JPH02311374A - Degreasing - Google Patents

Degreasing

Info

Publication number
JPH02311374A
JPH02311374A JP1134276A JP13427689A JPH02311374A JP H02311374 A JPH02311374 A JP H02311374A JP 1134276 A JP1134276 A JP 1134276A JP 13427689 A JP13427689 A JP 13427689A JP H02311374 A JPH02311374 A JP H02311374A
Authority
JP
Japan
Prior art keywords
inner diameter
degreasing
sintering
binder
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1134276A
Other languages
Japanese (ja)
Inventor
Junji Takeda
淳二 武田
Etsuo Maki
牧 悦生
Fusao Iso
磯 房雄
Kenji Takemura
竹村 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1134276A priority Critical patent/JPH02311374A/en
Publication of JPH02311374A publication Critical patent/JPH02311374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To reduce occurrence of cracks by packing an inorganic granular material into an inner diameter part of a cylindrical molded article having specific dimension and shape, comprising a sintering substance-containing mixture having a binder, and sintering after degreasing thereof. CONSTITUTION:100 pts.wt. sintering substance selected from a metal having >=800 deg.C decomposition temperature and 1 to 500mum particle diameter and an inorganic compound such as SiC having 0.1 to 200mum particle diameter is blended in a molten state with <=20 pts.wt. sintering auxiliary, 3 to 40 pts.wt. binder such as ethylene-based hydrocarbon having, 2,000 to 500,000 number-average molecular weight and <=20 pts.wt. processing auxiliary and pelletized. The pellets are molded at 70 to 300 deg.C to give a cylindrical molded article having 10 to 150mm height, 5 to 100mm inner diameter, 3 to 20mm thickness, 1 to 10 ratio of height/inner diameter and 0.1 to 1.0 ratio of thickness/inner diameter. An inorganic granular material such as Al2O3 having 0.5 to 100mum particle diameter, not causing chemical change, not melting and not reacting during degreasing is packed into the inner diameter part on a supporting material such as sintered material of ZrO2. The cylindrical molded article is heated at 10 to 100 deg.C/hour rate of heating to decompose and remove the binder. The molded article is sintered and then the inorganic granular material is removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼結性物質含有混合物の焼結方法に関する。さ
らにくわしくは、脱脂時間および焼結時間を大幅に短縮
させるのみならず、焼結時に発生するフクレ、亀裂など
の変形のない焼結性物質含有混合物の成形体の焼結物を
得るための脱脂方法に関するものであり、特に筒状成形
体の脱脂方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for sintering a mixture containing a sinterable substance. More specifically, the degreasing method not only significantly shortens the degreasing time and sintering time, but also obtains a sintered product of a molded body of a sinterable substance-containing mixture that is free from deformations such as blisters and cracks that occur during sintering. The present invention relates to a method, and in particular to a method for degreasing a cylindrical molded body.

〔従来の技術] 現在、アルミナ、炭化ケイ素、フィライト、チタン酸バ
リウム、チッ化ケイ素などのセラミックス材料およびニ
ッケル、チタン、鉄などの金属のそれぞれの粉末にポリ
ビニルアルコールなどの水溶性物質を数パーセント混合
させ、顆粒化した粉末をプレス法によって成形させて賦
形化した後、脱脂・焼結させるか、あるいはポリビニル
ブチラールなどの有機物質をトルエンなどの有機溶剤と
ともに混合し、ドクターブレード法によってシートを製
造し、このシートを乾燥させた後、打ち抜き型で打ち抜
き、脱脂・乾燥させることによって成形物を得ることが
一般に行なわれている。しかし、このような方法では、
三次元であり、かつ複雑な形状を有する成形物を得るこ
とはできなかった。最近では、複雑な三次元の形態を有
する成形物を得るために射出成形法によってグリーン体
を得る方法が開発されている。この射出成形法で複雑な
形状を有するグリーン体を得るには、ワックス、スチレ
ン系重合体、アクリル系重合体などの各種高分子重合体
の低重合物10〜30重量%を前記セラミックス物質ま
たは金属に混合させた混合物を射出成形機を使って金型
中に充填させることによって実施されている。このよう
にして得られたグリーン体を焼結するためには成形体の
賦形に使用した高分子物質や有機物質を除去する脱脂工
程が必要である。高分子物質、有機物質が除去された後
、焼結工程を経て焼結体を得ることができるが、従来の
プレス法、ドクターブレード法などの方法では、脱脂工
程において成形体にフクレ、亀裂、さらに有害な変形が
発生することもなく、かつ脱脂に要する時間も短時間で
ある。
[Prior art] Currently, several percent of water-soluble substances such as polyvinyl alcohol are mixed with powders of ceramic materials such as alumina, silicon carbide, phyllite, barium titanate, and silicon nitride, and metals such as nickel, titanium, and iron. The granulated powder is shaped using a press method, then degreased and sintered, or an organic substance such as polyvinyl butyral is mixed with an organic solvent such as toluene to produce a sheet using a doctor blade method. However, after this sheet is dried, it is generally punched out with a punching die, degreased and dried to obtain a molded product. However, in such a method,
It was not possible to obtain a molded product that was three-dimensional and had a complicated shape. Recently, a method for obtaining green bodies by injection molding has been developed in order to obtain molded articles having complex three-dimensional shapes. In order to obtain a green body having a complicated shape by this injection molding method, 10 to 30% by weight of a low polymer of various polymers such as wax, styrene polymer, acrylic polymer, etc. is added to the ceramic material or metal. This is done by filling a mixture of the above into a mold using an injection molding machine. In order to sinter the green body thus obtained, a degreasing step is required to remove the polymeric substances and organic substances used in shaping the green body. After the polymeric substances and organic substances have been removed, a sintered body can be obtained through a sintering process, but conventional methods such as the pressing method and doctor blade method do not allow blisters, cracks, etc. in the molded body during the degreasing process. Furthermore, no harmful deformation occurs and the time required for degreasing is short.

[発明が解決しようとする課題] しかしながら、射出成形法、押出成形法などの成形法に
よって得られた成形体は高分子物質や有機物質の含有量
が多いために脱脂工程が従来法に比較して大幅に長時間
髪すること。さらに、脱脂工程中にグリーン体表面にフ
クレ、亀裂、さらに成形体が変形してしまうなどの問題
がある。
[Problems to be Solved by the Invention] However, molded bodies obtained by molding methods such as injection molding and extrusion molding have a high content of polymeric substances and organic substances, so the degreasing process is difficult compared to conventional methods. It will make your hair last much longer. Furthermore, during the degreasing process, there are problems such as blisters and cracks on the surface of the green body, and further, deformation of the molded body.

これらの問題に加えて、とりわけ筒状体の場合では、脱
脂を行うさいに常法通り支持体上に筒状体をセットし、
一定の昇温速度で加熱した場合、筒状体の内部にクラッ
クや割れ、剥離などが発生するという問題があった。
In addition to these problems, especially in the case of cylindrical bodies, when degreasing the cylindrical body is set on a support in the usual way,
When heated at a constant temperature increase rate, there is a problem in that cracks, splits, and peeling occur inside the cylindrical body.

以上のことから、本発7明はこれらの問題点(欠点)が
なく、すなわち射出成形法、押出成形法などによる筒状
のグリーン体をより効率よ(、焼結体を製造するために
脱脂工程を短縮し、かつ脱脂時にクフレ、亀裂などの有
害な変形を発生させない方法によって製品を得ることを
目的とするものである。
From the above, the present invention does not have these problems (defects), and can be made more efficiently by injection molding, extrusion molding, etc. The purpose is to obtain a product by a method that shortens the process and does not cause harmful deformations such as curls and cracks during degreasing.

[課題を解決するための手段および作用〕本発明にした
がえば、これらの課題は、高さが10〜150 mmで
あり、内径が5〜10mmであり、かつ肉厚が3〜20
mmであるが、内径に対する高さの比が1−10であり
、しかも内径に対する肉厚の比が0.1−、−1.0で
ある筒状成形体であり、かつ成形体がバインダーを3.
0〜40重量%含有する焼結性物質であり、該筒状成形
体を支持体上で脱脂するさい、筒状内部に平均粒径が0
.5〜100μmであり、かつ脱脂の段階において化学
変化せず、また脱脂の段階において溶融せず、しかも成
形体中に存在する焼結性物質と反応しない無機質粒状物
を充填することを特徴とする脱脂方法、 によって解決することができる。以下、本発明を具体的
に説明する。
[Means and effects for solving the problems] According to the present invention, these problems are such that the height is 10 to 150 mm, the inner diameter is 5 to 10 mm, and the wall thickness is 3 to 20 mm.
mm, the height to inner diameter ratio is 1-10, and the inner diameter to wall thickness ratio is 0.1-, -1.0. 3.
It is a sinterable substance containing 0 to 40% by weight, and when the cylindrical molded body is degreased on a support, the inside of the cylindrical body has an average particle size of 0.
.. It is characterized by being filled with inorganic granules that have a diameter of 5 to 100 μm, do not chemically change during the degreasing stage, do not melt during the degreasing stage, and do not react with the sinterable substance present in the molded body. It can be solved by degreasing method. The present invention will be explained in detail below.

本発明における焼結性物質含有混合物は本質的に下記の
焼結性物質とバインダーとからなる。
The sinterable substance-containing mixture in the present invention essentially consists of the following sinterable substance and a binder.

fA)焼結性物質 本発明の焼結性物質の融点、分解温度または昇華点は通
常800℃以上であり、1,000℃以上が好ましく、
特に1.4000℃以上が好適である。融点、分解温度
または昇華点が800℃未満の金属または無機化合物を
焼結性物質として使用すると、脱脂(か焼)時に有害な
変形やフクレを生じる。
fA) Sinterable substance The melting point, decomposition temperature or sublimation point of the sinterable substance of the present invention is usually 800°C or higher, preferably 1,000°C or higher,
In particular, a temperature of 1.4000°C or higher is suitable. If metals or inorganic compounds with a melting point, decomposition temperature or sublimation point below 800° C. are used as sinterable substances, harmful deformation and blistering will occur during degreasing (calcination).

また、平均粒径は0.1〜500μmである。この平均
粒径は焼結性物質の種類によって異なるが、金属の場合
では、通常1〜500μmであり、 1〜300μmが
望ましく、とりわけ1〜200μmが最適である。平均
粒径が1μm未満の金属を用いると、混線が困難である
。一方、500μmを超えた金属を使うならば、焼結に
よって得られる成形物の機械的物性が低下する。また、
無機化合物の場合では、一般に0.1〜200 μmで
あり、0.1〜150μmが好ましく、特に0.1〜1
00μmが好適である。平均粒径が0.111m未満の
無機化合物を使用すると、組成物を製造するさいに混線
時において無機化合物の均一状の分散が困難である。
Further, the average particle size is 0.1 to 500 μm. This average particle size varies depending on the type of sinterable substance, but in the case of metals, it is usually 1 to 500 μm, preferably 1 to 300 μm, and most preferably 1 to 200 μm. When a metal with an average particle size of less than 1 μm is used, crosstalk is difficult. On the other hand, if a metal with a diameter exceeding 500 μm is used, the mechanical properties of the molded product obtained by sintering will deteriorate. Also,
In the case of inorganic compounds, it is generally 0.1 to 200 μm, preferably 0.1 to 150 μm, particularly 0.1 to 1
00 μm is suitable. If an inorganic compound having an average particle size of less than 0.111 m is used, it is difficult to uniformly disperse the inorganic compound during crosstalk during production of the composition.

一方、 200μmを超えた無機化合物を用いると、組
成物の成形物を焼結するさいに保形性が悪くなるととも
に、焼結後の密度が低下し、焼結体の機械的強度が低下
する。
On the other hand, if an inorganic compound with a diameter exceeding 200 μm is used, shape retention will deteriorate when sintering a molded product of the composition, the density after sintering will decrease, and the mechanical strength of the sintered body will decrease. .

本発明において焼結性物質として用いられる金属の代表
例としては、アルミニウム、鉄、銅、チタン、モリブデ
ン、ジルコニウム、コバルト、ニッケルおよびクロ牟の
ごとき金属ならびにこれらの金属を主成分(少なくとも
50重量%)とする合金があげられる。これらの金属お
よび合金の粉末は軸受台金、快削鋼、耐熱材、耐摩耗材
などとして広(使われているものであり、通常粉末冶金
材料と言われているものである。また、無機化合物の代
表例としては、アルミナ、炭化珪素、窒化珪素、ジルコ
ニア、コージライト、タンゲスデンカ−バイト、フェラ
イト、窒化アルミニウムなどのセラミックス材料があげ
られる。さらに、焼結助剤として、ホウ素、ベリリウム
、炭素、酸化イツトリウム、酸化セリウム、酸化マグネ
シウム、酸化リチウムなどを適宜少量(一般には、10
0重量部の無機化合物に対して多くとも20重量部)添
加させてもよい。
Representative examples of metals used as sinterable materials in the present invention include metals such as aluminum, iron, copper, titanium, molybdenum, zirconium, cobalt, nickel, and black metal, and metals containing these metals as a main component (at least 50% by weight). ). Powders of these metals and alloys are widely used as bearing base metals, free-cutting steel, heat-resistant materials, wear-resistant materials, etc., and are usually referred to as powder metallurgy materials. Typical examples include ceramic materials such as alumina, silicon carbide, silicon nitride, zirconia, cordierite, tungsten carbide, ferrite, and aluminum nitride.In addition, as sintering aids, boron, beryllium, carbon, and oxidized Add a small amount of yttrium, cerium oxide, magnesium oxide, lithium oxide, etc. (generally 10
(at most 20 parts by weight per 0 parts by weight of inorganic compound).

(B)バインダー また、バインダーとして使用可能な樹脂としては、エチ
レン系重合体、スチレン系重合体、プロピレン系重合体
、エチレン−酢酸ビニル共重合体、アルキル(炭素6個
以下)メタアクリレートを主成分(50重量%以上)と
する重合体(たとえば、ポリメチルメタクリレート、ポ
リエチルメタクリレート、ポリブチルメタクリレート)
およびアルキル(炭素数6個以下)アクリレートを主成
分(50重量%以上)とする重合体(たとえば、ポリメ
チルアクリレート、ポリエチルアクリレート、ポリブチ
ルアクリレート)があげられる。以上において、°°系
重合体°゛とは該モノマーの単独重合体および該モノマ
ーを主成分(少なくとも50重量%)とし、他のモノマ
ーとの共重合体を意味する。これらのバインダーの数平
均分子量〔蒸気以上のものが好ましい。これらのバイン
ダーはセラミックス材料と混合して焼結物質を製造する
分野において広(使われているものである。
(B) Binder Resins that can be used as binders include ethylene polymers, styrene polymers, propylene polymers, ethylene-vinyl acetate copolymers, and alkyl (6 or less carbon atoms) methacrylates as main components. (50% by weight or more) (e.g., polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate)
and polymers (for example, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate) having an alkyl (carbon number of 6 or less) acrylate as a main component (50% by weight or more). In the above description, the term "°-based polymer" means a homopolymer of the monomer and a copolymer containing the monomer as a main component (at least 50% by weight) and other monomers. The number average molecular weight of these binders (preferably higher than vapor). These binders are widely used in the field of producing sintered materials by mixing with ceramic materials.

(C1混合物の製造 本発明の混合物を製造するにあたり、前記焼結性物質1
00重量部に対するバインダーの混合割合は一般には3
.0〜40重量部であり、5.0〜40重量部が望まし
く、とりわけ5.0〜30重量部が好適である。焼結性
物質100重量部に対するバインダーの混合割合が3.
0重量部未満では、混合物の混線性、成形性および分散
性が悪いばかりでなく、均一な混合物を製造することが
困難であり、たとえ均一な混合物が得られたとしても、
良好なグリーン体を得ることができない。一方、40重
量部を超えると、グリーン体物性(強度、保形性)はよ
いが、脱バインダー後の密度が低く、さらに焼″ 結し
にくい。
(Production of C1 mixture In producing the mixture of the present invention, the sinterable substance 1
The mixing ratio of binder to 00 parts by weight is generally 3
.. The amount is 0 to 40 parts by weight, preferably 5.0 to 40 parts by weight, and particularly preferably 5.0 to 30 parts by weight. The mixing ratio of the binder to 100 parts by weight of the sinterable material is 3.
If the amount is less than 0 parts by weight, not only will the crosstalk, moldability and dispersibility of the mixture be poor, but it will also be difficult to produce a homogeneous mixture, and even if a homogeneous mixture is obtained,
It is not possible to obtain a good green body. On the other hand, if it exceeds 40 parts by weight, the physical properties of the green body (strength, shape retention) are good, but the density after removing the binder is low, and furthermore, it is difficult to sinter.

さらに、必要に応じて、脂肪酸アミド、脂肪酸またはそ
のエステル、脂肪族アルコール、フタル酸エステル、脂
肪族エーテル、パラフィンワックス、シラン系またはチ
タネート系カップリング剤などのハロゲンを含有しない
加工助剤を添加することができる。このさい、加工助剤
の添加量は焼結性物質ioo重量部に対して多くとも2
0重重筋であり、特に10重量部以下が好ましい。
Furthermore, if necessary, halogen-free processing aids such as fatty acid amides, fatty acids or their esters, fatty alcohols, phthalates, aliphatic ethers, paraffin waxes, silane-based or titanate-based coupling agents are added. be able to. At this time, the amount of processing aid added is at most 2 parts by weight of the sinterable material.
The amount is preferably 0 weight, particularly 10 parts by weight or less.

以上の焼結性物質とバインダーあるいはこれらと加工助
剤を均一に混合させることによって本発明の焼結性物質
含有混合物を製造することができる。混合方法としては
熱可塑性樹脂の分野において一般に使われているヘンシ
ェルミキサーのごとき混合機を用いてトライブレンドさ
せても製造することができるし、バー−ミキサ−、ニー
ダ−、ロールミルおよびスクリュ一式押出機のごとき、
混合機を使用して溶融混練させても得ることができる。
The sinterable substance-containing mixture of the present invention can be produced by uniformly mixing the above sinterable substance and the binder or these and the processing aid. As a mixing method, it can be produced by tri-blending using a mixer such as a Henschel mixer, which is commonly used in the field of thermoplastic resins, or by using a bar mixer, kneader, roll mill, and screw extruder. Like,
It can also be obtained by melt-kneading using a mixer.

このさい、あらかじめトライブレンドし、得られる混合
物を溶融混練させることによって均−状の混合物を得る
ことができる。この場合、−1i19には溶融混練させ
た後ペレット状物に成形し、後記の成形に供する。
At this time, a homogeneous mixture can be obtained by triblending in advance and melt-kneading the resulting mixture. In this case, -1i19 is melted and kneaded, then molded into pellets, and subjected to the molding described later.

(Dl成形体 本発明の脱脂法に用いる焼結性物質含有混合物の成形体
は射出成形機、押出成形機、プレス成形機などを使って
混合物中のバインダーが溶融する温度であるが、バイン
ダーが分解しない温度で成形させることによって得られ
る。成形温度は焼結性物質含有混合物中のバインダーの
種類によって限定することができないが、一般には70
〜300℃である。得られた各種の形状の焼結性物質含
有混合物の成形体は後記の脱脂に供せられる。
(Dl molded body The molded body of the sinterable substance-containing mixture used in the degreasing method of the present invention is made using an injection molding machine, extrusion molding machine, press molding machine, etc. at a temperature where the binder in the mixture melts. It is obtained by molding at a temperature that does not decompose.The molding temperature cannot be limited by the type of binder in the sinterable substance-containing mixture, but is generally 70°C.
~300°C. The obtained molded bodies of the sinterable substance-containing mixture in various shapes are subjected to degreasing described later.

このようにして得られる成形体の高さは10〜150m
mであり、15〜1.5[1mmが好ましく、20〜1
50mmが好適である。この成形体の高さが150mm
を超えるならば、後記の脱脂を行った場合、その段階に
おいて成形体の下部が変形する。また、内径は5〜10
0 mmであり、 5〜90mmが望ましく、とりわけ
5〜80mmが好適である。筒状成形体の内径が100
mmを超えた場合では、筒状成形体の内部に後記の無機
質粒状物を充填することなく脱脂を行うことができる。
The height of the molded body obtained in this way is 10 to 150 m.
m, 15 to 1.5 [1 mm is preferable, 20 to 1
50 mm is suitable. The height of this molded body is 150mm
If the degreasing is performed as described below, the lower part of the molded article will be deformed at that stage. Also, the inner diameter is 5 to 10
0 mm, preferably 5 to 90 mm, particularly preferably 5 to 80 mm. The inner diameter of the cylindrical molded body is 100
If it exceeds mm, degreasing can be carried out without filling the inside of the cylindrical molded body with the inorganic particulate matter described below.

さらに、肉厚は3〜20mmであり、3〜18mmが好
ましく、特に3〜15mmが好適である。筒状成形体の
肉厚が20mmを超えると、後記の脱脂を行うさいに成
形体にクラック、割れ、剥離などが発生することがある
。一方、高さ、内径、肉厚がそれぞれ下限未満では、後
記の脱脂を実施したとしても効果を発揮することができ
ない。
Furthermore, the wall thickness is 3 to 20 mm, preferably 3 to 18 mm, and particularly preferably 3 to 15 mm. If the wall thickness of the cylindrical molded body exceeds 20 mm, cracks, splits, peeling, etc. may occur in the molded body during degreasing described later. On the other hand, if the height, inner diameter, and wall thickness are each less than the lower limit, the effect cannot be exhibited even if the degreasing described later is carried out.

さらに、内径に対する高さの比は 1〜10であり、 
1〜9が望ましく、とりわけ2〜9が好適である。また
、内径に対する肉厚の比は0.1−1.0であり、0.
1〜0.9が好ましく、特に0.2〜0.9が好適であ
る。内径に対する高さの比および内径に対する肉厚の比
がいずれも下限未満の場合でも、また上限を超える場合
でも、得られる筒状成形体ならびにその脱脂物および焼
結体にクラック、割れ、剥離、変形などが発生すること
があって好ましくない。
Furthermore, the height to inner diameter ratio is between 1 and 10;
A value of 1 to 9 is desirable, and a value of 2 to 9 is particularly preferred. Also, the ratio of wall thickness to inner diameter is 0.1-1.0, and 0.
1 to 0.9 is preferable, and 0.2 to 0.9 is particularly preferable. Even if the ratio of the height to the inner diameter and the ratio of the wall thickness to the inner diameter are both less than the lower limit or exceed the upper limit, the resulting cylindrical molded product, its degreased product and sintered product will not have cracks, cracks, peeling, etc. This is not preferable because deformation may occur.

[E] 支持体 また、本発明の脱脂法に用いる成形体を設置する支持体
は、各種アルミナ、ジルコニアならびにシリカおよびマ
グネシア系化合物などのいずれかによって成形されてい
る板状焼結体であって、厚みは特に限定されない。
[E] Support Also, the support on which the molded body used in the degreasing method of the present invention is installed is a plate-shaped sintered body molded from any of various alumina, zirconia, silica, magnesia-based compounds, etc. , the thickness is not particularly limited.

fFl無機質粒状物 さらに、本発明において使用される無機質粒状物は後記
の脱脂のさいに化学変化しないものである。すなわち、
脱水や脱炭酸などをしないものである。また、後記の脱
脂の段階において溶融しないものである。さらに、成形
体中に存在する焼結性物質と化学反応しないものである
。脱脂のさいに化学変化したり、また化学反応するもの
であれば、支障があることはもちろんのことである。
fFl Inorganic Particulate Material Furthermore, the inorganic particulate material used in the present invention does not chemically change during degreasing described later. That is,
It does not undergo dehydration or decarboxylation. Furthermore, it does not melt during the degreasing step described later. Furthermore, it does not chemically react with the sinterable substance present in the molded body. Of course, if there is a chemical change or reaction during degreasing, there will be problems.

その平均粒径は0.5〜100μmであり、1〜100
μmが望ましく、とりわけ1〜80μmが好適である。
Its average particle size is 0.5 to 100 μm, and 1 to 100 μm.
The thickness is preferably 1 to 80 μm.

該無機質粒状物の平均粒径が0.5μm未満では、筒状
成形体を脱脂するために粒状物を充填すると、充填が不
均一になるために問題がある。一方、 100μmを超
えると、脱脂時に筒状成形体の内部にクラック、割れ、
剥離などが発生する。このような無機質粒状物としては
、アルミナ、シリカ、グラファイト、カーボン、ジルコ
ニア、マグネシアなどがあげられる。
If the average particle size of the inorganic granules is less than 0.5 μm, there is a problem in that when the cylindrical molded body is filled with the granules for degreasing, the filling becomes uneven. On the other hand, if it exceeds 100μm, cracks, cracks, etc. may occur inside the cylindrical molded body during degreasing.
Peeling may occur. Examples of such inorganic particulates include alumina, silica, graphite, carbon, zirconia, and magnesia.

(Gl脱脂工程 本発明の脱脂工程を実施するにあたり、筒状成形体の筒
状内部に前記無機質粒状物を充填する必要がある。この
さい、無機質粒状物を充填時に加圧しすぎると、該筒状
物の内面にクラックが発生するために好ましくない。こ
のように内部に無機質粒状物が充填された筒状成形体は
、1時間あたり10〜100℃の昇温速度で加熱するこ
とによって成形体中のバインダーを完全に分解・揮発さ
せる。ここに、脱脂の終了は成形体中のバインダーが完
全に除去させることであり、その目安として烈火びんに
よって得られる熱分解曲線〔“基礎化学選書、7「機器
分析」゛(裳華房、昭和51年9月20発行)第308
頁ないし第317頁参照]の分解終了温度とすればよい
(Gl degreasing process In carrying out the degreasing process of the present invention, it is necessary to fill the cylindrical interior of the cylindrical molded body with the inorganic granules. At this time, if too much pressure is applied when filling the inorganic granules, the cylinder This is undesirable because cracks will occur on the inner surface of the shaped product.A cylindrical molded product filled with inorganic particulates can be heated at a temperature increase rate of 10 to 100°C per hour. The binder inside is completely decomposed and volatilized.Here, the end of degreasing is when the binder in the molded body is completely removed. "Instrumental Analysis" (Shokabo, published September 20, 1975) No. 308
The decomposition end temperature may be set as [see pages 317 to 317].

この脱脂工程を実施するには、電気炉、ガス炉などの脱
脂炉を使って不活性ガス(たとえば、アルゴンガス、ヘ
リウムガス、窒素ガス)の雰囲気下で行なってもよく、
酸素や空気中で実施してもよいが、脱脂時に前記焼結性
物質と反応しないものでなければならない。
This degreasing step may be carried out in an atmosphere of inert gas (for example, argon gas, helium gas, nitrogen gas) using a degreasing furnace such as an electric furnace or a gas furnace.
The degreasing may be carried out in oxygen or air, but it must not react with the sinterable substance during degreasing.

このようにして脱脂された筒状成形体を直接に焼結させ
ることにより、成形体の表面や内面にフクレ、亀裂、変
形などの有害な変形を発生せず、しかも焼結ばかりでな
く、脱脂の時間を大幅に短縮させることができる。
By directly sintering the degreased cylindrical molded body in this way, harmful deformations such as blisters, cracks, and deformation do not occur on the surface or inner surface of the molded body, and in addition to sintering, degreasing is also possible. time can be significantly reduced.

[H)焼結工程 このようにして脱脂された成形体は一般に行なわれてい
る方法に従って焼結される。アルミナなどの酸化物系は
空気中で500〜] 700 ℃の温度範囲でそハぞれ
の焼結性物質の種類によって決められた温度で焼結され
る。また、窒化珪素、炭化珪素などの非酸化物は窒素、
アルゴンなどの雰囲気中で1500〜2500℃の温度
範囲で、やはり焼結性物質の種類によって定められた温
度で焼結される。
[H) Sintering Step The molded body thus degreased is sintered according to a commonly used method. Oxide systems such as alumina are sintered in air at temperatures ranging from 500 to 700°C, each determined by the type of sinterable material. In addition, non-oxides such as silicon nitride and silicon carbide are nitrogen,
Sintering is performed in an atmosphere such as argon at a temperature in the range of 1500 to 2500°C, again determined by the type of sinterable material.

この焼結を実施するにあたり、前記のようにして脱脂さ
れた無機質粒状物が充填されている筒状成形体より該無
機質粒状物を完全に除去する必要があることは当然のこ
とである。
In carrying out this sintering, it is a matter of course that it is necessary to completely remove the inorganic particulates from the cylindrical molded body filled with the inorganic particulates degreased as described above.

[実施例および比較例] 以下、実施例によって本発明をさらにくわしく説明する
[Examples and Comparative Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜6、比較例1〜5 平均粒径が2.0μmであるアルミナおよび平均粒径が
0゜6μmである炭化ケイ素を焼結性物質として使った
Examples 1 to 6, Comparative Examples 1 to 5 Alumina having an average particle size of 2.0 μm and silicon carbide having an average particle size of 0°6 μm were used as sinterable materials.

第1表に示されているこれらの焼結性物質をそれぞれ9
0重量部、数平均分子量が約35万であるポリアクリル
酸メチル10重量部、2.0重量部のジブチルフタレー
トおよび1.0重量部のステアリン酸をあらかじめヘン
シェルミキサーを用いて5分間トライブレンドを行なっ
た。得られた各混合物を二軸押出機(径30mm)を使
用して120℃の温度において混練させながら組成物(
ベレット)を製造した。得られた各ペレットを射出成形
機(型締圧100トン)を使って150℃において成形
し、高さ、内径および肉厚が第1表に示されている筒状
の板状成形体を製造した。
9 of each of these sinterable substances shown in Table 1.
0 parts by weight, 10 parts by weight of polymethyl acrylate having a number average molecular weight of about 350,000, 2.0 parts by weight of dibutyl phthalate, and 1.0 parts by weight of stearic acid were pre-triblended for 5 minutes using a Henschel mixer. I did it. The composition (
Beret) was manufactured. Each of the obtained pellets was molded at 150°C using an injection molding machine (mold clamping pressure of 100 tons) to produce a cylindrical plate-shaped molded product whose height, inner diameter, and wall thickness are shown in Table 1. did.

得られた各成形体を第1表に示された支持板上に設置し
、成形体の内径部に第1表に種類および平均粒径が示さ
れている無機質粒状物を充填し、空気中において15°
C/時間の昇温速度で600℃まで昇温させ、バインダ
ーが除去されていることを確認した。このようにして得
られた脱脂された成形体の外観は全実施例では、すべて
なんら異常を認めることができなかった。しかし比較例
5では、外面にフクレが発生した。また、比較例1、2
および5では、円陣面!こクラックが発生した。
Each of the obtained molded bodies was placed on the support plate shown in Table 1, the inner diameter of the molded body was filled with inorganic granules whose type and average particle size were shown in Table 1, and 15° at
The temperature was raised to 600° C. at a heating rate of C/hour, and it was confirmed that the binder had been removed. In all of the Examples, no abnormalities were observed in the appearance of the degreased molded articles thus obtained. However, in Comparative Example 5, blisters occurred on the outer surface. Also, Comparative Examples 1 and 2
And in 5, the circle side! A crack occurred.

さらに、比較例3では、筒状成形体の下部が変形した。Furthermore, in Comparative Example 3, the lower part of the cylindrical molded body was deformed.

このようにして脱脂された各成形体を焼却炉に入れ、窒
素雰囲気下で1600℃まで(ただし、実施例6および
比較例5では、アルゴン雰囲気下で2100℃まで)昇
温速度が10℃/時間で昇温させ、焼結を行なった。全
実施例で得られた焼結体は、すべてなんら異常を認める
ことができなかった。
Each of the molded bodies degreased in this way was placed in an incinerator, and the temperature was raised to 1600°C under a nitrogen atmosphere (however, in Example 6 and Comparative Example 5, it was up to 2100°C under an argon atmosphere) at a temperature increase rate of 10°C/ The temperature was raised over time to perform sintering. No abnormality was observed in any of the sintered bodies obtained in all Examples.

しかし、その他の比較例で得られた焼結体は、すべてク
ラックが内面に発生するとともに、比較例4では、内面
にフクレが発生した。
However, all of the sintered bodies obtained in the other comparative examples had cracks on their inner surfaces, and in Comparative Example 4, blisters occurred on their inner surfaces.

(以下余白) 〔発明の効果1 本発明方法によれば、下記のごとき効果(特徴)を発揮
する。
(The following is a blank space) [Effects of the Invention 1 According to the method of the present invention, the following effects (characteristics) are exhibited.

fil脱脂が均一に実施されるために焼結された筒状体
の内面にクラック、割れなどが発生しない。
Since the fil degreasing is performed uniformly, cracks, cracks, etc. do not occur on the inner surface of the sintered cylindrical body.

(2)脱脂時間が短縮したとしても、良好な成形体を得
ることができる。
(2) Even if the degreasing time is shortened, a good molded product can be obtained.

本発明方法によれば、以上のごとき効果を発揮するため
に得られる筒状成形体は各種ビンなどの機械の部品、電
子機器の部品、家庭電器の部品、自動車の部品などの分
野に利用される。
According to the method of the present invention, the cylindrical molded product obtained to exhibit the above-mentioned effects can be used in fields such as machine parts such as various bottles, electronic equipment parts, home appliance parts, and automobile parts. Ru.

Claims (1)

【特許請求の範囲】[Claims]  高さが10〜150mmであり、内径が5〜10mm
であり、かつ肉厚が3〜20mmであるが、内径に対す
る高さの比が1〜10であり、しかも内径に対する肉厚
の比が0.1〜1.0である筒状成形体であり、かつ成
形体がバインダーを3.0〜40重量%含有する焼結性
物質であり、該筒状成形体を支持体上で脱脂するさい、
筒状内部に平均粒径が0.5〜100μmであり、かつ
脱脂の段階において化学変化せず、また脱脂の段階にお
いて溶融せず、しかも成形体中に存在する焼結性物質と
反応しない無機質粒状物を充填することを特徴とする脱
脂方法。
The height is 10-150mm and the inner diameter is 5-10mm.
and has a wall thickness of 3 to 20 mm, a height to inner diameter ratio of 1 to 10, and a cylindrical molded body having a wall thickness to inner diameter ratio of 0.1 to 1.0. , and the molded body is a sinterable material containing 3.0 to 40% by weight of a binder, and when the cylindrical molded body is degreased on a support,
An inorganic material with an average particle size of 0.5 to 100 μm inside the cylindrical shape, which does not chemically change during the degreasing stage, does not melt during the degreasing stage, and does not react with the sinterable substance present in the molded body. A degreasing method characterized by filling with granules.
JP1134276A 1989-05-26 1989-05-26 Degreasing Pending JPH02311374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134276A JPH02311374A (en) 1989-05-26 1989-05-26 Degreasing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134276A JPH02311374A (en) 1989-05-26 1989-05-26 Degreasing

Publications (1)

Publication Number Publication Date
JPH02311374A true JPH02311374A (en) 1990-12-26

Family

ID=15124497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134276A Pending JPH02311374A (en) 1989-05-26 1989-05-26 Degreasing

Country Status (1)

Country Link
JP (1) JPH02311374A (en)

Similar Documents

Publication Publication Date Title
JP3142828B2 (en) Binder system for powder injection molding
EP0427375B1 (en) Sintering metal powder and a process for making a sintered metal product
JP2012512962A (en) Method for manufacturing cemented carbide products
JPH02311374A (en) Degreasing
JPH02204355A (en) Production of sinterable mixture
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPS63166768A (en) Method of sintering formed body of sinterable substance-containing mixture
JPS6335459A (en) Method of dewaxing formed body of sinterable substance-containing mixture
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
EP0419846B1 (en) Moldable ceramic composition and process for fine diameter ceramic fibers
JPH02107703A (en) Composition for injection molding
JPH02290642A (en) Manufacture of ceramic core
JPH0483752A (en) Mixture of sinterable substance
JPH0641601B2 (en) Molding composition
JPS63392B2 (en)
JP2949130B2 (en) Method for producing porous metal filter
JPH0820803A (en) Production of sintered compact
JPH02294404A (en) Production of industrial parts
JPH0647682B2 (en) Manufacturing method of sintered metal
JPS6255107A (en) Method of injecting and molding sintering substance contained mixture
JPH01275479A (en) Production of porous sintered body
JPS5926653B2 (en) How to form cemented carbide
JPH03257101A (en) Method for degreasing powder green compact
JPH01215907A (en) Manufacture of metal sintered compact