JPH02309592A - El element and its manufacture - Google Patents

El element and its manufacture

Info

Publication number
JPH02309592A
JPH02309592A JP1130370A JP13037089A JPH02309592A JP H02309592 A JPH02309592 A JP H02309592A JP 1130370 A JP1130370 A JP 1130370A JP 13037089 A JP13037089 A JP 13037089A JP H02309592 A JPH02309592 A JP H02309592A
Authority
JP
Japan
Prior art keywords
transparent electrode
organic
transparent
compound
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1130370A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
雄二 山本
Yoji Nagayama
長山 洋治
Kazutoshi Nakaya
中屋 和敏
Hideaki Hanai
花井 秀晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1130370A priority Critical patent/JPH02309592A/en
Publication of JPH02309592A publication Critical patent/JPH02309592A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To improve the quality of a luminous display by limiting the mean particle diameter of crystal particles to form a transparent electrode or moreover to form an electroluminescence luminous layer. CONSTITUTION:By contacting a gas mainly of an organic gas compound on a transparent base 1 at about 400 deg.C by a thermochemical vapor desposition, a transparent electrode 2 which consists of particles of the mean crystal particle diameter 1-2X10<2>nm is formed. As a result, at the insulation layer 3 side of the transparent electrode 2, an uneven surface following the particle diameter is formed, the transparent electrode 2 presents no interference color, and a mirror surface reflection at a back electrode 6 can be also suppressed fairly. In this case, in order to suppress the reflection at the interface 8 by the back electrode 6 more sufficiently, the mean crystal particle diameter of the crystal particles to form an EL luminous layer 4 is made 1-2X10<2>nm, and it is preferable to make a gas including an organic zinc compound, an organic sulphur compound, and an organic manganese compound, contacted and formed on a laminate layer of the transparent base 1, the transparent electrode 2, and the insulation layer 3, at 450-500 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種表示体に用いられるエレクトロルミネッセ
ンス(E L)素子に関し、特に表示品質を向上させた
EL素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroluminescent (EL) element used in various display bodies, and particularly to an EL element with improved display quality.

〔従来技術とその問題点〕[Prior art and its problems]

EL素子において、透明電極材料としては透明なガラス
基板上に形成し易く、ガラスとの接着性の強固なITO
膜あるいはSnO□膜が用いられ、背面電極材料として
は専ら電気抵抗が極めて低く、熱拡散に優れ絶縁破壊の
拡大を抑制できる金属AIが用いられる。
In EL devices, ITO is used as a transparent electrode material because it is easy to form on a transparent glass substrate and has strong adhesion to glass.
A film or a SnO□ film is used, and as the material for the back electrode, metal AI is used, which has extremely low electrical resistance, excellent heat diffusion, and can suppress the expansion of dielectric breakdown.

しかし前記透明電極においては外部からの光がその表面
、内表面に反射して干渉色を生じ、また背面電極におい
ても外部からの光が反射率の高い金属AIにより鏡面反
射を生じ、いずれも表示品質を低下させるという問題が
ある。
However, in the transparent electrode, light from the outside is reflected on its surface and inner surface, producing interference colors, and in the back electrode, light from the outside is also specularly reflected by the metal AI, which has a high reflectance. There is a problem of degrading quality.

従来これを改善するためにガラス板の前面に、偏光板や
表面に微細な凹凸を設けた透明板を添設することが知ら
れているが、却って発光コントラストを低下させてしま
い、表示品質の向上には有効でない。
Conventionally, it has been known to attach a polarizing plate or a transparent plate with fine irregularities on the surface to the front of the glass plate in order to improve this problem, but this actually reduces the luminous contrast and deteriorates the display quality. Not effective for improvement.

これに対し実開昭62−188095号、実開昭64−
2398号にはガラス基板と透明電極間、あるいは透明
電極の発光層側に凹凸界面を形成すること、具体的には
ガラス基板や透明電極を予めエツチング、フォトリソグ
ラフィ等により凹凸を形成せしめ、前記した干渉色を抑
制し、あるいは発光効率を増大することが開示されてい
るが、そのための処理工程の増加、製造能率の低下、製
造コストの増大等の問題が生ずる。
On the other hand, Utility Model Application No. 62-188095, Utility Model Application No. 64-
No. 2398 discloses that an uneven interface is formed between a glass substrate and a transparent electrode, or on the light-emitting layer side of a transparent electrode. Specifically, an uneven interface is formed by etching or photolithography in advance on a glass substrate or a transparent electrode, and as described above. Although it has been disclosed that interference colors can be suppressed or luminous efficiency can be increased, problems arise such as an increase in processing steps, a decrease in manufacturing efficiency, and an increase in manufacturing costs.

本発明はこれら問題点を解消したもので簡単な構造で容
易に製造でき、かつ表示品質を向上させたEL素子およ
びその製造方法を提供するものである。
The present invention solves these problems and provides an EL element that has a simple structure, can be easily manufactured, and has improved display quality, and a method for manufacturing the same.

([fI点を解決するための手段〕 本発明は透明基板に、透明電極、絶縁層、EL発光層、
第2絶縁層および背面電極を積層してなるEL素子にお
いて、前記透明電極あるいは更にEL発光層を形成する
結晶粒子が平均粒径1〜2 ×102nmであること、
および咳EL素子の製造方法において、前記透明電極は
熱化学的気相成長法により、有機スズ化合物を含むガス
を約400℃の透明基板に接触せしめ、あるいは更に前
記EL発光層は化学的気相成長法により、有機亜鉛化合
物、有機硫黄化合物および有機マンガン化合物を含むガ
スを450〜500°Cの透明基板、透明電極、絶縁層
よりなる積層膜上に接触せしめ、夫々形成するようにし
たことからなる。
([Means for solving fI point]) The present invention provides a transparent substrate with a transparent electrode, an insulating layer, an EL light emitting layer,
In an EL device formed by laminating a second insulating layer and a back electrode, the crystal particles forming the transparent electrode or further forming the EL light emitting layer have an average particle size of 1 to 2 × 102 nm;
In the method for manufacturing an EL device, the transparent electrode is formed by bringing a gas containing an organic tin compound into contact with a transparent substrate at about 400° C. by thermochemical vapor deposition, or further the EL layer is formed by a chemical vapor deposition method. By using a growth method, a gas containing an organic zinc compound, an organic sulfur compound, and an organic manganese compound is brought into contact with a laminated film consisting of a transparent substrate, a transparent electrode, and an insulating layer at 450 to 500°C to form each. Become.

以下添付の図面に基づき本発明を詳述する。The present invention will be described in detail below based on the accompanying drawings.

第1図は本発明の側断面図で、lはソーダ石灰ガラスよ
りなる透明基板、2はITOまたは5nOzよりなる透
明電極、3は5iOz、Si3N、 、 PbTiO3
等よりなる絶縁層、4はZnS中にMnをドープしたE
L発光層、5は前記絶縁層3と同様の第2絶縁層、6は
金属AIよりなる背面電極であり、これらにより、EL
素子が形成される。なお、通常これら積層膜を覆って樹
脂やガラス等よりなる封止層(図示せず)を形成して外
気の湿分その他有害成分から絶縁する。
FIG. 1 is a side sectional view of the present invention, where l is a transparent substrate made of soda-lime glass, 2 is a transparent electrode made of ITO or 5nOz, and 3 is 5iOz, Si3N, , PbTiO3.
4 is an insulating layer made of ZnS doped with Mn.
5 is a second insulating layer similar to the insulating layer 3, 6 is a back electrode made of metal AI, and these make the EL
An element is formed. Note that a sealing layer (not shown) made of resin, glass, or the like is usually formed to cover these laminated films to insulate them from moisture and other harmful components in the outside air.

透明電極2すなわちITO膜や5n02膜は通常物理的
蒸着法や化学的気相成長法により形成するもので、その
結晶粒子径は十数nmないし50nmである。したがっ
てその膜表面も前記オーダーの表面粗さで平滑表面が形
成される。しかしこのオーダーの平滑さにおいては、外
部からの光が膜表面および膜内表面で反射したものが重
畳、干渉して干渉色を生じ易く、発光表示品質を低下さ
せ易い。
The transparent electrode 2, that is, the ITO film or the 5N02 film, is usually formed by physical vapor deposition or chemical vapor deposition, and its crystal grain size is from about 10 nm to 50 nm. Therefore, the surface of the film is also formed as a smooth surface with a surface roughness of the above order. However, in this order of smoothness, light from the outside reflected on the film surface and the inner surface of the film tends to overlap and interfere, resulting in interference colors, which tends to deteriorate the light emitting display quality.

これを防ぐためには膜の少なくとも一方の表面により大
きい凹凸を設けることにより、反射光を乱し、膜内、外
表面の反射光が重畳しないようにすればよい。
In order to prevent this, the reflected light may be disturbed by providing larger irregularities on at least one surface of the film to prevent the reflected light from the inner and outer surfaces of the film from being superimposed.

本発明においては、熱化学的気相成長法(以下熱CVD
法という)により有機スズ化合物(例えばジメチルジク
ロロスズ)を主成分とするガスを約400℃の透明基板
上に接触せしめることにより、平均結晶粒径1〜2 X
 10”nmよりなる透明電極2のSn0g膜を形成す
るもので、その絶縁層3側に前記粒径に倣った凹凸の表
面7を形成せしめる。なお、ガラス板1との接着面はガ
ラス基板1の面に倣った平滑面となる。
In the present invention, a thermochemical vapor deposition method (hereinafter referred to as thermal CVD) is used.
By bringing a gas containing an organic tin compound (for example, dimethyldichlorotin) as a main component into contact with a transparent substrate at about 400°C, an average crystal grain size of 1 to 2
The Sn0g film of the transparent electrode 2 is formed with a thickness of 10"nm, and an uneven surface 7 following the particle size is formed on the insulating layer 3 side. Note that the bonding surface with the glass plate 1 is the surface of the glass substrate 1. It becomes a smooth surface that mimics the surface of .

しかるべくすることにより透明電極2の内、外表面にお
ける反射光は重畳することがなく、干渉色が生じない。
By doing this appropriately, the reflected light on the inner and outer surfaces of the transparent electrode 2 will not overlap, and no interference color will occur.

さらに透明電極2上に積層する例えばEL発光層4等の
膜は結晶粒径をあえて粗粒としなくても、前記透明電極
2の表面凹凸の影響による凹凸が形成され、背面AI電
極6の第2絶縁層側の界面8も凹凸を生ずる。かくして
その鏡面反射を相当程度抑制することができる。
Furthermore, even if the crystal grain size of the film laminated on the transparent electrode 2, such as the EL light-emitting layer 4, is not intentionally made coarse, unevenness will be formed due to the influence of the surface unevenness of the transparent electrode 2. The interface 8 on the side of the second insulating layer also has irregularities. In this way, the specular reflection can be suppressed to a considerable extent.

ただしこのケースにおいては前記界面8の凹凸が80n
m以下程度に低下するため鏡面反射を充分に抑制できる
ものではない。
However, in this case, the unevenness of the interface 8 is 80n.
Since the value decreases to about less than m, specular reflection cannot be sufficiently suppressed.

AI電極6による界面8の反射をより充分に抑制するに
は、第2図に示すようにEL発光層4を形成するMnド
ープZnSの平均結晶粒子径を1〜2 X 1102n
とするのが好ましく、これにより該界面部8は同様の凹
凸が形成される。
In order to more fully suppress the reflection at the interface 8 caused by the AI electrode 6, the average crystal grain size of the Mn-doped ZnS forming the EL light emitting layer 4 is set to 1 to 2 x 1102n, as shown in FIG.
It is preferable that the interface portion 8 has similar irregularities.

なお絶縁層3、第2絶縁層5を形成するSiO□、Si
、N4、PbTi0+等は、いずれもアモルファスの状
態で堆積し、結晶形態は採らないので粒子径に基づく凹
凸を形成しない。
Note that SiO□ and Si forming the insulating layer 3 and the second insulating layer 5
, N4, PbTi0+, etc., are all deposited in an amorphous state and do not take a crystalline form, so they do not form irregularities based on particle diameter.

前記EL発光層4においては、通常物理的蒸着法または
化学的気相成長法によってMnドープZnS結晶粒は1
0nm以下ないし50nm程度であるが、本態様におい
ては有機化合物を化学的気相成長法により有機亜鉛化合
物(例えばジエチル亜鉛)、より、平均1〜2 X 1
0”nmの粒径のものを形成させるものである。
In the EL light emitting layer 4, Mn-doped ZnS crystal grains are usually formed by physical vapor deposition or chemical vapor deposition.
0 nm or less to about 50 nm, but in this embodiment, the organic compound is grown from an organic zinc compound (e.g. diethylzinc) by chemical vapor deposition to an average of 1 to 2 x 1
This is to form particles with a particle size of 0'' nm.

かくして透明電極2が干渉色を呈することもなく、背面
電極6の鏡面反射も抑制され、発光表示品質を格段と向
上させることができ、加えて界面凹凸により膜相互の噛
合作用が生じ膜間剥離を抑制できる。
In this way, the transparent electrode 2 does not exhibit interference colors, the specular reflection of the back electrode 6 is suppressed, and the quality of light emitting display can be significantly improved.In addition, interlocking action between the films occurs due to the unevenness of the interface, preventing interlayer peeling. can be suppressed.

なお透明電極、EL発光層いずれも平均結晶粒径が2 
X 10”nmを超えると粒子間空隙が増大してN&密
性を喪失し脆弱となり、発光輝度むらを生じ、さらに前
者においては発光時における絶縁破壊を拡大し易く、後
者においては発光効率が低下するという弊害がある。
The average crystal grain size of both the transparent electrode and the EL light emitting layer is 2.
If X exceeds 10"nm, the interparticle voids increase, N& density is lost, and the material becomes brittle, causing uneven luminance. Further, in the former case, dielectric breakdown during light emission tends to increase, and in the latter case, the luminous efficiency decreases. There is a disadvantage of doing so.

〔実施例〕〔Example〕

第1表に示す各EL素子の膜組成物について咳表に示す
成膜条件により成膜、EL素子を形成した後、結晶粒径
測定、外観観察、緻密性観察を行なった。
After forming a film of each EL element film composition shown in Table 1 under the film forming conditions shown in Table 1 to form an EL element, crystal grain size measurement, appearance observation, and denseness observation were performed.

なお緻密性観察、結晶粒径測定は電子顕微鏡下で観察、
測定した。
In addition, compactness observation and crystal grain size measurement were performed under an electron microscope.
It was measured.

これらの結果は併せて第1表に示したが、実施1111
.2はいずれも透明電極の干渉色を呈さず、背面電極の
鏡面反射も抑制される。
These results are also shown in Table 1.
.. No. 2 exhibits the interference color of a transparent electrode, and specular reflection of the back electrode is also suppressed.

比較例1〜2は結晶粒径が本発明範囲外のもので干渉色
、鏡面反射が認められ、あるいは膜がポーラスとなる。
Comparative Examples 1 and 2 have crystal grain sizes outside the range of the present invention, and interference colors and specular reflections are observed, or the film becomes porous.

〔発明の効果〕〔Effect of the invention〕

本発明によれば透明電極の干渉色、背面^l電極の鏡面
反射を認め難く、発光表示品質を格段と向上できるとい
う効果を奏する。
According to the present invention, it is difficult to recognize the interference color of the transparent electrode and the specular reflection of the back electrode, and the quality of light emitting display can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1、第2図は本発明の側断面図である。 1−透明基板    2−透明電極 4−EL発光層   7−表面 8−界面 特許出願人  セントラル硝子株式会社第1図    
    第2図
1 and 2 are side sectional views of the present invention. 1-Transparent substrate 2-Transparent electrode 4-EL light emitting layer 7-Surface 8-Interface Patent applicant Central Glass Co., Ltd. Figure 1
Figure 2

Claims (1)

【特許請求の範囲】  1) 透明基板に、透明電極、絶縁層、EL発光層、
第2絶縁層および背面電極を積層してなるEL素子にお
いて、前記透明電極あるいは更にEL発光層を形成する
結晶粒子が平均粒径1〜2×10^2nmであることを
特徴とするEL素子。  2) 透明基板に、透明電極、絶縁層、EL発光層、
第2絶縁層および背面電極を順次積層しEL素子を製造
する方法において、透明電極は熱化学的気相成長法によ
り、有機スズ化合物を含むガスを約400℃の透明基板
に接触せしめ、あるいは更にEL発光層は化学的気相成
長法により、有機亜鉛化合物、有機硫黄化合物および有
機マンガン化合物を含むガスを450〜500℃の透明
基板、透明電極、絶縁層よりなる積層膜上に接触せしめ
、夫々形成するようにしたことを特徴とするEL素子の
製造方法。
[Claims] 1) A transparent substrate, a transparent electrode, an insulating layer, an EL light emitting layer,
An EL device comprising a second insulating layer and a back electrode laminated, wherein the crystal particles forming the transparent electrode or further forming the EL light emitting layer have an average particle size of 1 to 2×10^2 nm. 2) On a transparent substrate, a transparent electrode, an insulating layer, an EL light emitting layer,
In a method for manufacturing an EL device by sequentially laminating a second insulating layer and a back electrode, the transparent electrode is formed by bringing a gas containing an organic tin compound into contact with a transparent substrate at about 400° C. by thermochemical vapor deposition, or further The EL emitting layer is formed by contacting a gas containing an organic zinc compound, an organic sulfur compound, and an organic manganese compound onto a laminated film consisting of a transparent substrate, a transparent electrode, and an insulating layer at 450 to 500°C by chemical vapor deposition. 1. A method of manufacturing an EL element, characterized in that the EL element is formed.
JP1130370A 1989-05-24 1989-05-24 El element and its manufacture Pending JPH02309592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130370A JPH02309592A (en) 1989-05-24 1989-05-24 El element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130370A JPH02309592A (en) 1989-05-24 1989-05-24 El element and its manufacture

Publications (1)

Publication Number Publication Date
JPH02309592A true JPH02309592A (en) 1990-12-25

Family

ID=15032749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130370A Pending JPH02309592A (en) 1989-05-24 1989-05-24 El element and its manufacture

Country Status (1)

Country Link
JP (1) JPH02309592A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676950A (en) * 1992-06-05 1994-03-18 Idemitsu Kosan Co Ltd Organic el element
WO1999023191A1 (en) * 1997-10-31 1999-05-14 Nanogram Corporation Phosphors
WO2004112442A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki El device, process for manufactiuring the same, and liquid crystal display employing el device
US7306845B2 (en) 2001-08-17 2007-12-11 Neophotonics Corporation Optical materials and optical devices
US7423512B1 (en) 1997-10-31 2008-09-09 Nanogram Corporation Zinc oxide particles
US7507382B2 (en) 1999-03-10 2009-03-24 Nanogram Corporation Multiple reactant nozzles for a flowing reactor
JPWO2008013171A1 (en) * 2006-07-25 2009-12-17 パナソニック株式会社 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
WO2011111629A1 (en) * 2010-03-08 2011-09-15 旭硝子株式会社 Organic led light-emitting element and process for production thereof
CN104937738A (en) * 2012-10-29 2015-09-23 特里多尼克有限两合公司 Lighting module with optimised light output

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676950A (en) * 1992-06-05 1994-03-18 Idemitsu Kosan Co Ltd Organic el element
WO1999023191A1 (en) * 1997-10-31 1999-05-14 Nanogram Corporation Phosphors
US7132783B1 (en) 1997-10-31 2006-11-07 Nanogram Corporation Phosphor particles having specific distribution of average diameters
US7423512B1 (en) 1997-10-31 2008-09-09 Nanogram Corporation Zinc oxide particles
US7507382B2 (en) 1999-03-10 2009-03-24 Nanogram Corporation Multiple reactant nozzles for a flowing reactor
US7306845B2 (en) 2001-08-17 2007-12-11 Neophotonics Corporation Optical materials and optical devices
WO2004112442A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki El device, process for manufactiuring the same, and liquid crystal display employing el device
JPWO2008013171A1 (en) * 2006-07-25 2009-12-17 パナソニック株式会社 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
WO2011111629A1 (en) * 2010-03-08 2011-09-15 旭硝子株式会社 Organic led light-emitting element and process for production thereof
CN104937738A (en) * 2012-10-29 2015-09-23 特里多尼克有限两合公司 Lighting module with optimised light output
US9504125B2 (en) 2012-10-29 2016-11-22 Tridonic Gmbh & Co. Kg Lighting module with optimized light output

Similar Documents

Publication Publication Date Title
JP5261397B2 (en) Electrode for organic light emitting device, acid etching thereof, and organic light emitting device incorporating the same
US4686110A (en) Method for preparing a thin-film electroluminescent display panel comprising a thin metal oxide layer and thick dielectric layer
US20120112225A1 (en) Method for producing an organic light-emitting diode device having a structure with a textured surface and resulting oled having a structure with a textured surface
KR20050086413A (en) Material for use in the manufacturing of luminous display devices
CN108886101A (en) Light emitting diode with quantum dots and its manufacturing method, display panel and display device
US20130045374A1 (en) Nano-laminated film with transparent conductive property and water-vapor resistance function and method thereof
WO2005083722A1 (en) Transparent conductive film and transparent conductive base material utilizing the same
JP4258160B2 (en) Organic electroluminescence device
JPH02309592A (en) El element and its manufacture
JP4010587B2 (en) Transparent conductive laminate and electroluminescence light emitting device using the same
KR960030747A (en) White light-emitting electroluminescent device (ELD) and its manufacturing method
JP2005268113A (en) Oxide sintered body target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive base, display device, and organic electroluminescent element
JPS6329398B2 (en)
US20030117069A1 (en) Organic electroluminescent element and process for its manufacture
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
KR20160150412A (en) Surface modified graphene transparent electrode and preparing method of the same
KR20150080849A (en) Composite transparent electrodes
US20040170865A1 (en) Barrier layer for thick film dielectric electroluminescent displays
EP1554913B1 (en) Thin film phosphor for electroluminescent displays
JP2014517488A (en) Substrate with electrodes for OLED devices and such OLED devices
JPH01186589A (en) Electroluminescence element
JPH01298681A (en) Thin film el element
JPWO2003101158A1 (en) Substrate with transparent conductive film and organic EL element
KR20180004691A (en) Surface modified graphene transparent electrode and preparing method of the same
JPH08162273A (en) Thin film el element