JPH02310441A - Crosstalk measuring machine - Google Patents

Crosstalk measuring machine

Info

Publication number
JPH02310441A
JPH02310441A JP13161289A JP13161289A JPH02310441A JP H02310441 A JPH02310441 A JP H02310441A JP 13161289 A JP13161289 A JP 13161289A JP 13161289 A JP13161289 A JP 13161289A JP H02310441 A JPH02310441 A JP H02310441A
Authority
JP
Japan
Prior art keywords
face
fiber
crosstalk
polarization
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13161289A
Other languages
Japanese (ja)
Other versions
JP2722666B2 (en
Inventor
Hideyori Sasaoka
英資 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1131612A priority Critical patent/JP2722666B2/en
Publication of JPH02310441A publication Critical patent/JPH02310441A/en
Application granted granted Critical
Publication of JP2722666B2 publication Critical patent/JP2722666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To improve the efficiency and reliability of measurement by providing means for observing the end face of a held polarization maintaining optical fiber as it is. CONSTITUTION:This apparatus has an objective lens 16A for an incident face and a camera head 30 for the incident end face on the incident side and an objective lens 17A for an exit end face and a camera head 30' for the exit end face on the exit side and has a camera controller 40 and monitor television 50 for monitoring the signals obtd. by the camera heads 30, 30'. The images at both end faces of the PM fiber 20 to be measured obtd. by the camera heads 30, 30' are displayed via the camera controller 40 on the monitor television 50, by which the main axis direction can be checked. The main axis direction of the incident polarization is easily aligned to the main axis direction of the polarization maintaining optical fiber. The taking out of the specific polarization from the exit light is thus facilitated and the improvement in the workability and reliability is attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、偏波保持光ファイバの偏波保持特性を示すク
ロストークを測定するクロストーク測定機に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a crosstalk measuring device for measuring crosstalk indicating polarization maintaining characteristics of a polarization maintaining optical fiber.

〈従来の技術〉 最近脚光をあびている光の干渉を利用した光フアイバセ
ンサ及びコヒーレント通信用光ファイバとして、偏波面
を常に一定の方向とする偏波保持光ファイバ(す下、P
Mファイバと称する)がある。かかるPMファイバの一
例としてPANDA型PMファイバの断面構造を第6図
に示す。同図に示すように、乙のPMファイバはコア1
0a及びクラッド10bからなると共にクラッド10b
中にはコア10aを挾むように設けられた応力付与部1
0cを有するものであり、X軸及びY軸という2本の直
交する偏波の主軸を有している。
<Prior art> Polarization-maintaining optical fiber (Sushita, P
(referred to as M fiber). FIG. 6 shows a cross-sectional structure of a PANDA type PM fiber as an example of such a PM fiber. As shown in the figure, the PM fiber of B is core 1
0a and cladding 10b, and cladding 10b.
There is a stress applying part 1 provided so as to sandwich the core 10a therein.
0c, and has two orthogonal principal axes of polarization, the X-axis and the Y-axis.

このようなPMファイバは直交する2本の主軸に対応し
たX偏波及びY偏波という2つの偏波モードが伝搬可能
であるが、直交する2つの偏波間の伝搬定数差を大きく
して偏波間の光パワーの結合量を小さくするものであり
、ファイバの特性上2つの直交する偏波間におけるクロ
ストークが問題となる。したがって、クロストークの測
定は偏波保持光ファイバの品質を決めるに当り必要不可
欠となる。
Such a PM fiber can propagate two polarization modes, X polarization and Y polarization, corresponding to the two orthogonal principal axes. This method reduces the amount of optical power coupling between waves, and due to the characteristics of the fiber, crosstalk between two orthogonal polarized waves becomes a problem. Therefore, crosstalk measurement is essential in determining the quality of polarization-maintaining optical fibers.

第7図には従来のクロストーク測定機の構成例を示す。FIG. 7 shows an example of the configuration of a conventional crosstalk measuring device.

同図に示すように、被測定PMファイバ10はその両端
を微動ステージ11に固定した状態で載置されており、
この被測定PMファイバ10の入射側には光源12、励
振用ファイバ13、コリメーションレンズ14、偏光子
15及び集光レンズ16がそれぞれ配置されている。こ
こで、光源12から出た光は励振用ファイバ13で導波
され、コリメーションレンズ14で平行光とされると共
に偏光子15により直線偏光とされた後、集光レンズ1
6を介して被測定PMファイバ10に入射される。また
、出射側には、コリメーションレンズ17、検光子18
、集光レンズ19、受光用ファイバ20及び光パワーメ
ータ21がそれぞれ配置されており、被測定PMファイ
バ10からの出射光はコリメーションレンズ17で平行
光とされると共に検光子18により特定の偏波成分のみ
が取り出された後、集光レンズ19を介して受光用ファ
イバ20に入射されて光パワーメータ21に導かれ、そ
の光パワーが測定されろ。なお、励振用光ファイバ13
及び受光用ファイバ20の端部もそれぞれ微動ステージ
11に固定されている。
As shown in the figure, the PM fiber to be measured 10 is placed with both ends thereof fixed on the fine movement stage 11.
A light source 12, an excitation fiber 13, a collimation lens 14, a polarizer 15, and a condenser lens 16 are arranged on the incident side of the PM fiber 10 to be measured. Here, the light emitted from the light source 12 is guided by an excitation fiber 13, turned into parallel light by a collimation lens 14, and linearly polarized by a polarizer 15, and then
6 and enters the PM fiber 10 to be measured. Also, on the output side, a collimation lens 17 and an analyzer 18 are provided.
, a condensing lens 19, a light-receiving fiber 20, and an optical power meter 21 are arranged, and the light emitted from the PM fiber 10 to be measured is made into parallel light by a collimation lens 17, and a specific polarization is determined by an analyzer 18. After only the component is extracted, it is inputted into a light receiving fiber 20 through a condensing lens 19, guided to an optical power meter 21, and its optical power is measured. In addition, the excitation optical fiber 13
The ends of the light-receiving fiber 20 are also fixed to the fine movement stage 11, respectively.

ここで、偏光子15は被測定PMファイバ10にX偏波
のみ又はY偏波のみの光を入射させるために用いられて
おり、したがって、偏光子15の偏波の主軸方向は、被
測定PMファイバ10のX軸あるいはY軸の何れか一方
の軸方向と一致していなければならない。
Here, the polarizer 15 is used to input only X-polarized light or only Y-polarized light into the PM fiber 10 to be measured. Therefore, the main axis direction of the polarized light of the polarizer 15 is It must coincide with the axial direction of either the X-axis or the Y-axis of the fiber 10.

一方、検光子18は入射光と同一の偏波あるいは入射光
と直交する偏波の何れか一方のみを取り出すために用い
られており、その主軸方向はやはり被測定PMファイバ
10の何れかの主軸方向と一致していなければならない
On the other hand, the analyzer 18 is used to extract either the same polarized wave as the incident light or the polarized wave orthogonal to the incident light, and its main axis direction is also the same as the main axis of the PM fiber 10 to be measured. Must match the direction.

そして、被測定PMファイバ10にX偏波の光のみを入
射させた場合、出射光のX偏波成分の光パワーをPx、
Y偏波成分の光パワーをPYとすると、被測定PMファ
イバ10のクロストークCTは、 CT =10 l o g (PY / Px )  
[: d B )で与えられる。
When only X-polarized light is input into the PM fiber 10 to be measured, the optical power of the X-polarized component of the output light is Px,
When the optical power of the Y polarization component is PY, the crosstalk CT of the PM fiber 10 under test is CT = 10 log (PY / Px)
[: d B ).

〈発明が解決しようとする課題〉 しかしながら、前述した従来のクロストーク測定機には
次のような問題がある。
<Problems to be Solved by the Invention> However, the conventional crosstalk measuring device described above has the following problems.

■ 前述したように偏光子15、検光子18の主軸方向
を被測定PMファイバ10の偏波主軸方向の何れか一方
と一致させるためには、偏光子15あるいは検光子18
を回転させながらパワーメータ21により光パワーの変
化を観測することにより、偏光子15及び検光子18の
回転位置を調整しなければならないので、かなりの時間
を要する。
■ As mentioned above, in order to match the principal axes of the polarizer 15 and the analyzer 18 with either the principal axis of polarization of the PM fiber 10 to be measured, the polarizer 15 or the analyzer 18 must be
The rotational positions of the polarizer 15 and analyzer 18 must be adjusted by observing changes in optical power using the power meter 21 while rotating the polarizer 15 and analyzer 18, which takes a considerable amount of time.

■ また、このようにして偏光子15の位置を調整した
としても、被測定PMファイバ10にX偏波の光が入射
しているのか、Y偏波の光が入射しているのかを判別す
るのは容易にはできない。
■Also, even if the position of the polarizer 15 is adjusted in this way, it is difficult to determine whether X-polarized light or Y-polarized light is incident on the PM fiber 10 to be measured. is not easy to do.

■ 被測定PMファイバ10の端面状態の良否はクロス
トーク測定結果に大きな影響を与えるが、良否の判定を
するためには被測定PMファイバ10を測定機から外し
てその端面を観察しなければならず、手間がかかる。
■ The quality of the end face of the PM fiber 10 under test has a great influence on the crosstalk measurement results, but in order to judge whether it is good or bad, the PM fiber 10 under test must be removed from the measuring machine and the end face observed. It's time consuming.

本発明はこのような事情に鑑み、クロストーク測定の効
率及び信頼性を向上させるり四ストーク測定機を提供す
ることを目的とする。
In view of the above circumstances, an object of the present invention is to improve the efficiency and reliability of crosstalk measurement and to provide a four-stoke measuring device.

く課題を解決するための手段〉 前記目的を達成する本発明のクロストーク測定機は、保
持された偏波保持光ファイバの一端から偏波を入射する
と共に他端から出射する偏波の光強度を測定することに
よりクロストークを測定するクロストーク測定機におい
て、保持された偏波保持光ファイバの端面をそのままの
状態で観察する端面観察手段を具えたことを特徴とする
Means for Solving the Problems> A crosstalk measuring device of the present invention that achieves the above object is capable of inputting polarized waves from one end of a held polarization-maintaining optical fiber and measuring the optical intensity of the polarized waves emitted from the other end. A crosstalk measuring device for measuring crosstalk by measuring crosstalk is characterized in that it includes an end face observation means for observing the end face of a held polarization maintaining optical fiber as it is.

く作   用〉 前記構成のクロストーク測定機では、保持された偏波保
持光ファイバの入射端、出射端を端面観察手段で観察す
ることによりその主軸方向を判別した後クロストークを
測定できるので、入射する偏波の主軸方向を偏波保持光
ファイバの主軸方向に一致させるのが容易となり、又、
出射光から特定の偏波を取り出すのが容易となり、作業
性、信頼性の向上が図れる。
In the crosstalk measuring device having the above configuration, the crosstalk can be measured after determining the principal axis direction by observing the input end and the output end of the held polarization-maintaining optical fiber with the end face observation means. It becomes easy to match the principal axis direction of the incident polarized wave with the principal axis direction of the polarization-maintaining optical fiber, and
It becomes easy to extract a specific polarized wave from the emitted light, improving workability and reliability.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

第1図には一実施例に係るクロストーク測定機の構成を
示すが、第7図に示す従来の測定機と同一部材には同一
符号を付して重複した説明は省略する。
Although FIG. 1 shows the configuration of a crosstalk measuring device according to an embodiment, the same members as those in the conventional measuring device shown in FIG. 7 are given the same reference numerals and redundant explanations will be omitted.

同図に示すように、本実施例のクロストーク測定機の基
本的構成は第7図に示すクロストーク測定機と同一であ
るが、本実施例の測定機は端面測定手段として、入射側
に入射端面用対物レンズ16A及び入射端面用カメラヘ
ッド30、出射側に出射端面用対物レンズ17A及び出
射端面用カメラヘッド30′を具えると共に、これらカ
メラヘッド30.30’によって得られた信号をモニタ
ーするカメラコントローラ40及びモニターテレビ50
を具えている。なお、入射端面用対物レンズ16Aは集
光レンズを兼ねるものであり、又、出射端面用対物レン
ズ17Aはコリメーションレンズを兼ねろものである。
As shown in the figure, the basic configuration of the crosstalk measuring device of this embodiment is the same as the crosstalk measuring device shown in FIG. The objective lens 16A for the entrance end surface and the camera head 30 for the entrance end surface are provided on the exit side, and the objective lens 17A for the exit end surface and the camera head 30' for the exit end surface are provided, and the signals obtained by these camera heads 30 and 30' are monitored. camera controller 40 and monitor television 50
It is equipped with Note that the incident end surface objective lens 16A also serves as a condenser lens, and the exit end surface objective lens 17A also serves as a collimation lens.

かかる構成のクロストーク測定機では、カメラヘッド3
0.30’により得られた被測定PMファイバ10の両
端面の画像はカメラコントローラ40を介してモニター
テレビ50に表示され、これによりその主軸方向を確認
することができる。
In the crosstalk measuring device having such a configuration, the camera head 3
Images of both end faces of the PM fiber 10 to be measured obtained at 0.30' are displayed on the monitor television 50 via the camera controller 40, so that the direction of its principal axis can be confirmed.

また、カメラヘッド30.30’はそれぞれ光路と交差
する方向に移動可能に設けられており、クロストーク測
定の際にはカメラヘッド30,30’を光路の外へ移動
させれば、第7図に示す測定機と同様にクロストークが
測定可能である。なお、この際、上述したように両端面
の主軸方向が確認されているので、測定が容易且つ正確
となる。
Furthermore, the camera heads 30 and 30' are each movable in a direction intersecting the optical path, and when measuring crosstalk, if the camera heads 30 and 30' are moved out of the optical path, the Crosstalk can be measured in the same way as the measuring device shown in . Note that at this time, since the principal axis directions of both end surfaces are confirmed as described above, the measurement becomes easy and accurate.

次に入射端面用カメラヘッド30の一例を第2図を参照
しながら説明する。図中、31゜32はミラー、33は
ハーフミラ−134は撮像装置、35は照明用光源、3
6はコリメーションレンズであり、被測定PMファイバ
10の1iloaはコリメーションレンズ36.7、−
フミラー33、ミラー31及び対物レンズ16Aを介し
て照明用光源35からの光により照射される。そして、
対物レンズ16Aにより形成された端面10aの像はミ
ラー31゜32を介して撮像装置34に送られ、ここで
電気信号に変換され、その信号はカメラコントローラ4
0に送られる。
Next, an example of the entrance end face camera head 30 will be described with reference to FIG. 2. In the figure, 31° 32 is a mirror, 33 is a half mirror, 134 is an imaging device, 35 is an illumination light source, 3
6 is a collimation lens, and 1iloa of the PM fiber 10 to be measured is a collimation lens 36.7, -
It is irradiated with light from the illumination light source 35 via the mirror 33, the mirror 31, and the objective lens 16A. and,
The image of the end surface 10a formed by the objective lens 16A is sent to the imaging device 34 via mirrors 31 and 32, where it is converted into an electrical signal, and the signal is sent to the camera controller 4.
Sent to 0.

なお、出射用カメラヘッド30′も同様の構成のもので
よいが、勿論これらのカメラヘッドはこれに限定される
ものでないことは言うまでもない。
Note that the emitting camera head 30' may have a similar configuration, but it goes without saying that these camera heads are not limited to this.

第3図には他の実施例に係るクロストーク測定機の構成
を示す、このクロストーク測定機は基本的には第1図に
示す測定機と同様であり、同様の作用を示す部材には同
一符号を付して重複した説明は省略する。
FIG. 3 shows the configuration of a crosstalk measuring device according to another embodiment. This crosstalk measuring device is basically the same as the measuring device shown in FIG. The same reference numerals are given and duplicate explanations are omitted.

同図に示すように、本実施例のクロストーク測定機では
被測定PMファイバ10の両端面を同じ方向に向けて保
持し、入射側の光学系と出射側の光学系とを基板60上
に並設したものであり、カメラヘッド30,30’はそ
れぞれ基板60上に設けた図示しないレールを介して光
路に直交する方向に移動自在となっている。この測定機
は第1図に示す測定機と同様に動作し、端面の観察及び
クロストーク測定を行うことができる。
As shown in the figure, in the crosstalk measuring device of this embodiment, both end faces of the PM fiber 10 to be measured are held facing the same direction, and the optical system on the input side and the optical system on the output side are mounted on the substrate 60. The camera heads 30 and 30' are arranged in parallel, and the camera heads 30 and 30' are movable in a direction perpendicular to the optical path via rails (not shown) provided on the substrate 60, respectively. This measuring device operates in the same manner as the measuring device shown in FIG. 1, and can observe end faces and measure crosstalk.

かかるクロストーク測定機を用いて被測定PMファイバ
10の端面を観察した状態を第4図に示す。同図に示す
ように、コア10a1クラツド10b及び応力付与部1
0cが実用上十分な明確さで観察された。これにより、
被測定PMファイバの端面の主軸方向を判別することが
できろと共に、端面状態の良否を知ることができ、端面
不良に伴うクロストーク測定誤差を未然に防ぐことがで
きる。
FIG. 4 shows the state in which the end face of the PM fiber 10 to be measured is observed using such a crosstalk measuring device. As shown in the figure, the core 10a1, the cladding 10b, and the stress applying part 1
0c was observed with sufficient clarity for practical use. This results in
It is possible to determine the principal axis direction of the end face of the PM fiber to be measured, and also to know whether the end face condition is good or bad, and crosstalk measurement errors due to end face defects can be prevented.

実際にクロストークを測定するには、まず、上述した方
向により入射端面を観察することによりその主軸角度(
第4図中θで示す)を測定する。そして、第5図に示す
ような、偏光子15のX偏波及びYm波とθとの関係か
ら偏光子15の角度を合せた後、偏光子15の角度を微
調整を行えば、測定が非常に効率よく行うことができる
。また、このとき、X偏波を入射しているのか、Y偏波
を入射しているのかが明らかとなる。なお、出射側端面
においても同様に調整することが可能である。
To actually measure crosstalk, first observe the incident end face in the direction mentioned above, and then observe its principal axis angle (
(indicated by θ in FIG. 4) is measured. Then, after adjusting the angle of the polarizer 15 based on the relationship between the X polarized wave and Ym wave of the polarizer 15 and θ as shown in FIG. 5, the measurement can be performed by finely adjusting the angle of the polarizer 15. It can be done very efficiently. Also, at this time, it becomes clear whether the X-polarized wave or the Y-polarized wave is input. Note that the same adjustment can be made on the output side end face as well.

従来、このような主軸合せは光パワーメータ21により
光パワーをモニターしながら偏光子15及び検光子18
をそれぞれ回転させて行っており、その作業に約2分間
かかっていたが、本実施例において上述したように主軸
合せをした場合、約40秒と従来の約1/3の時間で作
業が終了した。
Conventionally, such principal axis alignment was carried out by monitoring the optical power with an optical power meter 21 while adjusting the polarizer 15 and analyzer 18.
The work was done by rotating each one, and it took about 2 minutes, but in this example, when the main axis was aligned as described above, the work was completed in about 40 seconds, about 1/3 of the time taken by conventional methods. did.

なお、以上説明した実施例では、被測定PMファイバの
端面の観察を行う端面観察手段に撮像装置を具えたカメ
ラヘッドを採用しているが、これに限定されるものでは
なく、例えば通常の光学顕微鏡と同様な構成として目視
により直接観察するようにする乙とも可能である。
In the embodiments described above, a camera head equipped with an imaging device is used as the end face observation means for observing the end face of the PM fiber to be measured, but the camera head is not limited to this. It is also possible to use a structure similar to a microscope for direct visual observation.

〈発明の効果〉 思上説明したように、本発明にかかるクロストーク測定
機では被測定PMファイバの端面をそのままの状態で容
易に観察できろ端面観察手段を有しているため、クロス
トークの測定効率及び信頼性の向上を図ることができる
<Effects of the Invention> As explained above, the crosstalk measuring device according to the present invention has an end face observation means that allows the end face of the PM fiber to be measured to be easily observed as it is, thereby reducing crosstalk. Measurement efficiency and reliability can be improved.

4図面の簡単な説明 第1図は本発明の一実施例に係るクロストーク測定機の
構成図、第2図はそのカメラヘッドの構成の一例を示す
構成図、第3図は他の実施例に係るクロストーク測定機
の構成図、第4図はファイバ端面の観察状態を示す説明
図、第5図はファイバの主軸角度とx偏波/Y偏波入射
時の偏光子角度との関係を示す説明図、第6図はPMフ
ァイバの一例を示す説明図、第7図は従来技術に係るク
ロストーク測定機の構成図である。
4 Brief Description of the Drawings Figure 1 is a configuration diagram of a crosstalk measuring device according to an embodiment of the present invention, Figure 2 is a configuration diagram showing an example of the configuration of its camera head, and Figure 3 is another embodiment. Fig. 4 is an explanatory diagram showing the observation state of the fiber end face, and Fig. 5 shows the relationship between the main axis angle of the fiber and the polarizer angle when x-polarized light/y-polarized light is incident. FIG. 6 is an explanatory diagram showing an example of a PM fiber, and FIG. 7 is a configuration diagram of a crosstalk measuring device according to the prior art.

図面中、 10は被測定PMファイバ、 11は微動ステージ、 12は光源、 13ば励振用ファイバ、 14はコリメーションレンズ、 15は偏光子、 16Aは入射端面用対物レンズ兼集光レンズ、17Aは
出射端面用対物レンズ兼コリメーシアンレンズ、 18は検光子、 19は集光レンズ、 20は受光用ファイバ、 21は光パワーメータ、 30は入射端面用カメラヘッド、 30′は出射端面用カメラヘッド、 31.32はミラー、 33ばハーフミラ−1 34は撮像素子、 35は照明用光源、 36はコリメーションレンズ、 40はカメラコントローラ、 50はモニターテレビである。
In the drawing, 10 is a PM fiber to be measured, 11 is a fine movement stage, 12 is a light source, 13 is an excitation fiber, 14 is a collimation lens, 15 is a polarizer, 16A is an objective lens and condenser lens for the input end face, and 17A is an output lens. 18 is an analyzer, 19 is a condensing lens, 20 is a receiving fiber, 21 is an optical power meter, 30 is a camera head for the input end, 30' is a camera head for the output end, 31 and 32 are mirrors, 33 is a half mirror 1, 34 is an image pickup device, 35 is an illumination light source, 36 is a collimation lens, 40 is a camera controller, and 50 is a monitor television.

Claims (3)

【特許請求の範囲】[Claims] (1)保持された偏波保持光ファイバの一端から偏波を
入射すると共に他端から出射する偏波の光強度を測定す
ることによりクロストークを測定するクロストーク測定
機において、保持された偏波保持光ファイバの端面をそ
のままの状態で観察する端面観察手段を具えたことを特
徴とするクロストーク測定機。
(1) A crosstalk measurement device that measures crosstalk by inputting polarized waves from one end of a maintained polarization-maintaining optical fiber and measuring the optical intensity of the polarized waves emitted from the other end. A crosstalk measuring device characterized by comprising an end face observation means for observing the end face of a wave-maintaining optical fiber as it is.
(2)請求項1記載の測定機において、端面観察手段の
うち、偏波保持光ファイバの端面への入射又は出射の光
路に位置する部材のうち少なくとも1部は可動式であり
、端面観察時のみ光路内に挿入されることを特徴とする
クロストーク測定機。
(2) In the measuring instrument according to claim 1, in the end face observation means, at least one part of the members located in the optical path of incidence on or out of the end face of the polarization maintaining optical fiber is movable, and when observing the end face, at least one part is movable. A crosstalk measurement device characterized by being inserted into the optical path.
(3)請求項1又は2記載の測定機において、光の入射
又は出射のために偏波保持光ファイバの端面と相対向す
るレンズを、端面観察手段の端面観察のための対物レン
ズとして用いることを特徴とするクロストーク測定機。
(3) In the measuring instrument according to claim 1 or 2, a lens that faces the end face of the polarization-maintaining optical fiber for inputting or emitting light is used as an objective lens for end face observation of the end face observation means. A crosstalk measurement device featuring:
JP1131612A 1989-05-26 1989-05-26 Crosstalk measuring machine Expired - Fee Related JP2722666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131612A JP2722666B2 (en) 1989-05-26 1989-05-26 Crosstalk measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131612A JP2722666B2 (en) 1989-05-26 1989-05-26 Crosstalk measuring machine

Publications (2)

Publication Number Publication Date
JPH02310441A true JPH02310441A (en) 1990-12-26
JP2722666B2 JP2722666B2 (en) 1998-03-04

Family

ID=15062138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131612A Expired - Fee Related JP2722666B2 (en) 1989-05-26 1989-05-26 Crosstalk measuring machine

Country Status (1)

Country Link
JP (1) JP2722666B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113130A (en) * 1984-06-29 1986-01-21 Mitsubishi Rayon Co Ltd Inspector for optical fiber assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113130A (en) * 1984-06-29 1986-01-21 Mitsubishi Rayon Co Ltd Inspector for optical fiber assembly

Also Published As

Publication number Publication date
JP2722666B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
KR100326302B1 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
JPH0333641A (en) Reflection coefficient measuring instrument of scattered light
US5587793A (en) Birefringence distribution measuring method
CN102183360A (en) Method and device for detecting polarization extinction ratio of optical polarizer
US5475233A (en) Method and apparatus for determining the fiber orientation of paper by measuring the intensity of a light beam at eight or more locations distributed on the circumference of a circle
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
JPS60143420A (en) Inspecting method of magnetic head
JP3209390B2 (en) Transmission interferometer
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JPH02310441A (en) Crosstalk measuring machine
JPH0429344A (en) Tester for semiconductor integrated circuit and method of controlling probe position of this tester
JPH02196204A (en) Method for aligning axis of constant polarization optical fiber
US6710882B2 (en) Anisotropy analyzing method and an anisotropy analyzing apparatus
Kihara A measurement method of scattered light photoelasticity using unpolarized light
JPH0369059B2 (en)
JP2001004486A (en) Inspection method for optical fiber base material and continuous inspection device
CN116224627B (en) Alignment system and method of polarization modulation equipment
KR980010522A (en) An alignment film inspection apparatus and an alignment film inspection method using the apparatus
JPH05296842A (en) Confocal polarization scanning microscope
US6081335A (en) Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
JPH01112130A (en) Method for evaluating infrared optical fiber
US20050024627A1 (en) Birefringence profiler
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JP3051327B2 (en) Measurement method of polarization-maintaining plane of polarization-maintaining optical fiber on optical connector
Craig et al. Accurate polarization dependent loss measurement and calibration standard development

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees