JPH0231314B2 - BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI - Google Patents

BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Info

Publication number
JPH0231314B2
JPH0231314B2 JP29578385A JP29578385A JPH0231314B2 JP H0231314 B2 JPH0231314 B2 JP H0231314B2 JP 29578385 A JP29578385 A JP 29578385A JP 29578385 A JP29578385 A JP 29578385A JP H0231314 B2 JPH0231314 B2 JP H0231314B2
Authority
JP
Japan
Prior art keywords
pipe
evaporation
condensing
liquid
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29578385A
Other languages
Japanese (ja)
Other versions
JPS62155492A (en
Inventor
Masataka Mochizuki
Shinichi Sugihara
Tsuneaki Motai
Masushi Sakatani
Tetsuo Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP29578385A priority Critical patent/JPH0231314B2/en
Publication of JPS62155492A publication Critical patent/JPS62155492A/en
Publication of JPH0231314B2 publication Critical patent/JPH0231314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は廃ガスなどの高温流体を熱源として
空気を予熱する空気予熱器に関し、特に互いに分
離して配置したヒートパイプ構造の蒸発管と凝縮
管とを蒸気連絡管および液連絡管によつて連通さ
せたヒートパイプ式の空気予熱器に関するもので
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an air preheater that preheats air using a high-temperature fluid such as waste gas as a heat source, and particularly relates to an evaporator tube and a condensation tube of a heat pipe structure arranged separately from each other. This invention relates to a heat pipe type air preheater in which the air preheater is connected through a steam communication pipe and a liquid communication pipe.

従来の技術 この種の空気予熱器は、例えば実開昭59−
130967号公報に記載されている通りであり、これ
を略示すれば第4図に示すように、ヒートパイプ
構造の複数本の蒸発管1を上部ヘツダ2と下部ヘ
ツダ3とで連結してなる蒸発管群4を、高温廃ガ
ス流路5中に配置し、またヒートパイプ構造の複
数本の凝縮管6を上部ヘツダ7と下部ヘツダ8と
によつて連結してなる凝縮管群9を、前記蒸発管
群4より高い位置で加熱昇温すべき空気の流路1
0中に配置し、これらの蒸発管群4と凝縮管群9
とのうち、各々の上部ヘツダ2,7同士を蒸気連
絡管11によつて連通する一方、下部ヘツダ3,
8同士を蒸気液連絡管12によつて連通する。さ
らに非凝縮性ガスを排気するためのガス抜管13
を凝縮管群9における下部ヘツダ8に連通させて
垂直に立設する。そしてこのようにして構成した
ループ内に水等の作動流体14を、前記蒸発管1
の内容積の20〜30%封入しておき、これを廃ガス
の有する熱により蒸発管1内で蒸発させ、その蒸
気が上部ヘツダ2および蒸気連絡管11を経て凝
縮管6に流入し、ここで空気に熱を与えて凝縮液
化することにより、作動流体14がその状態変化
に伴う潜熱として熱を輸送し、また凝縮液化した
作動流体14は凝縮管群9における下部ヘツダ8
から液連絡管12を経て蒸発管群4に還流する。
したがつて作動流体14が上記のように蒸発・凝
縮を行なつて連続的に循環流動することにより、
廃ガスの有する熱によつて空気が加熱昇温され
る。また動作中に生じたH2等の非凝縮性ガスは、
前記ガス抜管13から排気する。
Prior Art This type of air preheater is, for example,
This is as described in Publication No. 130967, and as shown in FIG. 4, a plurality of evaporation tubes 1 having a heat pipe structure are connected by an upper header 2 and a lower header 3. An evaporation tube group 4 is disposed in a high-temperature waste gas flow path 5, and a condensation tube group 9 is formed by connecting a plurality of condensation tubes 6 having a heat pipe structure with an upper header 7 and a lower header 8. A flow path 1 for air to be heated and heated at a position higher than the evaporation tube group 4
0, and these evaporator tube group 4 and condensation tube group 9
The upper headers 2 and 7 are connected to each other through a steam communication pipe 11, while the lower headers 3 and 7 are connected to each other through a steam communication pipe 11.
8 are communicated with each other through a vapor-liquid communication pipe 12. Gas vent pipe 13 for further exhausting non-condensable gas
is vertically installed in communication with the lower header 8 of the condensing tube group 9. Then, a working fluid 14 such as water is introduced into the loop constructed in this manner.
This is evaporated in the evaporation tube 1 by the heat of the waste gas, and the vapor flows into the condensation tube 6 via the upper header 2 and the steam communication tube 11, where it is By giving heat to the air and condensing and liquefying it, the working fluid 14 transports heat as latent heat due to its state change, and the condensed and liquefied working fluid 14 is transferred to the lower header 8 in the condensing tube group 9.
The liquid is then refluxed to the evaporation tube group 4 via the liquid communication tube 12.
Therefore, as the working fluid 14 evaporates and condenses as described above and circulates continuously,
The air is heated and heated by the heat contained in the waste gas. In addition, non-condensable gases such as H2 generated during operation are
The gas is exhausted from the gas vent pipe 13.

しかして上記のように構成した空気予熱器で
は、入熱側である蒸発管群4と出熱側である凝縮
管群9とを分離してあるから、各々の位置を任意
に設定でき、その結果、ダクトの引き回しを簡素
化でき、それに伴いコストの低廉化を図ることが
でき、そのために大型の空気予熱器や廃熱回収設
備に有効である。
However, in the air preheater configured as described above, since the evaporation tube group 4 on the heat input side and the condensation tube group 9 on the heat output side are separated, the positions of each can be set arbitrarily, and the As a result, duct routing can be simplified and costs can be reduced accordingly, making it effective for large air preheaters and waste heat recovery equipment.

発明が解決しようとする問題点 上述した分離型の空気予熱器は、ダクトの引き
回しが簡素化されるなど水型かつ大容量の空気予
熱器に用いた場合に、特に有利であるが、大型化
するにあたつては、強度やコストなどの点からの
要請により、炭素鋼系の材料を構造材として使用
し、かつ安価であるうえに可及的に最大熱輸送量
を多くするべくメリツト数の大きい水を作動流体
14として使用するのが一般的である。しかるに
構造材として炭系鋼を使用し、作動流体として水
を使用した場合には動作中に両者が反応して非凝
縮性のH2ガスが発生し、これが作動流体の蒸
発・凝縮を抑制し、熱輸送特性が低下する問題が
生じる。そのため従来では、蒸発の流速が最も遅
くなる凝縮管群9の下部ヘツダ8にガス抜管13
を連通して垂直に立設しておき、作動流体から分
離した非凝縮性ガスをそのガス抜管13に捕集
し、かつ一定期間ごとに排気している。しかしな
がら非凝縮性ガスは、最上部に集まる特性がある
から、上述した構成では、ガス抜管13中に非凝
縮性ガスを完全に分離・捕集し得ない問題があつ
た。
Problems to be Solved by the Invention The above-mentioned separate air preheater is particularly advantageous when used in a water-type, large-capacity air preheater, as it simplifies the duct routing, but it does not require large size. Due to demands from the viewpoint of strength and cost, carbon steel materials are used as structural materials, and in addition to being inexpensive, they have the advantage of increasing the maximum amount of heat transport as much as possible. Generally, water having a large amount of water is used as the working fluid 14. However, when carbon steel is used as the structural material and water is used as the working fluid, the two react during operation and generate non-condensable H2 gas, which suppresses the evaporation and condensation of the working fluid. , a problem arises in which heat transport properties deteriorate. Therefore, in the past, a gas vent pipe 13 was installed in the lower header 8 of the condensing pipe group 9 where the flow rate of evaporation was the slowest.
are vertically arranged in communication with each other, and the non-condensable gas separated from the working fluid is collected in the gas vent pipe 13 and exhausted at regular intervals. However, since non-condensable gas has a characteristic of gathering at the top, the above-mentioned configuration has a problem in that the non-condensable gas cannot be completely separated and collected in the gas vent pipe 13.

また従来の空気予熱器では、上記ヘツダ2,7
同士および下部ヘツダ3,8同士を各連絡管1
1,12で接続する構成であるから、廃ガスダク
トや空気ダクトの引き回しを簡素化できても、各
連絡管11,12の引き回しが複雑化する問題が
あつた。
Furthermore, in the conventional air preheater, the headers 2 and 7 are
Each connecting pipe 1 connects each other and lower headers 3 and 8
Since the connecting pipes 1 and 12 are configured to be connected, even if the routing of the waste gas duct and the air duct can be simplified, there is a problem in that the routing of the respective communication pipes 11 and 12 is complicated.

この発明は上記の事情に鑑み、非凝縮性ガスの
排気を完全に行なうことができ、しかも構成の簡
単な分離型ヒートパイプ式空気予熱器を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a separate heat pipe type air preheater that can completely exhaust non-condensable gas and has a simple configuration.

問題点を解決するための手段 この発明は、上記の目的を達成するために、蒸
発管の上部ヘツダと凝縮管の下部ヘツダとの間に
蒸発連絡管および液連絡管を設けて、ここにルー
プ構造を構成し、かつ凝縮管の上部ヘツダにガス
抜弁を設けたことを特徴とするものである。より
具体的には、この発明は、複数本の蒸発管が一方
の端部を高くして高温流体流路中に配置されると
ともに、その蒸発管の各端部が上部ヘツダおよび
下部ヘツダによつてそれぞれ連結され、また予熱
すべき空気の流路中に複数本の凝縮管が一端部を
高くして配置されるとともに、その凝縮管の各端
部が上部ヘツダおよび下部ヘツダによつてそれぞ
れ連結され、さらに前記蒸発管と凝縮管とが蒸気
連絡管および液連絡管によつて連通され、かつこ
れら蒸発管および凝縮管ならびに各連絡管によつ
て形成される流路中に潜熱として熱輸送を行なう
凝縮性流体からなる作動流体が封入された構成の
空気予熱器において、蒸発管の上部ヘツダと凝縮
管の下部ヘツダとが、作動流体蒸気を流通させる
前記蒸発連絡管によつて連通されるとともに、液
相の作動流体を各蒸発管に分配還流させるための
前記液連絡管が、前記蒸発連絡管より小径に形成
され、かつその液連絡管が凝縮管の下部ヘツダに
接続されるとともに、各蒸発管の内部に挿入・開
口され、さらに非凝縮性ガスを排気するためのガ
ス抜弁が、凝縮管の上部ヘツダに取付けられてい
ることを特徴とするものである。またこの発明
は、凝縮管内の下端部に下部ヘツダ内に突出する
気液分離筒を同心状に設け、凝縮管と下部ヘツダ
との接続部での液流と蒸気流との干渉を避けるよ
う構成したものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides an evaporation communication pipe and a liquid communication pipe between the upper header of the evaporation pipe and the lower header of the condensation pipe, and loops are provided here. This structure is characterized by a gas vent valve provided in the upper header of the condensing pipe. More specifically, in the present invention, a plurality of evaporation tubes are arranged in a high temperature fluid flow path with one end elevated, and each end of the evaporation tube is connected to an upper header and a lower header. In addition, a plurality of condensing tubes are arranged with their ends raised in the flow path of the air to be preheated, and each end of the condensing tubes is connected to each other by an upper header and a lower header. Furthermore, the evaporation pipe and the condensation pipe are communicated with each other by a vapor communication pipe and a liquid communication pipe, and heat transport is carried out as latent heat in the flow path formed by the evaporation pipe and the condensation pipe and each communication pipe. In an air preheater having a structure in which a working fluid made of a condensable fluid is sealed, an upper header of an evaporation pipe and a lower header of a condensation pipe are communicated with each other by the evaporation connecting pipe through which working fluid vapor flows. , the liquid communication pipe for distributing and refluxing the liquid-phase working fluid to each evaporation pipe is formed to have a smaller diameter than the evaporation communication pipe, and the liquid communication pipe is connected to the lower header of the condensation pipe, and The present invention is characterized in that a gas vent valve that is inserted into and opened inside the evaporation pipe and for exhausting non-condensable gas is attached to the upper header of the condensation pipe. In addition, the present invention is configured such that a gas-liquid separation tube protruding into the lower header is provided concentrically at the lower end of the condensing pipe to avoid interference between the liquid flow and the vapor flow at the connection between the condensing pipe and the lower header. This is what I did.

作 用 したがつてこの発明の空気予熱器では、蒸発管
の内部で外部からの入熱により作動流体が蒸発・
気化し、その蒸気が上部ヘツダおよび凝縮管の下
部ヘツダを経て各凝縮管に至り、そこで外部の空
気に熱を与えて作動流体が凝縮・液化する。その
液相作動流体は自重により下部ヘツダに流下し、
ついで液連絡管を経て各蒸発管に分配・供給され
る。その場合、動作中に生じた非凝縮性ガスは、
作動流体蒸気と共に凝縮管の内部を上昇するが、
作動流体が凝縮液化することにより作動流体から
分離され、その結果、非凝縮性ガスは凝縮管の上
端部に集まり、したがつて定期的にガス抜弁を開
くことにより、系内の非凝縮性ガスを完全に排気
することができる。また構造的には、蒸発管の上
部ヘツダと凝縮管の下部ヘツダとの間に各連絡管
によるループが形成された構成であるから、これ
らのヘツダが接近して配置されることと相まつ
て、全体構造が簡素化される。さらに前記気液分
離筒を設けたことにより、凝縮管と下部ヘツダと
の境界部分における作動流体液と作動流体蒸気と
の干渉がなくなり、両者の流動が円滑化される。
Function: Therefore, in the air preheater of the present invention, the working fluid is evaporated and evaporated by heat input from the outside inside the evaporation tube.
The vapor is vaporized, passes through the upper header and the lower header of the condensing pipe, and reaches each condensing pipe, where it imparts heat to the outside air and condenses and liquefies the working fluid. The liquid phase working fluid flows down to the lower header due to its own weight,
The liquid is then distributed and supplied to each evaporation tube via the liquid communication tube. In that case, the non-condensable gases generated during operation are
It rises inside the condensing tube together with the working fluid vapor, but
The working fluid is separated from the working fluid by condensation and liquefaction, and as a result, the non-condensable gas collects at the upper end of the condensing tube, so by periodically opening the gas vent valve, the non-condensable gas in the system can be removed. can be completely exhausted. In addition, since the structure is such that a loop is formed between the upper header of the evaporation tube and the lower header of the condensation tube by each communication tube, these headers are arranged close to each other. The overall structure is simplified. Further, by providing the gas-liquid separation cylinder, there is no interference between the working fluid liquid and the working fluid vapor at the boundary between the condensing pipe and the lower header, and the flow of both is smoothed.

実施例 つぎにこの発明の実施例を図面を参照して説明
する。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例を原理的に示す模
式図であつて、まず蒸発管群15の構成について
説明すると、フインチユーブからなる複数本の蒸
発管16は、その内面にウイツク(図示せず)を
添設し、かつ非凝縮性ガスを排気したヒートパイ
プ構造であり、その一端部が上部ヘツダ17によ
つて互いに連結され、またその蒸発管16の他方
の端部が下部ヘツダ18によつて互いに連結され
ており、そして上部ヘツダ17が下部ヘツダ18
より高くなるよう設置され、かつ少なくとも蒸発
管16が高温廃ガス流路19中に位置するよう設
定されている。
FIG. 1 is a schematic diagram showing the principle of an embodiment of the present invention. First, the structure of the evaporator tube group 15 will be explained. A plurality of evaporator tubes 16 consisting of finch tubes have wicks (not shown in the figure) on their inner surfaces. It has a heat pipe structure in which the non-condensable gas is exhausted and one end of the heat pipe is connected to the upper header 17, and the other end of the evaporator pipe 16 is connected to the lower header 18. Thus, they are connected to each other, and the upper header 17 is connected to the lower header 18.
The evaporator tube 16 is installed higher than the high temperature waste gas flow path 19, and at least the evaporation pipe 16 is located in the high temperature waste gas flow path 19.

また凝縮管群20の構成について説明すると、
凝縮管群20は、前期蒸発管群15とほぼ同様な
構成であつて、フインチユーブからなる複数本の
凝縮管21は、その内面にウイツク(図示せず)
を添設し、かつ非凝縮性ガスを排気したヒートパ
イプ構造であり、その一端部が上部ヘツダ22に
よつて互いに連結され、またその凝縮管21の他
方の端部が下部ヘツダ23によつて互いに連結さ
れており、そして上部ヘツダ22側が高くなるよ
う、かつ凝縮管21が空気流路24中に位置する
よう設置されている。
Furthermore, the configuration of the condensing tube group 20 will be explained as follows.
The condensing tube group 20 has almost the same configuration as the former evaporation tube group 15, and the plurality of condensing tubes 21 made of finch tubes have a wick (not shown) on the inner surface.
It has a heat pipe structure in which non-condensable gas is exhausted and one end of the condensing pipe 21 is connected to the other by an upper header 22, and the other end of the condensing pipe 21 is connected to a lower header 23. They are connected to each other, and are installed so that the upper header 22 side is higher and the condensing pipe 21 is located in the air flow path 24.

そして前記蒸発管群15において生じた蒸気を
凝縮管群20に導くための蒸気連絡管25が蒸発
管群15の上部ヘツダ17の一端部に接続され、
その蒸気連絡管25の他方の端部が凝縮管群20
における下部ヘツダ23の一端部に接続されてい
る。また凝縮管群20において生じた作動液を蒸
発管群15に戻すための液連絡管26は、前記蒸
気連絡管25より小径に形成され、その液連絡管
26は一方で凝縮管群20の下部ヘツダ23の他
端部に接続され、他方で蒸発管群15における上
部ヘツダ17にその軸線方向に沿つて挿入されて
おり、さらにその上部ヘツダ17に挿入された部
分は前記蒸発管16と同数に分岐し、その分岐部
が各蒸発管16の内部に挿入されて開口してい
る。すなわち作動液を液連絡管26により各蒸発
管16の内部に直接かつ個別に還流させるよう構
成されている。なお、作動液を蒸発管16の内周
面に沿つて流すために、少なくとも蒸発管群15
は水平面に対して5゜〜90゜程度傾斜させることが
好ましい。
A steam communication pipe 25 for guiding the vapor generated in the evaporator tube group 15 to the condensing tube group 20 is connected to one end of the upper header 17 of the evaporator tube group 15,
The other end of the steam communication pipe 25 is connected to the condensing pipe group 20.
It is connected to one end of the lower header 23 at. Further, a liquid communication pipe 26 for returning the working fluid generated in the condensation pipe group 20 to the evaporation pipe group 15 is formed to have a smaller diameter than the vapor communication pipe 25. It is connected to the other end of the header 23 and inserted into the upper header 17 of the evaporator tube group 15 along its axial direction, and the portion inserted into the upper header 17 has the same number as the evaporator tubes 16. The branched portion is inserted into each evaporation tube 16 and opened. That is, the working fluid is configured to be directly and individually refluxed into each evaporation tube 16 through the liquid communication tube 26. Note that in order to flow the working fluid along the inner circumferential surface of the evaporator tubes 16, at least the evaporator tube group 15
is preferably inclined at an angle of about 5° to 90° with respect to the horizontal plane.

また前記凝縮管群20における上部ヘツダ22
にガス抜弁27が取付けられている。さらに上述
した蒸発管群15および凝縮管群20ならびに各
連絡管25,26からなる密閉管路内には、空気
などの非凝縮性ガスを排気した状態で水等の凝縮
性の流体が作動流体として封入されている。
Further, the upper header 22 in the condensing tube group 20
A gas vent valve 27 is attached to the. Further, in the sealed pipe line consisting of the evaporation tube group 15, the condensation tube group 20, and the communication tubes 25 and 26 described above, a condensable fluid such as water is stored as a working fluid while non-condensable gas such as air is exhausted. It is enclosed as.

上述した構成においては、凝縮管21内で生じ
た液相作動流体がその下端部で下部ヘツダ23内
に滴下するとともに、気相の作動流体が下部ヘツ
ダ23と凝縮管21との境界コーナ部に沿つて流
れて凝縮管21内に流入し、したがつてこの境界
コーナ部で最も気液干渉が生じやすい。そこで上
記の装置では、第2図および第3図に示すように
凝縮管21内の下端部に気液分離筒28が設けら
れている。すなわち気液分離筒28は凝縮管21
より小径の短円筒状部材であつて、下端部が下部
ヘツダ23の中心よりわずか上側まで突出するよ
う凝縮管21内の下端部に支持板29によつて同
心状に取付けられている。したがつてその気液分
離筒28の内周側が蒸気流路で、外周側が液流路
とされている。
In the above-described configuration, the liquid-phase working fluid generated in the condensing pipe 21 drips into the lower header 23 at its lower end, and the gas-phase working fluid flows into the boundary corner between the lower header 23 and the condensing pipe 21. The liquid flows along the boundary and flows into the condensing pipe 21, and therefore, gas-liquid interference is most likely to occur at this boundary corner. Therefore, in the above-mentioned apparatus, a gas-liquid separation tube 28 is provided at the lower end of the condensing tube 21, as shown in FIGS. 2 and 3. That is, the gas-liquid separation column 28 is the condensing tube 21
It is a short cylindrical member with a smaller diameter, and is concentrically attached to the lower end inside the condensing tube 21 by a support plate 29 so that the lower end protrudes slightly above the center of the lower header 23. Therefore, the inner peripheral side of the gas-liquid separation cylinder 28 is a vapor flow path, and the outer peripheral side is a liquid flow path.

上記の空気予熱器によつて空気の加熱昇温を行
なうには、前記高温廃ガス流路19に廃ガスを流
し、これに対して空気流路24に加熱昇温すべき
空気を流す。高温廃ガスからの入熱当初において
は、液相の作動流体が蒸発管群15の最下部に下
がつているが、入熱によりその液相作動流体が次
第に蒸発する。その蒸気は上部ヘツダ17および
蒸気連絡管25を経て凝縮管群20に到り、ここ
で空気流路24内の空気に熱を奪われて凝縮液化
する。こうして生じた液相の作動流体は凝縮管2
1の内部を下部ヘツダ23に流下し、しかる後前
記液連絡管26を経て蒸発管群15側へ還流する
とともに、液連絡管26の先端側の分岐部分によ
り各蒸発管16に対して液相作動流体が分配・供
給される。
To heat and raise the temperature of air using the air preheater, waste gas is passed through the high-temperature waste gas passage 19, and air to be heated and heated is made to flow through the air passage 24. At the beginning of the heat input from the high-temperature waste gas, the liquid-phase working fluid descends to the bottom of the evaporator tube group 15, but the liquid-phase working fluid gradually evaporates due to the heat input. The steam passes through the upper header 17 and the steam communication pipe 25 and reaches the condensing pipe group 20, where it is absorbed by the air in the air flow path 24 and condenses and liquefies. The liquid phase working fluid thus generated is transferred to the condensing pipe 2
1 flows down to the lower header 23 and then returns to the evaporator tube group 15 side via the liquid communication pipe 26, and the liquid phase is supplied to each evaporation pipe 16 by the branch portion on the tip side of the liquid communication pipe 26. Working fluid is distributed and supplied.

作動流体のこのような循環流動が生じている状
態において、凝縮管21とその下端側の下部ヘツ
ダ23との境界部分においては、作動流体蒸気V
が第2図に示すように気液分離筒28の内側を通
つて凝縮管21内を上昇し、これに対し凝縮管2
1の内面に沿つて流下した液相作動流体Lは気液
分離筒28の外側を通つて下部ヘツダ23内に流
入する。したがつて気液干渉が防止されるため
に、気相および液相の各作動流体の流動が円滑と
なつて熱輸送特性が向上する。
In a state where such circulating flow of the working fluid is occurring, the working fluid vapor V
As shown in FIG.
The liquid-phase working fluid L flowing down along the inner surface of the gas-liquid separation cylinder 28 flows into the lower header 23 through the outside of the gas-liquid separation cylinder 28 . Therefore, since gas-liquid interference is prevented, the working fluids in the gas phase and liquid phase flow smoothly, improving heat transport characteristics.

上述のようにして供給された液相の作動流体は
外部からの入熱により再度蒸発し、凝縮管群20
側へ熱を輸送する。
The liquid-phase working fluid supplied as described above is evaporated again by heat input from the outside, and the condensing tube group 20
transports heat to the side.

したがつて上記の空気予熱器では、蒸発管群1
5および凝縮管群20の間で作動流体が蒸発およ
び凝縮を繰返し行ないつつ循環流動することによ
り、廃ガスの有する熱によつて空気が加熱昇温さ
れる。作動流体がこのように循環流動している間
に前述の密閉管路内で非凝縮性のガスが生じた場
合、その非凝縮性ガスは作動流体蒸気と共に蒸発
管群15側から凝縮管群20側へ流れるが、凝縮
管21の内部においては作動流体蒸気が放熱して
凝縮・液化するから、非凝縮性ガスは作動流体か
ら完全に分離され、凝縮管群20の上部ヘツダ2
2に溜まる。したがつて定期的に前記ガス抜弁2
7を開けば、蒸発管群15や凝縮管群20等によ
つて構成される密閉管路内の非凝縮性ガスを完全
に排気することができる。
Therefore, in the above air preheater, evaporator tube group 1
5 and the condenser tube group 20 while repeatedly evaporating and condensing the working fluid, the air is heated and heated by the heat of the exhaust gas. If non-condensable gas is generated in the above-mentioned sealed pipe while the working fluid circulates in this way, the non-condensable gas is transferred from the evaporation tube group 15 side to the condensation tube group 20 together with the working fluid vapor. However, inside the condensing pipe group 21, the working fluid vapor radiates heat and condenses and liquefies, so the non-condensable gas is completely separated from the working fluid and flows to the upper header 2 of the condensing pipe group 20.
It accumulates to 2. Therefore, the gas vent valve 2 is periodically
7, it is possible to completely exhaust the non-condensable gas in the sealed pipe line constituted by the evaporation tube group 15, the condensation tube group 20, and the like.

発明の効果 以上の説明から明らかなようにこの発明によれ
ば、蒸発管群の上部ヘツダと凝縮管群の下部ヘツ
ダとを蒸気連絡管および液連絡管によつて連通さ
せて、ここにループ構造の流路を形成し、かつ凝
縮管群の上部ヘツダにガス抜弁を設けたから、動
作中に生じた非凝縮性のガスは、作動流体蒸気が
凝縮管の内部で凝縮液化することにより、作動流
体から完全に分離され、かつ凝縮管群の上部ヘツ
ダに集まり、したがつて定期的にガス抜弁を開く
ことにより、非凝縮性ガスを完全にかつ容易に排
気することができる。またこの発明では、蒸発管
群の上部ヘツダと凝縮管群の下部ヘツダとを蒸気
連絡管および液連絡管によつて連通させたループ
構造を形成したから、これらのヘツダが互いに接
近していることにより各連絡管が短くてよく、し
たがつてその引き回しが容易であるうえに、全体
構造を簡素化することができる。さらに凝縮管と
その下側の下部ヘツダとの境界部分に気液分離筒
を設けたから、上昇流である作動流体蒸気と下降
流である作動流体液流との干渉を避け、各々の流
動を円滑化し、ひいては熱輸送特性を向上させる
ことができる。
Effects of the Invention As is clear from the above description, according to the present invention, the upper header of the evaporating tube group and the lower header of the condensing tube group are communicated with each other through a vapor communication pipe and a liquid communication pipe, and a loop structure is formed here. Since a gas vent valve is provided at the upper header of the condensing tube group, non-condensable gas generated during operation is removed by the working fluid vapor condensing and liquefying inside the condensing tube. The non-condensable gases can be completely and easily vented by periodically opening the vent valve. Further, in this invention, since a loop structure is formed in which the upper header of the evaporating tube group and the lower header of the condensing tube group are communicated with each other through the vapor communication pipe and the liquid communication pipe, it is possible that these headers are close to each other. As a result, each communication pipe can be short, and therefore, it is easy to route the pipes, and the overall structure can be simplified. Furthermore, since a gas-liquid separation tube is provided at the boundary between the condensing pipe and the lower header below it, interference between the upward flow of working fluid vapor and the downward flow of working fluid liquid flow is avoided, and the flow of each is smoothed. , and as a result, the heat transport properties can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を原理的に示す模
式図、第2図は第1図の部の断面詳細図、第3
図は第2図の−線矢視図、第4図は従来の分
離型ヒートパイプ式空気予熱器の一例を原理的に
示す模式図である。 15……蒸発管群、16……蒸発管、17,2
2……上部ヘツダ、18,23……下部ヘツダ、
19……高温廃ガス流路、20……凝縮管群、2
1……凝縮管、23……下部ヘツダ、24……空
気流路、25……蒸気連絡管、26……液連絡
管、27……ガス抜弁、28……気液分離筒。
FIG. 1 is a schematic diagram showing the principle of an embodiment of the present invention, FIG. 2 is a detailed sectional view of the part shown in FIG. 1, and FIG.
The figure is a view taken along the - line in FIG. 2, and FIG. 4 is a schematic diagram showing the principle of an example of a conventional separated heat pipe type air preheater. 15... Evaporation tube group, 16... Evaporation tube, 17,2
2... Upper header, 18, 23... Lower header,
19... High temperature waste gas flow path, 20... Condensing pipe group, 2
DESCRIPTION OF SYMBOLS 1... Condensation pipe, 23... Lower header, 24... Air flow path, 25... Steam communication pipe, 26... Liquid communication pipe, 27... Gas vent valve, 28... Gas-liquid separation cylinder.

Claims (1)

【特許請求の範囲】 1 複数本の蒸発管が一方の端部を高くして高温
流体流路中に配置されるとともに、その蒸発管の
各端部が上部ヘツダおよび下部ヘツダによつてそ
れぞれ連結され、また予熱すべき空気の流路中に
複数本の凝縮管が一端部を高くして配置されると
ともに、その凝縮管の各端部が上部ヘツダおよび
下部ヘツダによつてそれぞれ連結され、さらに前
記蒸発管と凝縮管とが蒸気連絡管および液連絡管
によつて連通され、かつこれら蒸発管および凝縮
管ならびに各連絡管によつて形成される流路中に
潜熱として熱輸送を行なう凝縮性流体からなる作
動流体が封入された構成の空気予熱器において、
蒸発管の上部ヘツダと凝縮管の下部ヘツダとが、
作動流体蒸気を流通させる前記蒸気連絡管によつ
て連通されるとともに、液相の作動流体を各蒸発
管に分配還流させるための前記液連絡管が、前記
蒸発連絡管より小径に形成され、かつその液連絡
管が凝縮管の下部ヘツダに接続されるとともに各
蒸発管の内部に挿入・開口され、さらに非凝縮性
ガスを排気するためのガス抜弁が、凝縮管の上部
ヘツダに取付けられていることを特徴とする分離
型ヒートパイプ式空気予熱器。 2 前記凝縮管内の下端部に、外周側が液流路で
かつ内周側が蒸発流路となるよう短円筒状の気液
分離筒が、その下端部を下部ヘツダ内に突き出し
た状態で凝縮管と同心状に配置されていることを
特徴とする特許請求の範囲第1項記載の分離型ヒ
ートパイプ式空気予熱器。
[Scope of Claims] 1. A plurality of evaporation tubes are arranged in a high-temperature fluid flow path with one end elevated, and each end of the evaporation tubes is connected by an upper header and a lower header, respectively. In addition, a plurality of condensing tubes are arranged in the flow path of the air to be preheated with their ends raised high, and each end of the condensing tubes is connected by an upper header and a lower header, and The evaporation pipe and the condensation pipe are connected to each other by a vapor communication pipe and a liquid communication pipe, and the condensation property is such that heat is transferred as latent heat into the flow path formed by the evaporation pipe and the condensation pipe and each communication pipe. In an air preheater configured to contain a working fluid consisting of a fluid,
The upper header of the evaporation tube and the lower header of the condensation tube are
The liquid communication pipe is connected by the vapor communication pipe through which the working fluid vapor flows, and the liquid communication pipe for distributing and refluxing the liquid phase working fluid to each evaporation pipe is formed to have a smaller diameter than the evaporation communication pipe, and The liquid communication pipe is connected to the lower header of the condensing pipe and inserted into and opened inside each evaporation pipe, and a gas vent valve for exhausting non-condensable gas is attached to the upper header of the condensing pipe. A separate heat pipe type air preheater characterized by: 2 A short cylindrical gas-liquid separation cylinder is installed at the lower end of the condensing pipe so that the outer circumferential side is a liquid flow path and the inner circumferential side is an evaporation flow path, and the lower end of the cylinder is protruded into the lower header. The separated heat pipe type air preheater according to claim 1, wherein the separated heat pipe type air preheater is arranged concentrically.
JP29578385A 1985-12-27 1985-12-27 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI Expired - Lifetime JPH0231314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29578385A JPH0231314B2 (en) 1985-12-27 1985-12-27 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29578385A JPH0231314B2 (en) 1985-12-27 1985-12-27 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Publications (2)

Publication Number Publication Date
JPS62155492A JPS62155492A (en) 1987-07-10
JPH0231314B2 true JPH0231314B2 (en) 1990-07-12

Family

ID=17825098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29578385A Expired - Lifetime JPH0231314B2 (en) 1985-12-27 1985-12-27 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Country Status (1)

Country Link
JP (1) JPH0231314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106382836B (en) * 2016-11-22 2018-10-19 中国石油大学(华东) Separate heat pipe shower waste water residual heat recovery system and method

Also Published As

Publication number Publication date
JPS62155492A (en) 1987-07-10

Similar Documents

Publication Publication Date Title
US5275232A (en) Dual manifold heat pipe evaporator
US4909316A (en) Dual-tube heat pipe type heat exchanger
JPH0231314B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JPH0231313B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
CN1048262A (en) The heat exchanger of condensing vapor containing non-condensable gases
JP3552395B2 (en) Loop heat pipe
US5085270A (en) Dual angle heat pipe air preheater
JPH0231312B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JPS6122468B2 (en)
JPS59183254A (en) Solar water heater of heat pipe type
JPH0195289A (en) Heat pipe heat exchanger of separate type
JPS6241587A (en) Heat pipe heat exchanger
JPH0323604U (en)
JPS6237318B2 (en)
US4468934A (en) Absorption refrigeration system
KR100426572B1 (en) Regenerator of absorbing cooling and heating system
JP2895244B2 (en) Distillation concentrator
US1951336A (en) Process and apparatus for heat exchange between two currents of gas
JPH0547967Y2 (en)
JPS5919899Y2 (en) heat pipe
JPH0116945Y2 (en)
JPS608280Y2 (en) solar heat collector
KR100297053B1 (en) Absorption Cooling and Heating System
JPH035831Y2 (en)
JPH08612Y2 (en) Structure of heat accumulator with built-in conduit for heat pipe