JP3552395B2 - Loop heat pipe - Google Patents

Loop heat pipe Download PDF

Info

Publication number
JP3552395B2
JP3552395B2 JP07246996A JP7246996A JP3552395B2 JP 3552395 B2 JP3552395 B2 JP 3552395B2 JP 07246996 A JP07246996 A JP 07246996A JP 7246996 A JP7246996 A JP 7246996A JP 3552395 B2 JP3552395 B2 JP 3552395B2
Authority
JP
Japan
Prior art keywords
evaporator
wick
liquid
working fluid
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07246996A
Other languages
Japanese (ja)
Other versions
JPH09264681A (en
Inventor
正樹 神藤
丈史 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07246996A priority Critical patent/JP3552395B2/en
Publication of JPH09264681A publication Critical patent/JPH09264681A/en
Application granted granted Critical
Publication of JP3552395B2 publication Critical patent/JP3552395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、宇宙用・工業用・家庭用の熱輸送装置として用いられるループヒートパイプに関するものである。
【0002】
【従来の技術】
図10は従来のループヒートパイプの断面図を示す図である。図11は図10の蒸発器の断面を示す図である。図において、1はウイック、蒸発器容器、蒸気流路、液管、液環、上部リザーバ、下部リザーバから構成される蒸発器、2は凝縮環、凝縮器容器から構成される凝縮器、3は印加される熱の流れを示す矢印、4はウイック、5は蒸発器容器、6は蒸発した作動流体の蒸気、7は蒸気流路、8は蒸気管、9は作動流体の蒸気の流れを示す矢印、10は凝縮環、11はループヒートパイプから流出する熱の流れを示す矢印、12は凝縮器容器、13は凝縮した作動流体の液、14は液管、15は液環、16は上部リザーバ、17は下部リザーバである。
【0003】
上記のように構成された従来のループヒートパイプの動作原理について説明する。熱の流れを示す矢印3に示された蒸発器1に印加された熱は、蒸発器容器5に伝わり、ウイック4と蒸発器容器5の接合部で作動流体の液13に伝達され作動流体が蒸発する。作動流体の蒸気6はウイック4、蒸気流路7、蒸気管8を通り凝縮環10の流れ込む、凝縮環10に流入した蒸気6は凝縮器容器12に熱を伝達することにより凝縮し液13となる。凝縮した液13は液管14を通り、蒸発器1に戻る。蒸発器1に戻った液13は液環15、上部リザーバ16、下部リザーバ17に溜まる。液13は、液環15からウイック4の毛細管力によりウイック4と蒸発器容器5との接合部に運ばれる。
【0004】
上記のサイクルを繰り返すことにより熱を蒸発器1から凝縮器2に輸送する。
【0005】
【発明が解決しようとする課題】
上記のような従来のループヒートパイプでは、熱流束が大きくなり蒸発器容器5とウイック4との接触面近傍からの蒸発量だけでは熱が奪いきれなくなると、ウイック4の液環15側の表面からも沸騰が起こる。地上では重力の影響により蒸気は上部リザーバ16あるいは下部リザーバ17に移動するが、ループヒートパイプを人工衛星に使用した場合、宇宙では無重力環境下であるため蒸発した作動流体である蒸気6がウイック4の表面を覆うと液13はウイック内に流入できず、動作しなくなるという課題があった。
【0006】
また、ウイック4と蒸発器容器5の接触部で蒸発した蒸気6はウイック4内を周方向に流れ、蒸気流路7に輸送される。ウイック厚さは構造強度、周方向及び半径方向の熱コンダクタンスにより決まるが、毛細管半径が小さいため圧力損失が大きく熱流束が大きくなると熱輸送能力が低下するという課題があった。
【0007】
さらに、液13は液環15からウイック4を通り、ウイック4と蒸発器管壁5の接触部に輸送されるが、上記同様毛細管半径が小さいため圧力損失が大きく、熱流束が大きくなると熱輸送能力が低下するという課題があった。
【0008】
この発明は、かかる課題を解決するためになされたものであり、重力の有無、熱流束の大小に拠らず動作するループヒートパイプを得ることを目的としている。
【0009】
【課題を解決するための手段】
この発明のループヒートパイプは、ウイックの蒸気流路部分に凹部を設けたものである。
【0011】
この発明のループヒートパイプは、ウイックの液環側でかつ蒸発器容器との接合部の隣に凹部を設けたものである。
【0012】
また、この発明のループヒートパイプは、液管に仕切り壁を設け、さらにウイックの蒸気流路部分に凹部を設けたものである。
【0013】
この発明のループヒートパイプは、液管に仕切り壁を設け、さらにウイックの液環側でかつ蒸発器容器との接合部の隣に凹部を設けたものである。
【0014】
また、この発明のループヒートパイプは、ウイックの蒸気流路部分とウイックの液環側でかつ蒸発器容器と接合部の隣のそれぞれに凹部を設けたものである。
【0015】
この発明のループヒートパイプは、液管に仕切り壁を設けると同時に、ウイックの蒸気流路部分とウイックの液環側でかつ蒸発器容器との接合部の隣のそれぞれに凹部を設けたものである。
【0016】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1を示すループヒートパイプの断面を示す図である。図2及び図3は実施の形態1を示す蒸発器の断面を示す図である。1〜17は上記従来のループヒートパイプと同一である。18は液管14に取り付けた仕切り壁である。
【0017】
図1、図2に示したループヒートパイプでは、ウイック4と同等またはそれ以下の熱伝導率の小さい材質、例えばセラミック、チタン、ステンレス等でできた液管14に放射状に取り付けられた仕切り壁18が液環15内の液13から熱を奪うため、液環15内の液13を過冷却することができる。これによりウイック4の液環15側の表面から沸騰が起こらず、無重力環境下である宇宙でも蒸発した作動流体である蒸気6がウイック4の表面を覆うことがなく、熱流束が大きくても正常に動作し、熱輸送能力が低下しない。仕切り壁18が液管14と一体でも一体でなくとも所期の目的を達成し得ることはいうまでもない。
【0018】
図3は液管14に設けられた仕切り壁18をウイック4にも接合することで、ウイック4の温度を図2よりも下げることができる。これによりウイック4及び液環15内の液13の温度を過冷却することができ、図2と同様熱流束が大きくても正常に動作することができ、熱輸送能力が低下しない。仕切り壁18がウイック4または液管14と一体でも一体でなくとも所期の目的を達成し得ることはいうまでもない。
【0019】
実施の形態2.
図4はこの発明の実施の形態2を示すループヒートパイプの蒸発器の断面を示す図である。19はウイック4の蒸気流路7の部分に設けられた凹部である。この凹の切り欠きにより作動流体が蒸発するウイック4と蒸発器容器5の接合部と蒸気流路7との距離が短くなり、ここでの圧力損失が小さくなる。また、蒸気流路7の断面積が大きくなり、圧力損失が小さくなる。これにより熱輸送能力を向上させることができる。図では凹部を三角形を示したが、三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0020】
実施の形態3.
図5はこの発明の実施の形態3を示すループヒートパイプの蒸発器の断面を示す図である。20はウイック4の液環15側でかつ蒸発器容器5との接合部の隣に設けられた凹部である。この凹の切り欠きにより液環15から作動流体が蒸発するウイック4と蒸発器容器5との接合部までの距離が短くなり、ここでの圧力損失が小さくなる。これにより熱輸送能力を向上させることができる。図では凹部を三角形を示したが、三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0021】
実施の形態4.
図6はこの発明の実施の形態4を示すループヒートパイプの蒸発器の断面を示す図である。液管14に仕切り壁18を取り付けると同時にウイック4の蒸気流路7の部分に凹部を設ける。これにより無重力環境下である宇宙で熱流束が大きくても正常に動作し、熱輸送能力の向上が可能となる。また、作動流体が蒸発するウイック4から蒸発器容器5の接合部と蒸気流路7との間及び蒸気流路7での圧力損失が小さくなり、熱輸送能力を向上させることができる。図では仕切り壁18がウイック4に接合されておらず、凹部が三角形の例を示したが、仕切り壁18がウイック4に接合していても、凹部が三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0022】
実施の形態5.
図7はこの発明の実施の形態5を示すループヒートパイプの蒸発器の断面を示す図である。液管14に仕切り壁18を取り付けると同時にウイック4の液環15側でかつ蒸発器容器5との接合部の隣にそれぞれ凹部を設ける。これにより無重力環境下である宇宙で熱流束が大きくても正常に動作し、熱輸送能力の向上が可能となる。また、液環15から作動流体が蒸発するウイック4と蒸発器容器5との間の圧力損失が小さくなり、熱輸送能力を向上させることができる。図では仕切り壁18がウイック4に接合されておらず、凹部が三角形の例を示したが、仕切り壁18がウイック4に接合していても、凹部が三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0023】
実施の形態6.
図8はこの発明の実施の形態6を示すループヒートパイプの蒸発器の断面を示す図である。ウイック4の蒸気流路7の部分及びウイック4の液環15側でかつ蒸発器容器5との接合部の隣にそれぞれ凹部を設けることにより、作動流体が蒸発するウイック4と蒸発器容器5の接合部から蒸気流路7までの距離及び液環15から作動流体が蒸発するウイック4と蒸発器容器5との接合部までの距離がともに短くなり圧力損失が小さくなる。また、蒸気流路7の断面積が大きくなり、ここでの圧力損失が小さくなる。これにより熱輸送能力を向上させることができる。図では凹部を三角形を示したが、三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0024】
実施の形態7.
図9はこの発明の実施の形態7を示すループヒートパイプの蒸発器の断面を示す図である。液管14に仕切り壁18を取り付け、ウイック4の蒸気流路7の部分に凹部を設ける。さらに、ウイック4の液環15側でかつ蒸発器容器5との接合部の隣にそれぞれ凹部を設ける。これにより無重力環境下である宇宙で熱流束が大きくても正常に動作し、熱輸送能力の向上が可能となる。同時に作動流体が蒸発するウイック4から蒸発器容器5の接合部と蒸気流路7との間及び液環15から作動流体が蒸発するウイック4と蒸発器容器5との接合部との間の圧力損失がともに小さくなる。また、蒸気流路7の断面積が大きくなり、ここでの圧力損失が小さくなる。これにより熱輸送能力を向上させることができる。図では仕切り壁18がウイック4に接合されておらず、凹部19、20が三角形の例を示したが、仕切り壁18がウイック4に接合していても、凹部が三角形でなくとも所期の目的を達成し得ることはいうまでもない。
【0025】
【発明の効果】
この発明によれば、ウイック及び液環内の作動流体の液温度が下がり、ウイックの液環側表面から沸騰が起こらない。従って、無重力環境下である宇宙でも蒸発した作動流体である蒸気がウイックの表面を覆うことがなく、熱流束が大きくても正常に動作し、熱輸送能力を向上させることができるという効果がある。
【0026】
この発明によれば、ウイックと蒸発器容器の接合部から蒸気流路間での圧力損失と蒸気流路での圧力損失が小さくなる。これにより熱輸送能力を向上させることができるという効果がある。
【0027】
この発明によれば、液環から作動流体が蒸発するウイックと蒸発器容器との接合部間の圧力損失が小さくなる。これにより熱輸送能力を向上させることができるという効果がある。
【0028】
この発明によれば、無重力環境下である宇宙でも蒸発した作動流体である蒸気がウイックの表面を覆うことがなく、熱流束が大きくても正常に動作し、熱輸送能力を向上させることができるという効果があると同時に、ウイックと蒸発器容器の接合部から蒸気流路間での圧力損失と蒸気流路での圧力損失を小さくすることができ、熱輸送能力を向上させることができるという効果がある。
【0029】
この発明によれば、無重力環境下である宇宙でも蒸発した作動流体である蒸気がウイックの表面を覆うことがなく、熱流束が大きくても正常に動作し、熱輸送能力を向上させることができるという効果があると同時に、液環から作動流体が蒸発するウイックと蒸発器容器の接合部間の圧力損失を小さくすることができ、熱輸送能力を向上させることができるという効果がある。
【0030】
この発明によれば、ウイックと蒸発器容器の接合部から蒸気流路までの圧力損失、蒸気流路での圧力損失及び液環から作動流体が蒸発するウイックと蒸発器容器との接合部までの圧力損失がともに小さくなる。これにより熱輸送能力を向上させることができるという効果がある。
【0031】
この発明によれば、無重力環境下である宇宙でも蒸発した作動流体である蒸気がウイックの表面を覆うことがなく、熱流束が大きくても正常に動作し、熱輸送能力を向上させることができるという効果がある。さらに、ウイックと蒸発器容器の接合部から蒸気流路までの圧力損失、蒸気流路での圧力損失及び液環から作動流体が蒸発するウイックと蒸発器容器との接合部までの圧力損失がともに小さくなり、熱輸送能力を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】この発明によるループヒートパイプの実施の形態1を示す断面図である。
【図2】この発明によるループヒートパイプの実施の形態1を示す蒸発器の断面図である。
【図3】この発明によるループヒートパイプの実施の形態1を示す蒸発器の断面図である。
【図4】この発明によるループヒートパイプの実施の形態2を示す蒸発器の断面図である。
【図5】この発明によるループヒートパイプの実施の形態3を示す蒸発器の断面図である。
【図6】この発明によるループヒートパイプの実施の形態4を示す蒸発器の断面図である。
【図7】この発明によるループヒートパイプの実施の形態5を示す蒸発器の断面図である。
【図8】この発明によるループヒートパイプの実施の形態6を示す蒸発器の断面図である。
【図9】この発明によるループヒートパイプの実施の形態7を示す蒸発器の断面図である。
【図10】従来のループヒートパイプを示す断面図である。
【図11】従来のループヒートパイプの蒸発器を示す断面図である。
【符号の説明】
1 蒸発器、2 凝縮器、3 印加される熱の流れを示す矢印、4 ウイック、5 蒸発器容器、6 作動流体の蒸気、7 蒸気流路、8 蒸気管、9 蒸気の流れを示す矢印、10 凝縮環、11 流出する熱の流れを示す矢印、12 凝縮器容器、13 作動流体の液、14 液管、15 液環、16 上部リザーバ、17 下部リザーバ、18 仕切り壁、19 ウイックの凹部、20 ウイックの凹部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a loop heat pipe used as a heat transport device for space, industry, and home use.
[0002]
[Prior art]
FIG. 10 is a sectional view of a conventional loop heat pipe. FIG. 11 is a diagram showing a cross section of the evaporator of FIG. In the figure, 1 is an evaporator composed of a wick, an evaporator container, a vapor flow path, a liquid pipe, a liquid ring, an upper reservoir and a lower reservoir, 2 is a condensing ring and a condenser composed of a condenser container, and 3 is Arrows indicating the flow of applied heat, 4 indicates a wick, 5 indicates an evaporator container, 6 indicates vapor of the working fluid evaporated, 7 indicates a steam flow path, 8 indicates a steam pipe, and 9 indicates the flow of steam of the working fluid. Arrows, 10 are condensing rings, 11 is an arrow indicating the flow of heat flowing out of the loop heat pipe, 12 is a condenser vessel, 13 is a liquid of the condensed working fluid, 14 is a liquid pipe, 15 is a liquid ring, and 16 is an upper part. The reservoir 17 is a lower reservoir.
[0003]
The operation principle of the conventional loop heat pipe configured as described above will be described. The heat applied to the evaporator 1 indicated by the arrow 3 indicating the flow of heat is transmitted to the evaporator container 5, and is transmitted to the working fluid 13 at the junction between the wick 4 and the evaporator container 5, and the working fluid is Evaporate. The steam 6 of the working fluid flows through the wick 4, the steam flow path 7, and the steam pipe 8 and flows into the condensing ring 10. The steam 6 flowing into the condensing ring 10 condenses by transferring heat to the condenser container 12 to form the liquid 13. Become. The condensed liquid 13 passes through the liquid pipe 14 and returns to the evaporator 1. The liquid 13 returned to the evaporator 1 is stored in the liquid ring 15, the upper reservoir 16, and the lower reservoir 17. The liquid 13 is carried from the liquid ring 15 to the junction between the wick 4 and the evaporator container 5 by the capillary force of the wick 4.
[0004]
Heat is transported from the evaporator 1 to the condenser 2 by repeating the above cycle.
[0005]
[Problems to be solved by the invention]
In the conventional loop heat pipe as described above, when the heat flux becomes large and the heat cannot be taken away only by the amount of evaporation from the vicinity of the contact surface between the evaporator container 5 and the wick 4, the surface of the wick 4 on the liquid ring 15 side is formed. Boiling also occurs. On the ground, the vapor moves to the upper reservoir 16 or the lower reservoir 17 due to the influence of gravity. However, when the loop heat pipe is used for an artificial satellite, the vapor 6 as the evaporated working fluid in the space is in a zero-gravity environment, so that the vapor 6 becomes a wick 4. When the surface of the liquid is covered, the liquid 13 cannot flow into the wick, so that the liquid 13 does not operate.
[0006]
The steam 6 evaporated at the contact portion between the wick 4 and the evaporator container 5 flows in the wick 4 in the circumferential direction and is transported to the steam flow path 7. The wick thickness is determined by the structural strength and the thermal conductance in the circumferential direction and the radial direction. However, there is a problem that the heat transfer capacity is reduced when the pressure loss is large due to the small capillary radius and the heat flux is large.
[0007]
Further, the liquid 13 passes through the wick 4 from the liquid ring 15 and is transported to the contact portion between the wick 4 and the evaporator tube wall 5. As described above, since the capillary radius is small, the pressure loss is large, and when the heat flux is large, heat transport is performed. There was a problem that the ability decreased.
[0008]
The present invention has been made to solve such a problem, and has as its object to obtain a loop heat pipe that operates regardless of the presence or absence of gravity and the magnitude of heat flux.
[0009]
[Means for Solving the Problems]
The loop heat pipe of the present invention has a wick provided with a concave portion in a steam flow path portion.
[0011]
The loop heat pipe of the present invention has a concave portion provided on the liquid ring side of the wick and adjacent to the joint with the evaporator container.
[0012]
Further, in the loop heat pipe of the present invention, a partition wall is provided in the liquid tube, and a concave portion is provided in a vapor flow path portion of the wick.
[0013]
In the loop heat pipe of the present invention, a partition wall is provided in the liquid tube, and a concave portion is provided on the liquid ring side of the wick and adjacent to the joint with the evaporator container.
[0014]
Further, the loop heat pipe of the present invention is provided with a concave portion in each of the vapor flow path portion of the wick and the liquid ring side of the wick and adjacent to the evaporator container and the joint.
[0015]
The loop heat pipe of the present invention is provided with a partition wall in the liquid pipe, and at the same time, a concave portion is provided in each of the vapor flow path portion of the wick and the liquid ring side of the wick and adjacent to the junction with the evaporator container. is there.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a diagram showing a cross section of a loop heat pipe according to Embodiment 1 of the present invention. 2 and 3 are views showing a cross section of the evaporator according to the first embodiment. Reference numerals 1 to 17 are the same as those of the conventional loop heat pipe. Reference numeral 18 denotes a partition wall attached to the liquid pipe 14.
[0017]
In the loop heat pipe shown in FIGS. 1 and 2, a partition wall 18 radially attached to a liquid pipe 14 made of a material having a thermal conductivity equal to or less than that of the wick 4, such as ceramic, titanium, and stainless steel. Removes heat from the liquid 13 in the liquid ring 15, so that the liquid 13 in the liquid ring 15 can be supercooled. As a result, boiling does not occur from the surface of the wick 4 on the liquid ring 15 side, and the vapor 6, which is the working fluid evaporated in the space under a zero gravity environment, does not cover the surface of the wick 4. , And the heat transport capacity does not decrease. It goes without saying that the intended purpose can be achieved whether or not the partition wall 18 is integral with the liquid tube 14.
[0018]
FIG. 3 shows that the temperature of the wick 4 can be lower than that of FIG. 2 by joining the partition wall 18 provided on the liquid pipe 14 to the wick 4. As a result, the temperature of the wick 4 and the liquid 13 in the liquid ring 15 can be supercooled, so that normal operation can be performed even if the heat flux is large as in FIG. It goes without saying that the intended purpose can be achieved whether or not the partition wall 18 is integral with the wick 4 or the liquid tube 14.
[0019]
Embodiment 2 FIG.
FIG. 4 is a view showing a cross section of an evaporator of a loop heat pipe according to a second embodiment of the present invention. Reference numeral 19 denotes a concave portion provided in the steam flow path 7 of the wick 4. Due to the concave notch, the distance between the joint between the wick 4 where the working fluid evaporates and the evaporator container 5 and the steam flow path 7 is shortened, and the pressure loss here is reduced. Further, the cross-sectional area of the steam flow path 7 increases, and the pressure loss decreases. Thereby, the heat transport ability can be improved. In the drawings, the concave portion is shown as a triangle, but it goes without saying that the intended purpose can be achieved even if it is not a triangle.
[0020]
Embodiment 3 FIG.
FIG. 5 is a diagram showing a cross section of an evaporator of a loop heat pipe according to Embodiment 3 of the present invention. Reference numeral 20 denotes a concave portion provided on the liquid ring 15 side of the wick 4 and adjacent to a joint with the evaporator container 5. Due to this concave notch, the distance from the liquid ring 15 to the junction between the wick 4 where the working fluid evaporates and the evaporator container 5 is shortened, and the pressure loss here is reduced. Thereby, the heat transport ability can be improved. In the drawings, the concave portion is shown as a triangle, but it goes without saying that the intended purpose can be achieved even if it is not a triangle.
[0021]
Embodiment 4 FIG.
FIG. 6 is a diagram showing a cross section of an evaporator of a loop heat pipe according to a fourth embodiment of the present invention. At the same time as attaching the partition wall 18 to the liquid pipe 14, a concave portion is provided in a portion of the wick 4 in the steam flow path 7. As a result, even if the heat flux is large in space under a gravity-free environment, the device operates normally and the heat transport capability can be improved. Further, the pressure loss between the wick 4 where the working fluid evaporates and the joint of the evaporator container 5 and the steam flow path 7 and between the wick 4 and the steam flow path 7 are reduced, and the heat transport capability can be improved. The figure shows an example in which the partition wall 18 is not joined to the wick 4 and the concave portion is triangular. However, even if the partition wall 18 is joined to the wick 4, the intended purpose is achieved even if the concave portion is not triangular. It goes without saying that it can be done.
[0022]
Embodiment 5 FIG.
FIG. 7 is a view showing a cross section of an evaporator of a loop heat pipe according to a fifth embodiment of the present invention. At the same time as the partition wall 18 is attached to the liquid pipe 14, a concave portion is provided on the liquid ring 15 side of the wick 4 and next to the joint with the evaporator container 5. As a result, even if the heat flux is large in space under a gravity-free environment, the device operates normally and the heat transport capability can be improved. Further, the pressure loss between the wick 4 where the working fluid evaporates from the liquid ring 15 and the evaporator container 5 is reduced, and the heat transport capability can be improved. The figure shows an example in which the partition wall 18 is not joined to the wick 4 and the concave portion is triangular. However, even if the partition wall 18 is joined to the wick 4, the intended purpose is achieved even if the concave portion is not triangular. It goes without saying that it can be done.
[0023]
Embodiment 6 FIG.
FIG. 8 is a diagram showing a cross section of an evaporator of a loop heat pipe according to a sixth embodiment of the present invention. By providing concave portions on the vapor flow path 7 portion of the wick 4 and on the liquid ring 15 side of the wick 4 and next to the junction with the evaporator container 5, the wick 4 and the evaporator container 5 where the working fluid evaporates are formed. The distance from the junction to the vapor flow path 7 and the distance from the liquid ring 15 to the junction between the wick 4 where the working fluid evaporates and the evaporator container 5 are both shortened, and pressure loss is reduced. Further, the cross-sectional area of the steam flow path 7 increases, and the pressure loss here decreases. Thereby, the heat transport ability can be improved. In the drawings, the concave portion is shown as a triangle, but it goes without saying that the intended purpose can be achieved even if it is not a triangle.
[0024]
Embodiment 7 FIG.
FIG. 9 is a view showing a cross section of an evaporator of a loop heat pipe according to a seventh embodiment of the present invention. A partition wall 18 is attached to the liquid pipe 14, and a concave portion is provided in a portion of the wick 4 in the steam flow path 7. Further, concave portions are provided on the liquid ring 15 side of the wick 4 and adjacent to the joint with the evaporator container 5. As a result, even if the heat flux is large in space under a gravity-free environment, the device operates normally and the heat transport capability can be improved. At the same time, the pressure between the wick 4 where the working fluid evaporates and the junction between the evaporator container 5 and the vapor flow path 7 and the pressure between the wick 4 where the working fluid evaporates from the liquid ring 15 and the junction between the evaporator container 5 Both losses are small. Further, the cross-sectional area of the steam flow path 7 increases, and the pressure loss here decreases. Thereby, the heat transport ability can be improved. In the figure, the partition wall 18 is not joined to the wick 4 and the concave portions 19 and 20 are triangular. However, even if the partition wall 18 is joined to the wick 4, even if the concave portion is not Needless to say, the purpose can be achieved.
[0025]
【The invention's effect】
According to the present invention, the liquid temperature of the working fluid in the wick and the liquid ring is reduced, and boiling does not occur from the liquid ring side surface of the wick. Therefore, there is an effect that the vapor which is the working fluid evaporated in the space under the zero gravity environment does not cover the surface of the wick, and even if the heat flux is large, it operates normally and the heat transport ability can be improved. .
[0026]
According to the present invention, the pressure loss between the joint between the wick and the evaporator vessel and between the steam flow path and the steam flow path is reduced. This has the effect that the heat transport capability can be improved.
[0027]
According to the present invention, the pressure loss between the joint between the wick where the working fluid evaporates from the liquid ring and the evaporator container is reduced. This has the effect that the heat transport capability can be improved.
[0028]
ADVANTAGE OF THE INVENTION According to this invention, the vapor | steam which is the working fluid evaporated in the space under a zero gravity environment does not cover the surface of a wick, operates normally even if a heat flux is large, and can improve heat transport ability. At the same time, it is possible to reduce the pressure loss between the wick and the evaporator vessel from the joint between the steam flow path and the steam flow path, and to improve the heat transfer capacity. There is.
[0029]
ADVANTAGE OF THE INVENTION According to this invention, the vapor | steam which is the working fluid evaporated in the space under a zero gravity environment does not cover the surface of a wick, operates normally even if a heat flux is large, and can improve heat transport ability. At the same time, the pressure loss between the wick where the working fluid evaporates from the liquid ring and the junction of the evaporator container can be reduced, and the heat transport ability can be improved.
[0030]
According to the present invention, the pressure loss from the junction between the wick and the evaporator vessel to the vapor flow path, the pressure loss in the vapor flow path, and the pressure loss from the liquid ring to the junction between the wick and the evaporator vessel where the working fluid evaporates Both pressure losses are reduced. This has the effect that the heat transport capability can be improved.
[0031]
ADVANTAGE OF THE INVENTION According to this invention, the vapor | steam which is the working fluid which evaporated even in space under a zero-gravity environment does not cover the surface of a wick, it can operate normally even if a heat flux is large, and can improve heat transport ability. This has the effect. Furthermore, the pressure loss from the junction between the wick and the evaporator vessel to the steam flow path, the pressure loss in the steam flow path, and the pressure loss from the liquid ring to the junction between the wick and the evaporator vessel where the working fluid evaporates are all reduced. This has the effect that the heat transfer capacity can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing Embodiment 1 of a loop heat pipe according to the present invention.
FIG. 2 is a cross-sectional view of the evaporator showing Embodiment 1 of the loop heat pipe according to the present invention.
FIG. 3 is a cross-sectional view of the evaporator showing Embodiment 1 of the loop heat pipe according to the present invention.
FIG. 4 is a sectional view of an evaporator showing a second embodiment of the loop heat pipe according to the present invention.
FIG. 5 is a sectional view of an evaporator showing a third embodiment of the loop heat pipe according to the present invention.
FIG. 6 is a sectional view of an evaporator showing a fourth embodiment of the loop heat pipe according to the present invention.
FIG. 7 is a sectional view of an evaporator showing a fifth embodiment of the loop heat pipe according to the present invention.
FIG. 8 is a sectional view of an evaporator showing a sixth embodiment of the loop heat pipe according to the present invention.
FIG. 9 is a sectional view of an evaporator showing Embodiment 7 of the loop heat pipe according to the present invention.
FIG. 10 is a sectional view showing a conventional loop heat pipe.
FIG. 11 is a cross-sectional view illustrating a conventional loop heat pipe evaporator.
[Explanation of symbols]
1 evaporator, 2 condenser, 3 arrow indicating heat flow applied, 4 wick, 5 evaporator vessel, 6 steam of working fluid, 7 steam flow path, 8 steam pipe, 9 arrow indicating steam flow, 10 Condenser ring, 11 Arrow indicating the flow of heat flowing out, 12 Condenser container, 13 Liquid of working fluid, 14 liquid pipe, 15 liquid ring, 16 Upper reservoir, 17 Lower reservoir, 18 Partition wall, 19 Recess of wick, 20 Wick recess.

Claims (6)

蒸発器、凝縮器、作動流体、上記蒸発器と上記凝縮器とを連結し液相の作動流体が流れる液管及び上記蒸発器と上記凝縮器とを連結し蒸気相の作動流体が流れる蒸気管とから構成されるループヒートパイプにおいて、上記蒸発器に有するウイックの蒸気流路部分に凹部を設けたことを特徴とするループヒートパイプ。An evaporator, a condenser, a working fluid, a liquid pipe connecting the evaporator and the condenser and flowing a liquid-phase working fluid, and a steam pipe connecting the evaporator and the condenser and flowing a vapor-phase working fluid Wherein a concave portion is provided in a vapor flow path portion of a wick provided in the evaporator. 蒸発器、凝縮器、作動流体、上記蒸発器と上記凝縮器とを連結し液相の作動流体が流れる液管及び上記蒸発器と上記凝縮器とを連結し蒸気相の作動流体が流れる蒸気管とから構成されるループヒートパイプにおいて、上記蒸発器に有するウイックの液環側でかつ上記蒸発器との接合部の隣に凹部を設けたことを特徴とするループヒートパイプ。An evaporator, a condenser, a working fluid, a liquid pipe connecting the evaporator and the condenser and flowing a liquid-phase working fluid, and a steam pipe connecting the evaporator and the condenser and flowing a vapor-phase working fluid Wherein a concave portion is provided on the liquid ring side of the wick of the evaporator and adjacent to a joint with the evaporator. 蒸発器、凝縮器、作動流体、上記蒸発器と上記凝縮器とを連結し液相の作動流体が流れる液管及び上記蒸発器と上記凝縮器とを連結し蒸気相の作動流体が流れる蒸気管とから構成されるループヒートパイプにおいて、上記蒸発器の液管に取り付けた仕切り壁と、上記蒸発器に有するウイックの蒸発流路部分に設けた凹部とを有することを特徴とするループヒートパイプ。An evaporator, a condenser, a working fluid, a liquid pipe connecting the evaporator and the condenser and flowing a liquid-phase working fluid, and a steam pipe connecting the evaporator and the condenser and flowing a vapor-phase working fluid A loop heat pipe comprising: a partition wall attached to a liquid pipe of the evaporator; and a recess provided in an evaporation flow path of a wick of the evaporator. 蒸発器、凝縮器、作動流体、上記蒸発器と上記凝縮器とを連結し液相の作動流体が流れる液管及び上記蒸発器と上記凝縮器とを連結し蒸気相の作動流体が流れる蒸気管とから構成されるループヒートパイプにおいて、上記蒸発器の液管に取り付けた仕切り壁と、上記蒸発器に有するウイックの液環側で、かつ蒸発器との接合部の隣に設けた凹部とを有することを特徴とするループヒートパイプ。An evaporator, a condenser, a working fluid, a liquid pipe connecting the evaporator and the condenser and flowing a liquid-phase working fluid, and a steam pipe connecting the evaporator and the condenser and flowing a vapor-phase working fluid In the loop heat pipe comprising: a partition wall attached to the liquid pipe of the evaporator, and a recess provided on the liquid ring side of the wick of the evaporator, and adjacent to the joint with the evaporator. A loop heat pipe comprising: 蒸発器、凝縮器、作動流体、上記蒸発器と上記凝縮器とを連結し液相の作動流体が流れる液管及び上記蒸発器と上記凝縮器とを連結し蒸気相の作動流体が流れる蒸気管とから構成されるループヒートパイプにおいて、上記蒸発器に有するウイックの蒸気流路部分に設けた凹部と、上記ウイックの液環側でかつ上記蒸発器との接合部の隣に設けた凹部とを有したことを特徴とするループヒートパイプ。An evaporator, a condenser, a working fluid, a liquid pipe connecting the evaporator and the condenser and flowing a liquid-phase working fluid, and a steam pipe connecting the evaporator and the condenser and flowing a vapor-phase working fluid In the loop heat pipe comprising: a concave portion provided in the vapor flow path portion of the wick of the evaporator, and a concave portion provided on the liquid ring side of the wick and adjacent to the junction with the evaporator. A loop heat pipe characterized by having. ウイックの液環側でかつ蒸発器との接合部の隣に凹部を設けたことを特徴とする請求項3記載のループヒートパイプ。The loop heat pipe according to claim 3 , wherein a concave portion is provided on the liquid ring side of the wick and adjacent to a joint with the evaporator.
JP07246996A 1996-03-27 1996-03-27 Loop heat pipe Expired - Fee Related JP3552395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07246996A JP3552395B2 (en) 1996-03-27 1996-03-27 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07246996A JP3552395B2 (en) 1996-03-27 1996-03-27 Loop heat pipe

Publications (2)

Publication Number Publication Date
JPH09264681A JPH09264681A (en) 1997-10-07
JP3552395B2 true JP3552395B2 (en) 2004-08-11

Family

ID=13490213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07246996A Expired - Fee Related JP3552395B2 (en) 1996-03-27 1996-03-27 Loop heat pipe

Country Status (1)

Country Link
JP (1) JP3552395B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221584A (en) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp Loop type heat pipe
US6382309B1 (en) 2000-05-16 2002-05-07 Swales Aerospace Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction
JP4718349B2 (en) * 2006-03-14 2011-07-06 株式会社フジクラ Evaporator and loop heat pipe using this evaporator
KR101000981B1 (en) * 2008-09-22 2010-12-13 성균관대학교산학협력단 Evaporator for looped heat pipe system
JP5699452B2 (en) * 2010-05-25 2015-04-08 富士通株式会社 Loop type heat pipe and evaporator manufacturing method for loop type heat pipe
CN103000595B (en) * 2011-09-08 2015-11-04 北京芯铠电子散热技术有限责任公司 A kind of multidirectional turnover phase change heat-transfer device and preparation method thereof
WO2015104842A1 (en) * 2014-01-10 2015-07-16 富士通株式会社 Cooling device
JP6433848B2 (en) * 2015-05-01 2018-12-05 国立大学法人名古屋大学 Heat exchangers, vaporizers, and electronics
JP6860086B2 (en) 2017-11-29 2021-04-14 富士通株式会社 Loop heat pipes and electronics

Also Published As

Publication number Publication date
JPH09264681A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3591339B2 (en) Loop type heat pipe
JP3552395B2 (en) Loop heat pipe
US5275232A (en) Dual manifold heat pipe evaporator
JP3450148B2 (en) Loop type heat pipe
US3892273A (en) Heat pipe lobar wicking arrangement
JP2000171181A (en) Heat pipe
US4260015A (en) Surface condenser
JPH0387561A (en) Heat pipe type hot-water supply apparatus with high temperature heat accumulator
JP3946551B2 (en) Loop heat pipe evaporator
JP2000274972A (en) Flexible heat pipe
JPS6237318B2 (en)
SU800577A1 (en) Heat pipe
JPS5919899Y2 (en) heat pipe
JPS61153384A (en) Heat pipe
JPS58164993A (en) Accumulation type heat exchanger
JP2707069B2 (en) heat pipe
JPS6315518B2 (en)
JPH03134493A (en) Heat pipe
JPH0547967Y2 (en)
JPH0447570Y2 (en)
JP2707070B2 (en) High temperature heat pipe
JP2004257682A (en) Evaporator
JPS597917B2 (en) heat pipe
JP2000292080A (en) Heat pipe
JPH08613Y2 (en) Structure of heat accumulator with conduit for heat pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees