孔量を水銀ポロシメーターにより
測定した。
The micropore amount of this molded product was measured by a mercury porosimeter.

第5図に示すようにミクロ細孔の孔径を10μm以下と
したときの累積細孔体積は約0.042cc/gであるか
ら、ミクロ細孔の成形体1cc当たりのミクロ細孔量は、
0.042cc/g×2.0g/cm3(嵩密度)=0.0
84cc/ccとなる。
As shown in FIG. 5, when the pore size of the micropores is 10 μm or less, the cumulative pore volume is about 0.042 cc / g. Therefore, the micropore amount per 1 cc of the micropores is
0.042cc / g × 2.0g / cm 3 (bulk density) = 0.0
It becomes 84cc / cc.

また、炭素1gを炭化珪素化するに必要な珪素量が28
/12g(等モル反応)であり、成形体1g中の有機物
炭化物を炭化珪素化するのに必要な珪素の量は以下の式
で求められる。
In addition, the amount of silicon required to convert 1 g of carbon into silicon carbide is 28
/ 12 g (equimolar reaction), and the amount of silicon necessary for converting the organic carbide in 1 g of the molded body into silicon carbide is determined by the following formula.

[(10×0.5)/(90+10×0.5)]×28/12 =0.0123g ここで、上式中、10はフェノール樹脂量、0.5は炭
化率、90は炭化珪素粒子の量である。
[(10 × 0.5) / (90 + 10 × 0.5)] × 28/12 = 0.0123 g where 10 is the amount of phenol resin, 0.5 is the carbonization rate, and 90 is the amount of silicon carbide particles. .

さらに、0.042ccの珪素の重量は、 0.042×2.33=0.098gとなり、 両者を合わせた0.123+0.098=0.22gの
珪素溶浸量となるように試料を作成した。
Further, the weight of silicon of 0.042 cc was 0.042 × 2.33 = 0.098 g, and a sample was prepared so that the total amount of silicon infiltration was 0.123 + 0.098 = 0.22 g. .

比較のために0.20g、0.24gの珪素溶浸量とな
るような試料も作成し、3者の特性を比較した。その結
果を第1表に示す。
For comparison, samples having a silicon infiltration amount of 0.20 g and 0.24 g were also prepared and the characteristics of the three were compared. The results are shown in Table 1.

第1表から明らかなように0.22g(実施例)の珪素
溶浸量のものが、プラズマエッチング装置用電極として
用いられる導電性を有する多孔質炭化珪素質材料として
最も適切な特性を示している。
As is clear from Table 1, a silicon infiltration amount of 0.22 g (Example) shows the most suitable characteristics as a conductive porous silicon carbide material used as an electrode for a plasma etching apparatus. There is.

なお、上記した実施例においては、骨材の成形体の細孔
分布を水銀ポロシメーターで測定する例を示したが、こ
の他に、顕微鏡観察、BET多点法による細孔分布の測
定等の方法によって骨材の成形体の細孔分布を測定する
こともできる。
In addition, in the above-mentioned examples, an example in which the pore distribution of the aggregate formed body is measured by a mercury porosimeter has been shown, but in addition to this, methods such as microscopic observation and measurement of the pore distribution by the BET multipoint method are also performed. It is also possible to measure the pore size distribution of the molded body of aggregate.

〔発明の効果〕〔The invention's effect〕

以上述べたように、実験的に試料を作成して決めていた
最適な金属珪素溶浸量を、あらかじめ成形体でのミクロ
細孔量を測定することにより簡単に設定できるようにな
り、多孔質炭化珪素の製造における原料、製造時間を大
幅に短縮することができる。
As described above, it becomes possible to easily set the optimum infiltration amount of metallic silicon, which was determined experimentally by making a sample, by measuring the amount of micropores in the molded body in advance, and Raw materials and manufacturing time in the production of silicon carbide can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1における成形体の水銀ポロシメーター
による細孔測定結果を示すグラフ、第2図は通気率と未
反応珪素量との関係を示すグラフ、第3図は曲げ強さと
未反応珪素量との関係を示すグラフ、第4図は電気抵抗
と未反応珪素量との関係を示すグラフ、第5図は実施例
2における成形体の水銀ポロシメーターによる細孔測定
結果を示すグラフである。
FIG. 1 is a graph showing the results of pore measurement by a mercury porosimeter of the molded body in Example 1, FIG. 2 is a graph showing the relationship between the air permeability and the amount of unreacted silicon, and FIG. 3 is the bending strength and unreacted silicon. FIG. 4 is a graph showing the relationship between the electric resistance and the amount of unreacted silicon, and FIG. 5 is a graph showing the results of pore measurement by the mercury porosimeter of the molded body of Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】骨材として炭化珪素粒子を用い、骨材の成
形体に骨材のバインダーとして溶融金属珪素を溶浸させ
る多孔質炭化珪素質材料の製造方法において、前記バイ
ンダーとして溶浸させる溶融金属珪素の量を、骨材の成
形体中の所定孔径以下のミクロ細孔の累積細孔体積によ
って求めることを特徴とする多孔質炭化珪素質材料の製
造方法。
1. A method for producing a porous silicon carbide material in which silicon carbide particles are used as an aggregate and molten metal silicon is infiltrated as a binder of the aggregate into a molded body of the aggregate, in which a melt is infiltrated as the binder. A method for producing a porous silicon carbide-based material, characterized in that the amount of metallic silicon is determined by a cumulative pore volume of micropores having a predetermined pore diameter or less in a molded body of aggregate.
【請求項2】前記骨材の成形体中の10μm以下のミク
ロ細孔量を水銀ポロシメータで測定し、このミクロ細孔
量に原料配合中の有機物炭化物を炭化珪素化するのに必
要な金属珪素量を加算した量を、前記溶融金属珪素の溶
浸量とする請求項1記載の多孔質炭化珪素質材料の製造
方法。
2. The amount of micropores of 10 .mu.m or less in the molded body of the aggregate is measured by a mercury porosimeter, and the amount of this micropore is the metallic silicon necessary for converting the organic carbide in the raw material into silicon carbide. The method for producing a porous silicon carbide-based material according to claim 1, wherein an amount obtained by adding the amounts is set as an infiltration amount of the molten metal silicon.
JP1261513A 1989-10-06 1989-10-06 Method for producing porous silicon carbide material Expired - Fee Related JPH0665628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1261513A JPH0665628B2 (en) 1989-10-06 1989-10-06 Method for producing porous silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1261513A JPH0665628B2 (en) 1989-10-06 1989-10-06 Method for producing porous silicon carbide material

Publications (2)

Publication Number Publication Date
JPH03126670A JPH03126670A (en) 1991-05-29
JPH0665628B2 true JPH0665628B2 (en) 1994-08-24

Family

ID=17362949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261513A Expired - Fee Related JPH0665628B2 (en) 1989-10-06 1989-10-06 Method for producing porous silicon carbide material

Country Status (1)

Country Link
JP (1) JPH0665628B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136319B2 (en) * 2000-04-14 2008-08-20 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP4307781B2 (en) 2001-03-30 2009-08-05 日本碍子株式会社 Silicon carbide based porous material and method for producing the same
US7244685B2 (en) * 2002-11-20 2007-07-17 Ngk Insulators, Ltd. Silicon carbide porous body, process for producing the same and honeycomb structure
JP2010222155A (en) * 2009-03-19 2010-10-07 Taiheiyo Cement Corp Silicon carbide sintered compact and method for producing the same
JP2010222153A (en) * 2009-03-19 2010-10-07 Taiheiyo Cement Corp Silicon carbide sintered compact and method for producing the same

Also Published As

Publication number Publication date
JPH03126670A (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JP4012287B2 (en) Sputtering target panel
JPS62197353A (en) Manufacture of silicon carbide sintered body
JPH0665628B2 (en) Method for producing porous silicon carbide material
JPH01239056A (en) Alumina pipe and its production
KR20060109975A (en) Ceramic heater unit
JP2008143748A (en) Silicon carbide sintered compact free from warp and method for producing the same
JP4833008B2 (en) Silicon carbide sintered body heater and method for manufacturing the same
JP2001130971A (en) Silicon carbide sintered body and method for producing the same
JP4491080B2 (en) Method for producing sintered silicon carbide
TWI610887B (en) Isotropic graphite material, method of producing the same and application thereof
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
JP3461032B2 (en) Carbon electrode for CVD apparatus and method for producing the same
KR20070003836A (en) Method for producing silicon carbide sintered body for heater
JP2006151719A (en) Method of manufacturing silicon carbide sintered compact for heater
JP4002325B2 (en) Method for producing sintered silicon carbide
JPS6328873B2 (en)
JP7173029B2 (en) Hydrophilic carbon molded article and method for producing the same
JPS6212191B2 (en)
JP2002128566A (en) Silicon carbide sintered compact and electrode
JP2017178660A (en) Method for producing carbon particle
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JP4295366B2 (en) Ion implanter parts
JPH0717928B2 (en) Method for producing porous Cu alloy sintered body
RU2055053C1 (en) Charge for production of foam-ceramic material
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees