WO2011111629A1 - Organic led light-emitting element and process for production thereof - Google Patents

Organic led light-emitting element and process for production thereof Download PDF

Info

Publication number
WO2011111629A1
WO2011111629A1 PCT/JP2011/055112 JP2011055112W WO2011111629A1 WO 2011111629 A1 WO2011111629 A1 WO 2011111629A1 JP 2011055112 W JP2011055112 W JP 2011055112W WO 2011111629 A1 WO2011111629 A1 WO 2011111629A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light emitting
led light
organic led
Prior art date
Application number
PCT/JP2011/055112
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 欅田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2011111629A1 publication Critical patent/WO2011111629A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape

Definitions

  • the present invention relates to an organic LED (Organic Light Emitting Diode) element and a manufacturing method thereof, and more particularly to a light extraction structure of an organic LED.
  • organic LED Organic Light Emitting Diode
  • the organic LED light-emitting element sandwiches a layer having a light-emitting function including a light-emitting layer made of an organic layer, applies a voltage between the electrodes, injects holes and electrons, and recombines in the organic layer, Extracts light generated in the process from the excited state to the ground state of luminescent molecules, and is used in displays, backlights, and lighting applications.
  • the layer having a light emitting function in this specification refers to a light emitting layer, a charge injection layer such as a hole injection layer and an electron injection layer used by being stacked on the light emitting layer, and a charge transport such as a hole transport layer and an electron transport layer. All layers including the light emitting layer and the functional layer contributing to light emission of the light emitting layer are included.
  • the refractive index of the organic layer is about 1.8 to 2.1 at a wavelength of 430 nm.
  • ITO Indium Tin Oxide
  • the refractive index differs depending on the ITO film forming conditions and composition (Sn—In ratio), but 1.9 to 2.1. The degree is common.
  • the refractive index of the organic layer and the translucent electrode layer is close, and the emitted light reaches the interface between the translucent electrode layer and the translucent substrate without being totally reflected between the organic layer and the translucent electrode layer.
  • a glass substrate or a resin substrate is usually used as the translucent substrate, but the refractive index thereof is about 1.5 to 1.6, which is lower than that of the organic layer or the translucent electrode layer.
  • Patent Document 1 proposes a structure in which a light scattering layer, which is a translucent material layer, is provided on one side of a substrate (paragraphs 0039 to 0040).
  • substrate and the organic LED light emitting element is proposed by making glass particle adhere to the board
  • Patent Document 2 intends to improve the extraction efficiency, and “on a light-transmitting substrate, a resin adhesive, spray, vapor deposition, sputtering, dip, spin coating, etc., SiO 2 particles, resin particles
  • An organic LED light emitting device provided with a scattering layer composed of an additional layer made of a transparent material in which metal powder and metal oxide particles are dispersed (for example, paragraph 0057) is disclosed.
  • Patent Document 3 there is provided a light emitting device in which a diffusion layer in which at least two kinds of fine particles having an average particle size different by one digit or more in a resin are dispersed is provided adjacent to a translucent electrode so that guided light is efficiently extracted. Disclosure.
  • Patent Documents 1 to 3 all intend to improve the scattering effect in the substrate, and do not mention improvement in light extraction efficiency due to scattering at the interface between the translucent electrode and the layer having a light emitting function. There wasn't.
  • the present applicant has proposed a solar cell substrate in which irregularities are formed on the surface of a transparent conductive film and the pitch of the irregularities is optimized in order to improve the photoelectric conversion efficiency of the solar cell (Patent Document 4). ).
  • Japanese Patent No. 2932121 Japanese Unexamined Patent Publication No. 2005-63704 Japanese Unexamined Patent Publication No. 2005-190931 Japanese Laid-Open Patent Publication No. 2002-111025
  • the solar cell substrate of Patent Document 4 a current flows by guiding the photoelectron pair generated in the photoelectric conversion layer toward the electrode. From the transparent conductive film to the amorphous silicon layer formed on this upper layer, The light capture efficiency is increased and the light confinement efficiency due to multiple reflection in the amorphous silicon layer is increased. Therefore, since an electric field is not applied, variation in the distance between the electrodes due to the unevenness on the surface of the transparent conductive film is not a significant problem.
  • the wavelength of light to be used is effective in improving the light confinement efficiency in a wide band like sunlight (wavelength region 300 to 800 nm).
  • the organic LED light emitting element it is necessary to increase the light extraction efficiency. It is necessary to increase the light extraction efficiency by increasing the scattering effect at the interface between the transparent conductive film and the layer having a light emitting function formed thereon. Further, it is necessary to enhance the scattering effect at the interface between the layer having a light emitting function and the upper electrode formed in the upper layer, and to increase the light extraction efficiency. In addition, since a voltage is applied between the transparent conductive film sandwiching the layer having a light emitting function and the other electrode, variations in the surface of the transparent conductive film cause electric field concentration.
  • the surface of the transparent conductive film as the first electrode is uneven, if a layer having a light emitting function or the like is formed on the upper layer by vapor deposition or the like, the coverage of the organic layer with respect to the unevenness is deteriorated. Variations in layer thickness occur. As a result, the interelectrode distance between the first electrode and the surface of the second electrode formed on the organic layer varies. As a result, it was found that in a region where the distance between the electrodes is small, a large current flows locally in the organic layer, causing a short circuit between the electrodes and causing a non-lighting.
  • This invention is made
  • Another object of the present invention is to provide an organic LED light-emitting element with high efficiency and long life.
  • the present invention provides a light-transmitting substrate, a first electrode formed on the light-transmitting substrate by a CVD method, and formed of a light-transmitting oxide film having irregularities on the surface, and formed on the first electrode.
  • an organic LED light emitting device comprising: a buffer layer formed; a layer having a light emitting function formed on the buffer layer; and a second electrode formed on the layer having a light emitting function.
  • the unevenness decreases in order from the surface of the first electrode to the surface of the buffer layer and the surface of the layer having the light emitting function, and the surface of the layer having the light emitting function is reduced. And those that maintain irregularities corresponding to the irregularities on the surface of the first electrode.
  • the surface of the buffer layer has irregularities corresponding to the irregularities of the surface of the first electrode.
  • the surface of the layer having the light emitting function has irregularities corresponding to the irregularities of the first electrode surface, the irregularities of the first electrode surface, and the buffer layer surface.
  • the roughness of the surface of the layer having the light emitting function is a surface roughness that represents the degree of each unevenness in order from the surface of the first electrode to the surface of the buffer layer and the surface of the layer having the light emitting function. Including those that become smaller.
  • the present invention includes the organic LED light emitting device, wherein the convexity of the first electrode surface has a regular pyramid shape.
  • the first electrode has a convex surface having a pyramid shape with a sharp tip.
  • the present invention includes the organic LED light-emitting element in which the ratio of the average value H1 of the convex height to the average value W1 of the convex appearance interval on the first electrode surface is 0.5 or more.
  • this invention contains the said organic LED light emitting element whose surface roughness Ra of the said buffer layer side surface of a 1st electrode is 60 nm or more.
  • the surface roughness Ra is according to JIS B0601: 2001.
  • the present invention includes the organic LED light emitting device, wherein the surface roughness Ra of the first electrode on the buffer layer side surface is 80 nm or more and less than 120 nm.
  • the present invention includes the organic LED light emitting element in which the appearance interval of the convexity on the surface of the first electrode is 0.1 to 0.3 ⁇ m.
  • the present invention includes the organic LED light emitting device, wherein the buffer layer is a solution coating type organic layer.
  • the organic film includes a high molecular weight organic film having a molecular weight of 15000 or more and a low molecular weight organic film having a lower molecular weight.
  • the former is referred to as a polymer layer, and the latter is referred to as a low molecular layer. .
  • the buffer layer is preferably a solution coating type polymer layer.
  • the buffer layer is preferably a solution coating type low molecular layer.
  • the present invention includes the above organic LED light emitting device in which the buffer layer is a metal oxide thin film.
  • the buffer layer has substantially the same surface roughness at the interface with the first electrode surface and the interface with the layer having a light emitting function.
  • the buffer layer has a smaller surface roughness at the interface with the layer having a light emitting function than at the interface with the surface on the first electrode side. Is desirable.
  • this invention contains the said organic LED light emitting element whose ratio of the average value H2 of the said convex height with respect to the average value W2 of the convex appearance space is 0.2 or more among the unevenness
  • the present invention includes the organic LED light-emitting element in which the ratio of the average value H3 of the height to the average value W3 of the convex appearance interval is 0.1 or more among the irregularities on the surface of the layer having a light emitting function. .
  • the output wavelength of the layer having a light emitting function includes a wavelength ⁇ satisfying the following formula. ( ⁇ ⁇ 450 nm) (formula)
  • the present invention includes the above organic LED light emitting element in which the translucent substrate is a glass substrate.
  • the translucent substrate is a glass substrate.
  • a translucent resin substrate may be used as the translucent substrate.
  • the present invention includes the above organic LED light emitting element in which the translucent resin substrate is a flexible substrate.
  • the first electrode includes a fluorine-doped tin oxide layer.
  • PDOT may be used as the buffer layer and may also serve as a hole injection layer.
  • the present invention also includes a step of forming a first electrode made of a light-transmitting oxide film having a surface with irregularities formed on a light-transmitting substrate by a CVD method, and forming a buffer layer on the first electrode. Including a step of forming a layer having a light emitting function on the buffer layer, and a step of forming a second electrode on the layer having the light emitting function.
  • the step of forming a layer having a light emitting function is performed on the buffer layer formed on the surface of the first electrode by forming irregularities on the surface of the first electrode.
  • the step of forming the buffer layer is unevenness corresponding to the unevenness of the surface of the first electrode, and a smaller unevenness is formed on the surface of the buffer layer.
  • the step of forming the layer having the light emitting function is caused by unevenness on the surface of the first electrode, and is uneven corresponding to the unevenness on the surface of the buffer layer, and is about the unevenness on the surface of the buffer layer. This includes a step of forming a film so that small irregularities are formed on the surface of the layer having a light emitting function.
  • the step of forming the buffer layer may be a step of forming the polymer layer by a coating method.
  • the step of forming the buffer layer may be a step of forming a low molecular layer by a coating method.
  • the step of forming the buffer layer may be a step of forming an inorganic film by a dry process.
  • unevenness is formed at the interface between the first electrode (translucent electrode) having a buffer layer formed on the surface and the layer having a light emitting function, and light extraction efficiency is improved by scattering at this interface. Therefore, it is possible to provide a light-transmitting substrate that can provide an optical device with high extraction efficiency. In particular, the scattering effect is further enhanced by making the irregularities into pyramid-shaped irregularities having optimum dimensions.
  • a buffer layer can be formed over the light-transmitting electrode as the first electrode formed on the substrate, so that electric field concentration can be prevented and the light extraction efficiency can be improved due to the difference in refractive index.
  • Sectional drawing which shows the organic LED light emitting element of Embodiment 1 of this invention
  • Sectional drawing which shows the board
  • substrate for organic LED light emitting elements of Embodiment 2 of this invention Sectional drawing which shows the organic LED light emitting element of Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view showing the structure of an organic LED light-emitting element
  • FIG. 2 is an enlarged cross-sectional view of the main part
  • FIG. 3 is a diagram showing an SEM photograph showing the first electrode surface
  • FIG. 5 is a schematic cross-sectional view showing irregularities on the surface of the buffer layer
  • FIG. 6 is a schematic cross-sectional view showing irregularities on the surface of the layer having a light emitting function.
  • a translucent electrode (first electrode) formed on a substrate 101 made of a glass substrate is made of tin oxide having irregularities including pyramidal projections on the surface, and is scattered. The effect is enhanced and the light extraction efficiency is improved.
  • This first electrode is formed by CVD under controlled conditions. That is, as shown in FIG. 1, the light-transmitting substrate 100 with electrodes, a layer having a light emitting function composed of the organic layer 110, and the reflective second electrode 120 are configured.
  • the translucent substrate 100 with an electrode includes a substrate 101 made of a translucent glass substrate, a translucent first electrode 102, and a buffer layer 103.
  • unevenness is also formed at the interface between the organic layer 110 and the second electrode 120 due to the pyramidal protrusion. Due to the unevenness, the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multidirectional.
  • the surface of the buffer layer 103 has unevenness corresponding to the unevenness of the surface of the first electrode 102.
  • the surface of the organic layer 110 constituting the layer having a light emitting function has unevenness corresponding to the unevenness of the surface of the first electrode 102. Then, the unevenness on the surface of the first electrode 102, the unevenness on the surface of the buffer layer 103, and the unevenness on the surface of the organic layer 110 are sequentially changed from the surface of the first electrode 102 to the surface of the buffer layer 103 and the surface of the organic layer 110. The surface roughness representing the degree of unevenness is reduced.
  • the translucent substrate with an electrode 100 used in the present invention is a translucent electrode composed of a translucent glass substrate 101 and a tin oxide layer formed by a CVD method and having a pyramid-shaped projection on the surface.
  • a first electrode 102 and a buffer layer 103 made of P-DOT / PSS (a mixture of polythiophene and polystyrene sulfonic acid) formed by a coating method are provided.
  • the translucent first electrode 102 will be described.
  • a tin oxide thin film formed using a CVD method is used. That is, when a thin film containing tin oxide as a main component is formed using the CVD method, crystal nuclei are generated at any time and mixed into the thin film. And since the thin film which has a tin oxide as a main component is deposited while growing a crystal, each crystal nucleus grows in a radial or random one direction at any time. Therefore, crystals grown from the early stage of thin film formation and crystals generated in the later stage are mixed, and the surface unevenness of the thin film becomes non-uniform. Further, on the surface of the thin film, a dome shape, that is, a convexity with a smooth top is observed.
  • the convex outer shape is a polygonal pyramid or a plateau. Therefore, it is necessary to select conditions that can increase the deposition rate so that crystal nuclei are not generated during thin film formation.
  • helium is used as a carrier gas in the CVD method to increase the crystal growth rate without generating crystal nuclei.
  • helium gas When helium is used as the carrier gas, it is not clear why crystal nuclei are not generated during thin film formation and why the crystal growth rate is high, but helium gas has a small molecular weight, so the molecular motion rate is low. Fast and many collisions with source gas. For this reason, the raw material gases are inhibited from reacting in the gas phase and growing into crystal nuclei. On the other hand, in the thin film forming stage, helium gas is sprayed on the substrate / thin film surface together with the raw material gas, but helium gas having a small molecular weight is selectively raised and discharged. For this reason, it is considered that the source gas is likely to accumulate near the surface of the substrate / thin film, and the crystal growth is promoted.
  • the helium gas has a function of maintaining a high concentration of the source gas near the substrate / thin film surface. Furthermore, since helium gas has extremely high chemical stability, chemical interaction does not work with the source gas, and the crystal growth of the thin film is not hindered.
  • the thin film mainly composed of tin oxide indium tin oxide doped with indium (ITO) or tin oxide thin film doped with titanium oxide, fluorine or chlorine can be used in addition to the tin oxide thin film. is there.
  • dope components are not particularly limited, but are required not to significantly inhibit the crystal growth of tin oxide.
  • new characteristics can be imparted to the thin film. For example, when titanium oxide is doped, the visible light transmittance of the thin film is increased, and when fluorine is doped, the infrared reflectance is improved.
  • the following can be used as the raw material gas for this thin film.
  • tin tetrachloride monobutyltin trichloride, dimethyltin dichloride (DMT), dibutyltin dichloride, dioctyltin dichloride, and the like.
  • organotin compounds organotin chlorides
  • monobutyltin trichloride and dimethyltin dichloride are preferred.
  • dimethylindium chloride is preferred.
  • the source gas must contain an appropriate amount of oxygen or oxide, and for example, water vapor, carbon monoxide, nitrogen dioxide and ozone can be used as the oxide.
  • FIG. 4 shows an enlarged view of the main part of the protrusion on the surface of the first electrode, that is, the protrusion T1.
  • the ratio of the average value of the height H1 to the average value of the convex appearance interval W1 is 0.5.
  • the ratio of the average value of the height H1 to the average value of the convex appearance interval W1 is preferably 0.5 or more.
  • the surface roughness Ra of the surface of the first electrode 101 on the buffer layer 103 side is 60 nm.
  • the surface roughness Ra of the surface on the buffer layer 103 side is desirably 60 nm or more.
  • FIG. 5 shows an enlarged cross-sectional view of the main part of the protrusion T2 on the buffer layer surface.
  • the appearance interval W2 of the protrusion T2 on the surface of the first electrode 102 on the buffer layer 103 side is preferably 0.1 to 0.3 ⁇ m (see FIG. 5). When it exceeds 0.3 ⁇ m, the viewing angle dependency of the emitted color becomes strong.
  • the ratio of the average value H2 of the height to the appearance interval W2 of the protrusion T2 is 0.2. This ratio is desirably 0.2 or more. With this configuration, film formation can be facilitated in a state where the unevenness of the electrode surface is larger than the unevenness of the surface of the buffer layer 103, and the light extraction efficiency can be improved more favorably.
  • the surface of the buffer layer 103 also forms an uneven surface
  • the surface of the organic layer formed as an upper layer also forms an uneven portion.
  • FIG. 6 shows an enlarged view of the main part of the convex T3 on the surface of the organic layer.
  • the surface on the second electrode 120 side forms an uneven surface, and the ratio of the average value of the height H3 to the average value of the convex appearance interval W3 is It is 0.18.
  • This ratio is desirably 0.1 or more. Since the unevenness is formed at the interface between the organic layer 110 and the second electrode 120, the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multi-directional, and It is possible to increase light traveling toward the substrate through one electrode. Therefore, the light extraction efficiency can be improved more favorably.
  • the first electrode 102 is formed by the CVD method so as to have irregularities on the surface, and the buffer layer 103 having irregularities reflecting the irregularities is formed on the upper layer. Therefore, the light extraction efficiency can be increased by having a scattering effect at the interface between the first electrode 101 and the buffer layer 103 and at the interface between the buffer layer 103 and the layer having a light emitting function. Further, since the unevenness is formed not on the surface of the substrate 101 but on the surface of the first electrode 110, scattering occurs at a position closer to the light emitting region, and the light extraction characteristics are further improved.
  • the presence of the buffer layer 103 makes it possible to obtain a smooth surface while having irregularities. For this reason, for example, when forming an organic LED light-emitting element, the surface of the buffer layer 103 has little unevenness. Therefore, even when a layer having a light-emitting function is formed on the upper layer by a coating method or the like, the layer having a light-emitting function is uniform. The distance between the translucent electrode (first electrode) and the surface of the reflective electrode (second electrode) formed on the layer having a light emitting function is also uniform. . As a result, since a large voltage is not locally applied to the layer having a light emitting function, the life can be extended.
  • the buffer layer when a material having a specific resistance close to that of the translucent electrode and having a large refractive index difference from the translucent electrode is selected as the buffer layer, It is possible to shift the interface and the optical interface that becomes the scattering surface.
  • the interval between the solid line arrows corresponds to the distance between the electrodes where the electric field is substantially applied, and the broken line arrow corresponds to the interval between the optical interfaces. Therefore, the scattering effect in the vicinity of the layer having a light emitting function can be enhanced while maintaining the distance between the electrodes of the organic LED light emitting element substantially uniform, and the light extraction efficiency can be improved and the life can be extended. it can.
  • the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multi-directional, and As described above, it is possible to further increase the light directed to the substrate side through one electrode.
  • the surface of the first electrode which is the base layer
  • the unevenness is generated on the surface of the organic layer 110.
  • regions having different thicknesses of the organic layer 110 are formed.
  • a variation is formed in the distance between the first electrode and the second electrode, and a large voltage is locally applied to the layer having a light emitting function, which causes a reduction in lifetime.
  • a surface treatment such as a patterning process is required, and the interface characteristics with the second electrode formed on the upper layer are deteriorated.
  • the irregularities are not formed. It can be seen that the method of forming irregularities on the surface of the first electrode 102 has the most excellent method. Even when the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, the distance between the electrodes gently changes at the same pitch, and a large voltage is applied locally. It is possible to avoid the situation.
  • the light-transmitting substrate used for forming the light-transmitting substrate a material that can withstand the temperature at which the upper functional film is formed and that has a high visible light transmittance, such as a glass substrate, is mainly used.
  • the material of the glass substrate include inorganic glass such as alkali glass, non-alkali glass, and quartz glass.
  • the light-transmitting substrate 101 may have a thickness of 0.1 mm to 2.0 mm, but may be thicker when the area becomes large. Further, a resin substrate may be used, and a flexible resin substrate is also applicable.
  • Translucent electrode (first electrode)>
  • the translucent electrode is characterized by a surface shape having pyramid-shaped projections in order to enhance the scattering effect and improve the light extraction efficiency. Further, in order to extract the light generated in the layer having the light emitting function made of the organic layer 110 to the outside, 80% or more of translucency is required. In addition, a high work function is required to inject many holes.
  • ITO Indium Tin Oxide
  • SnO 2 , ZnO, IZO Indium Zinc Oxide
  • AZO ZnO—Al 2 O 3 : zinc oxide doped with aluminum
  • GZO ZnO—Ga 2 O 3 : zinc oxide doped with gallium
  • Nb-doped TiO 2 , Ta-doped TiO 2 and other materials are used.
  • the thickness of the light-transmitting first electrode 102 is preferably 100 nm or more.
  • the refractive index of the light-transmitting first electrode 102 is 1.9 to 2.2.
  • the refractive index of ITO can be lowered.
  • the translucent electrode may be a cathode.
  • buffer layer in addition to an organic film such as P-DOT / PSS, inorganic materials such as refractory metal oxides such as molybdenum oxide, tungsten oxide, and vanadium oxide can be used.
  • the layer having a light emitting function is an organic layer, and includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a high molecular layer or a low molecular layer can be applied.
  • the refractive index of the organic layer is about 1.7 to 1.8.
  • the hole injection layer is required to have a small difference in ionization potential in order to lower the hole injection barrier from the translucent electrode as the first electrode. Improvement of the charge injection efficiency from the electrode interface in the hole injection layer lowers the drive voltage of the device and increases the charge injection efficiency.
  • PEDOT Polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • CuPc phthalocyanine-based copper phthalocyanine
  • the hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer. It is necessary to have an appropriate ionization potential and hole mobility.
  • the hole transport layer may be a triphenylamine derivative, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD ), N, N′-diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4 ′ -Diamine (NPTE), 1,1-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2) and N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1 '-Diphenyl
  • the light-emitting layer uses a material that provides a field where injected electrons and holes are recombined and has high emission efficiency. More specifically, the light-emitting host material and the light-emitting dye doping material used in the light-emitting layer function as recombination centers of holes and electrons injected from the anode and the cathode, and light emission to the host material in the light-emitting layer The doping of the dye obtains high luminous efficiency and converts the emission wavelength. These are required to have an appropriate energy level for charge injection, excellent in chemical stability and heat resistance, and to form an amorphous thin film homogeneously.
  • Light emitting materials that are organic materials include low-molecular materials and high-molecular materials. In the case of a low molecular material, it is formed by vapor deposition, and in the case of a high molecular material, it is formed by a coating method. Further, it is classified into a fluorescent material and a phosphorescent material according to the light emission mechanism.
  • the light-emitting layer comprises tris (8-quinolinolato) aluminum complex (Alq 3 ), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq ′ 2 OPh), bis (8-hydroxy) quinaldine aluminum— 2,5-dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), Mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis ( 8-quinolinolato) calcium complex (CAQ 2) metal complexes of quinoline derivatives such as tetraphenyl butadiene, E D Lucina click polyhedrin (QD), anthracene, and a fluorescent substance such as perylene and coronene
  • the electron transport layer serves to transport electrons injected from the electrode.
  • the electron transport layer is formed of a quinolinol aluminum complex (Alq 3 ), an oxadiazole derivative (for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2 -(4-t-butylphenyl) -5- (4-biphenyl) -1,3,4-oxadiazole (PBD) and the like), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like are used.
  • oxadiazole derivative for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2 -(4-t-butylphenyl) -5- (4-biphenyl) -1,3,4-oxadiazole (PBD) and the like
  • triazole derivatives bathophenanthroline derivative
  • the electron injection layer is required to increase the electron injection efficiency.
  • the electron injection layer is provided with a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) at the cathode interface.
  • ⁇ Reflective electrode (second electrode)> A metal having a small work function or an alloy thereof is used for the second electrode which is a reflective electrode (cathode).
  • the second electrode include alkali metals, alkaline earth metals, and metals belonging to Group 3 of the periodic table. Of these, aluminum (Al), magnesium (Mg), or alloys thereof are preferably used because they are inexpensive and have good chemical stability.
  • Al, MgAg, a laminated electrode obtained by depositing Al on a thin film deposited film of LiF or Li 2 O, or the like is used.
  • a laminate of calcium (Ca) or barium (Ba) and aluminum (Al) is used.
  • the reflective electrode as the second electrode may be used as the anode.
  • the bubbles in the glass layer are spherical and the surface is also smooth.
  • the method for forming a thin film containing tin oxide as a main component is a method of forming a tin oxide thin film on a glass ribbon by online forming, and a tin oxide thin film on the glass substrate after the glass substrate is formed.
  • a method for forming a tin oxide thin film having irregularities on the surface thereof on a glass ribbon will be described. First, using a bath and using a sheet glass manufacturing apparatus by a usual float method, a tin oxide thin film having irregularities on the surface mainly composed of tin oxide is formed on a glass ribbon by online molding. A buffer layer is formed.
  • a mixed gas of a raw material gas and a carrier gas is blown toward the glass ribbon from the supply nozzle, and this mixed gas flows toward the exhaust port while traveling on the glass ribbon.
  • the glass ribbon is in a considerably high temperature state, and a thin film (transparent conductive film) is formed (crystal growth) using the heat.
  • a method for forming a tin oxide thin film having irregularities on its surface on a glass substrate will be described.
  • a glass substrate of a predetermined size is prepared and thoroughly cleaned.
  • the glass substrate is heated to a high temperature, and a hydrolysis reaction between tin tetrachloride and water is performed on the glass substrate surface by atmospheric pressure CVD to form a tin oxide transparent conductive film (fluorine-doped tin oxide film).
  • a tin oxide transparent conductive film fluorine-doped tin oxide film
  • the glass substrate is in a high temperature state, and a thin film (transparent conductive film) is formed (crystal growth) using the heat.
  • a translucent substrate provided with a translucent electrode (first electrode) is obtained using any of the above methods.
  • a layer (organic layer 110) having a light emitting function such as a hole injection layer, a light emitting layer, and an electron injection layer is formed by, for example, a vapor deposition method.
  • a layer having a light emitting function composed of the organic layer 110 is formed on the light-transmitting first electrode 102, and a reflective second electrode 120 is formed on the upper layer to form a light-emitting region.
  • a bottom emission type organic LED light emitting element is formed which extracts light to the glass substrate 101 side.
  • This light-emitting region is formed by overlapping a light-transmitting layer composed of a light-transmitting first electrode 102 and an organic layer 110 formed thereon, and a reflective second electrode 120 formed thereon. Area.
  • a layer having a light emitting function that is, a hole injection layer, a light emitting layer, and an electron injection layer is usually sandwiched between the first electrode and the second electrode.
  • the layer having a light emitting function is not limited to a dry process such as an evaporation method, but can be applied to a layer formed by a wet process such as a coating method.
  • the present invention is not limited to this five-layer structure, and is not limited to an organic LED light-emitting element, as long as it is a functional element having an electrode on at least the substrate side.
  • the first electrode is a translucent electrode, but the second electrode may be a translucent electrode or a reflective electrode.
  • the translucent electrode can be used with tin oxide or other materials in addition to the above-mentioned ITO.
  • Various metallic electrodes can be used as the reflective electrode as the second electrode 120, but typical materials include aluminum, an AgMg alloy, and Ca.
  • a soda-lime glass substrate (30 cm x 40 cm x 1.1 mm) with a silica film with a thickness of about 50 nm as an alkali barrier layer (a layer that prevents the diffusion of alkali components from the substrate), and wash it thoroughly. Thereafter, a hydrolysis reaction between tin tetrachloride and water was performed by an atmospheric pressure CVD method to form a tin oxide transparent conductive film (fluorine-doped tin oxide film). Specifically, the following procedure was used. Tin tetrachloride was placed in a bubbler tank maintained at 55 ° C., and nitrogen was introduced from a cylinder to vaporize it. Water was supplied from a boiler maintained at 10 ° C. or higher.
  • Both were heated to 150 ° C. and then transported to the injector body via a conduit kept at 150 ° C. and mixed.
  • the temperature of the injector body was kept at about 150 ° C. by a heat medium (oil).
  • the mixed gas was discharged from the injector discharge portion onto a glass substrate at about 500 ° C., and a tin oxide transparent conductive film was formed on the glass substrate surface.
  • a buffer layer 103 made of P-DOT / PSS (mixture of polythiophene and polystyrene sulfonic acid) is formed by a coating method. And this was cut
  • the number, spacing, and height of protrusions (polygonal pyramids and plateau-shaped protrusions) having a height of 100 nm or more were measured on the SEM photograph having a magnification of 20,000.
  • the height was measured by taking a cross section and using an AFM photograph, but the cross section may be cut out and an SEM photograph taken.
  • the average number of protrusions on the surface of the thin film was about 20 per 1 ⁇ m ⁇ .
  • the width W1 is about 200 nm
  • H1 / W1 is about 0.5.
  • a translucent substrate having a first electrode (translucent electrode) having a surface shape having regular pyramid-shaped projections can be obtained, and light extraction is performed.
  • the efficiency is 50% or more, and a substrate for an organic LED light emitting element with high light extraction efficiency is formed.
  • the convexity of the first electrode increases the refraction by increasing the area of the inclined portion of the angled portion by forming a conical shape with a sharp tip. Can do.
  • the light-transmitting electrode (first electrode) is formed with a pyramid-shaped convex and has a light scattering effect, so that the above-described light can be obtained over the entire emission spectrum range (430 nm to 650 nm).
  • the extraction efficiency can be improved. This is because the probability that light propagating inside the device changes its direction by scattering and is emitted to the outside increases. Further, even when propagating through the element at an angle that cannot be extracted to the outside, the light is reflected by the reflective electrode and the light reaches the translucent electrode again.
  • the refractive index of the glass substrate be equal to or higher than the refractive index of the first electrode material. This is because when the refractive index is low, a loss due to total reflection occurs at the interface between the glass substrate and the first electrode material.
  • the refractive index of the glass substrate only needs to exceed at least a part of the emission spectrum range of the light emitting layer (eg, red, blue, green, etc.), but exceeds the entire emission spectrum range (430 nm to 650 nm). It is more desirable that it exceeds the entire visible light wavelength range (360 nm to 830 nm).
  • the P-DOT / PSS used here is effective as a buffer layer, but also has a role as a charge injection layer.
  • the ratio of the average value H1 of the height to the average value W1 of the appearance interval of the projection T1 on the surface of the first electrode is 0.5 or more. Is desirable.
  • the ratio of the average value H1 of the height to the average value W1 is less than 0.5, the unevenness on the surface of the buffer layer formed in the upper layer is hardly formed to a desired value.
  • film formation can be facilitated in a state where the unevenness on the electrode surface is larger than the unevenness on the surface of the buffer layer. With this configuration, the light extraction efficiency can be improved more favorably.
  • the surface roughness Ra of the surface on the buffer layer side of the first electrode is preferably 60 nm or more.
  • the surface roughness Ra of the buffer layer side surface of the first electrode is more desirably 80 nm or more and less than 120 nm. If the surface roughness is larger than 120 nm, a short circuit may occur. Since the thickness of the light emitting layer is 100 to 150 nm, the surface roughness of the buffer layer is desirably 80 nm or more and less than 120 nm rather than the light emitting layer. If the surface roughness of the buffer layer is greater than 120 nm, a short circuit may occur. Further, the appearance interval of the protrusion T2 on the buffer layer side surface formed on the first electrode is 0.1 to 0.3 ⁇ m. According to this configuration, light extraction with good visibility can be performed without incurring wavelength dependency.
  • an organic layer 110 is sequentially formed by a coating method as a layer having a light emitting function by a usual method, and a second electrode 120 made of a reflective electrode is further formed. As shown in FIG. Is formed.
  • the buffer layer 103 has a smaller surface roughness at the interface with the organic layer 110 as a layer having a light emitting function than the interface with the surface of the light-transmitting first electrode 102. Things are desirable. Further, it is desirable that the surface of the buffer layer 103 forms an uneven surface, and the ratio of the average value H2 of the height to the average value W2 of the appearance interval of the convex T2 is 0.2 or more. In addition, the organic layer 110 that is a layer having a light emitting function has an uneven surface on the second electrode 120 side surface, and the ratio of the average value of the height H3 to the average value of the appearance intervals W3 of the protrusions T3 is 0.1. The above is desirable.
  • the output peak wavelength ⁇ of the layer having the light emitting function satisfies the following formula. ( ⁇ ⁇ 450 nm) (formula)
  • the glass substrate provided with the thin film of tin oxide doped with fluorine of Example 1 when used as an organic LED element, the light confinement effect of visible light is effectively exhibited.
  • the P-DOT / PSS used here is effective as the buffer layer 103.
  • the buffer layer has a charge injection effect. Therefore, higher efficiency can be achieved.
  • the organic layer 110 as a layer having a light emitting function can be formed by a coating method or a dry process such as an evaporation method.
  • molybdenum oxide has a small specific resistance and a specific resistance close to that of the first electrode, a voltage drop in the buffer layer can be ignored, and an electric field is generated between the buffer layer 103 and the second electrode 120. Get bigger in between. Further, the pointed cone-shaped tip of the first electrode surface is relaxed by the buffer layer.
  • the presence of the buffer layer 103 further reduces the electric field concentration and improves the lifetime.
  • the refractive index differs greatly at the interface between the first electrode 102 and the buffer layer 103 on the substrate 101, and the scattering effect is improved at this portion.
  • the scattering effect is high. For this reason, two-stage scattering occurs on the first electrode side, and the light extraction efficiency is improved.
  • the organic LED light emitting element of the present embodiment it is possible to form a film so as to maintain unevenness even at the interface between the second electrode on the upper layer side and the layer having a light emitting function.
  • the unevenness is formed at the interface between the organic layer and the second electrode, so that the diffusibility at the interface between the organic layer and the second electrode can be increased, and further light extraction is performed. Efficiency can be improved.
  • the film can be formed so as to maintain unevenness at the interface between the second electrode on the upper layer side and the layer having a light emitting function, and unevenness is formed at the interface between the organic layer and the second electrode.
  • the second electrode on the upper layer side is a reflective electrode
  • the reflection direction at the interface between the organic layer and the second electrode becomes multi-directional, and the first electrode is moved from the organic layer.
  • FIG. 7 is a cross-sectional view showing a substrate for an organic LED light-emitting element according to Embodiment 2 of the present invention
  • FIG. 8 is a cross-sectional view showing the organic LED light-emitting element according to Embodiment 2 of the present invention.
  • the unevenness on the surface is formed so that the edge is sharp even on the buffer layer.
  • the buffer layer is more uneven than the unevenness on the surface of the translucent first electrode 102.
  • the unevenness on 103P may be a gentler shape. According to this configuration, even when the layer having the light emitting function formed on the upper layer is thin, no disconnection occurs. Further, the unevenness on the buffer layer 103P may be smaller than the unevenness on the surface of the light-transmitting first electrode 102, but the unevenness shape may be gentle to the same extent.
  • the unevenness of the surface of the light-transmitting first electrode 102 is applied with the buffer layer 103P formed of P-DOT / PSS, so that the surface is slightly gentle.
  • the organic layer 110 which is a layer having a light emitting function, is formed on the upper layer so that the unevenness of the surface becomes slightly gentle. That is, the buffer layer 103P is characterized in that the surface roughness at the interface with the organic layer 110 which is a layer having a light emitting function is slightly smaller than the interface with the surface of the translucent electrode which is the first electrode 102.
  • the unevenness is formed at the interface between the organic layer 110 and the second electrode 120, so that the reflection direction at the interface between the organic layer 110 and the second electrode 120 is multidirectional.
  • the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, but the distance between the electrodes gently changes at the same pitch, so that a large voltage is applied locally. It can be avoided.
  • the unevenness gradually decreases, and the surface of the layer having the light emitting function becomes the surface of the first electrode.
  • a region indicated by a solid line arrow is a region where an electric field is substantially applied, and a region indicated by a broken line arrow is a distance between electrodes. This is because, since the specific resistance of the buffer layer 103P is small, the electric field applied to the buffer layer 103P is extremely small, and the electric field applied to the organic layer 110 occupies most of the electric field.
  • the distance between the solid-line arrows is the distance between the electrodes where the electric field is applied substantially
  • the broken-line arrow is the optical interface having a scattering effect
  • FIG. 9 is a cross-sectional view showing a substrate for an organic LED light-emitting element according to Embodiment 3 of the present invention
  • FIG. 10 is a cross-sectional view showing the organic LED light-emitting element according to Embodiment 3 of the present invention.
  • the unevenness on the buffer layer 103P has a gentler shape than the unevenness on the surface of the translucent first electrode 102.
  • the organic LED light emission of this embodiment As shown in FIGS. 9 and 10, the element is characterized in that a low-resistance buffer layer 103Q is used and the surface of the buffer layer 103Q is substantially flat. According to this configuration, the layer having the light emitting function formed on the upper layer is formed on the flat surface, and even when the layer having the light emitting function is thin, the lower layer is covered with the layer having the light emitting function. Does not become insufficient.
  • the unevenness of the surface of the light-transmitting first electrode 102 is provided with the buffer layer 103Q configured by the highly doped low resistance P-DOT / PSS.
  • the surface is flattened, and the organic layer 110 which is a layer having a light emitting function is formed thereon. That is, the buffer layer 103Q has a flat surface without depending on the surface roughness at the interface with the organic layer 110 which is a layer having a light emitting function, rather than the interface with the surface of the transparent electrode which is the first electrode 102. It is characterized by having it.
  • the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, but the distance between the electrodes gently changes at the same pitch, and the buffer layer is an insulating layer. Therefore, the substantial thickness of the organic layer 110 is constant, and it is possible to avoid a situation in which a large voltage is applied locally.
  • the irregularities on the surface of the first electrode 102 multi-directional reflection is repeated at the interface between the first electrode and the buffer layer 103Q and the interface between the buffer layer 103Q and the organic layer 110, respectively.
  • a long life can be maintained and light can be extracted efficiently.
  • the unevenness of the surface of the first electrode is substantially flat on the surface of the buffer layer, and the buffer layer is made of a low resistance material, so that the substantial distance between the electrodes is the surface of the flat buffer layer. To the distance between the second electrodes. In this way, it is possible to provide a more reliable organic LED light-emitting element with good light extraction efficiency and no power concentration.
  • a low-resistance inorganic material such as molybdenum oxide has a small specific resistance and a specific resistance close to that of the first electrode, so that a voltage drop in the buffer layer can be ignored.
  • the pointed cone-shaped tip of the first electrode surface is relaxed by the buffer layer. Accordingly, due to the presence of the buffer layer 103, the distance between the buffer layer 103 and the second electrode 120 becomes substantially uniform, the electric field concentration is further reduced, and the lifetime is improved.
  • the refractive index differs greatly at the interface between the first electrode 102 and the buffer layer 103 on the substrate 101, and the scattering effect is improved at this portion.
  • FIG. 10 shows a region where an electric field is actually applied by a solid arrow, and a distance between electrodes by a broken arrow.
  • the distance between solid line arrows corresponds to the distance between electrodes to which an electric field is applied, and the broken line arrow corresponds to the distance between optical interfaces.
  • the electrical interface is flattened while leaving the unevenness in the optical interface, so that the distance between the electrodes of the organic LED light emitting element is maintained substantially uniform, and in the vicinity of the layer having the light emitting function.
  • the scattering effect can be enhanced, and the light extraction efficiency can be improved and the life can be extended.
  • the organic LED light emitting element having a bottom emission structure that extracts light to the substrate side has been described.
  • the present invention is not limited to this, and light generated by unevenness at the interface between the first electrode and the layer having a light emitting function.
  • Double-sided organic LED light emission that not only improves the extraction characteristics, but also uses the second electrode as a translucent electrode to improve the light extraction characteristics due to irregularities at the interface between the second electrode and the layer having a light emitting function. It can also be applied to elements.
  • an organic layer is used as a layer having a light emitting function
  • an inorganic film such as an inorganic film made of a refractory metal oxide such as molybdenum oxide may be used as a buffer layer.
  • the organic LED light emitting element of the present invention can increase the light extraction efficiency and can be applied to various light emitting devices such as a display panel.
  • Translucent substrate with electrode 101 Substrate 102 First electrode (translucent electrode) 103, 103P, 103Q Buffer layer 110 Organic layer (layer having light emitting function) 120 Second electrode (reflective electrode)

Abstract

Disclosed is an organic LED light-emitting element having reduced electric field concentration and high light extraction efficiency. Specifically disclosed is an organic LED light-emitting element comprising a light-transmitting substrate (101), a first electrode (102) which is formed on the light-transmitting substrate by a CVD technique and comprises a light-transmitting oxide film having projections and depressions on the surface thereof, a buffer layer (103) which is formed on the first electrode, an organic layer (110) which is formed on the buffer layer as a layer having light-emitting function, and a second electrode (120) which is formed on the layer having light-emitting function. The organic layer (110) may be formed so that projections and depressions are formed on the interface between the organic layer (110) and the second electrode (120), whereby multi-directional reflection can be achieved on the interface between the organic layer (110) and the second electrode (120), and the light extraction efficiency can be further improved.

Description

有機LED発光素子及びその製造方法Organic LED light emitting device and manufacturing method thereof
 本発明は、有機LED(Organic Light Emitting Diode)素子及びその製造方法に係り、特に、有機LEDの光取り出し構造に関する。 The present invention relates to an organic LED (Organic Light Emitting Diode) element and a manufacturing method thereof, and more particularly to a light extraction structure of an organic LED.
 有機LED発光素子は、有機層からなる発光層を含む発光機能を有する層を電極間に挟み、電極間に電圧を印加して、ホール、電子を注入し、有機層内で再結合させて、発光分子が励起状態から基底状態に至る過程で発生する光を取り出すもので、ディスプレイやバックライト、照明用途に用いられている。本明細書で発光機能を有する層とは、発光層と、この発光層に積層して用いられるホール注入層、電子注入層などの電荷注入層と、ホール輸送層、電子輸送層などの電荷輸送層を含めて、発光層と発光層の発光に寄与する機能層とのすべてを含むものとする。
 有機層の屈折率は波長430nmで1.8~2.1程度である。一方、例えば透光性電極層としてITO(酸化インジウム錫:Indium Tin Oxide)を用いる場合の屈折率は、ITO成膜条件や組成(Sn-In比率)で異なるが、1.9~2.1程度が一般的である。このように有機層と透光性電極層の屈折率は近く、発光光は有機層と透光性電極層間で全反射することなく、透光性電極層と透光性基板の界面に到達する。透光性基板には通常ガラス基板や樹脂基板が用いられるが、これらの屈折率は1.5~1.6程度であり、有機層或いは透光性電極層よりも低屈折率である。スネルの法則から考えると、ガラス基板に浅い角度で進入しようとした光は全反射で有機層方向に反射され、反射性電極で反射され再び、ガラス基板の界面に到達する。この時、ガラス基板への入射角度は変わらないため、反射を有機層、透光性電極層内で繰り返し、ガラス基板から外に取り出すことができない。概算では、発光光の60%程度がこのモード(有機層・透光性電極層伝播モード)で取り出せないことが分かっている。同様なことが基板、大気界面でも起き、これにより発光光の20%程度がガラス内部を伝播して、光が取り出せない(基板伝播モード)。従って、有機LED発光素子の外部に取り出せる光の量は、発光光の20%足らずになっているのが現状である。
The organic LED light-emitting element sandwiches a layer having a light-emitting function including a light-emitting layer made of an organic layer, applies a voltage between the electrodes, injects holes and electrons, and recombines in the organic layer, Extracts light generated in the process from the excited state to the ground state of luminescent molecules, and is used in displays, backlights, and lighting applications. The layer having a light emitting function in this specification refers to a light emitting layer, a charge injection layer such as a hole injection layer and an electron injection layer used by being stacked on the light emitting layer, and a charge transport such as a hole transport layer and an electron transport layer. All layers including the light emitting layer and the functional layer contributing to light emission of the light emitting layer are included.
The refractive index of the organic layer is about 1.8 to 2.1 at a wavelength of 430 nm. On the other hand, for example, when ITO (Indium Tin Oxide) is used as the translucent electrode layer, the refractive index differs depending on the ITO film forming conditions and composition (Sn—In ratio), but 1.9 to 2.1. The degree is common. Thus, the refractive index of the organic layer and the translucent electrode layer is close, and the emitted light reaches the interface between the translucent electrode layer and the translucent substrate without being totally reflected between the organic layer and the translucent electrode layer. . A glass substrate or a resin substrate is usually used as the translucent substrate, but the refractive index thereof is about 1.5 to 1.6, which is lower than that of the organic layer or the translucent electrode layer. Considering Snell's law, light entering the glass substrate at a shallow angle is totally reflected in the direction of the organic layer, reflected by the reflective electrode, and reaches the interface of the glass substrate again. At this time, since the incident angle to the glass substrate does not change, reflection cannot be taken out from the glass substrate by repeating reflection in the organic layer and the translucent electrode layer. As a rough estimate, it is known that about 60% of the emitted light cannot be extracted in this mode (organic layer / translucent electrode layer propagation mode). The same thing occurs at the interface between the substrate and the atmosphere. As a result, about 20% of the emitted light propagates inside the glass and light cannot be extracted (substrate propagation mode). Accordingly, the amount of light that can be extracted outside the organic LED light emitting element is less than 20% of the emitted light.
 特許文献1では、半透明物質層である光散乱層を基板の片面に設ける構造を提案している(段落0039~0040)。ガラス粒子をアクリル系接着剤で基板面に固着させて、基板面に凝集配置することで基板と有機LED発光素子との間に光散乱部を設けた構造を提案している。
 また、特許文献2では、取り出し効率を改善することを企図し、「透光性の基板上に、樹脂系接着剤、スプレー、蒸着、スパッタ、ディップ、スピンコート等により、SiO粒子、樹脂粒子、金属粉、金属酸化物粒子が分散した透明な材料で構成された付加層からなる散乱層を設けた有機LED発光素子」(例えば段落0057)を開示している。
 特許文献3では、樹脂中に平均粒子径が1桁以上異なる少なくとも2種の微粒子を分散させた拡散層を透光性電極に隣接して設け、導波光を効率良く取り出すようにした発光デバイスを開示している。
Patent Document 1 proposes a structure in which a light scattering layer, which is a translucent material layer, is provided on one side of a substrate (paragraphs 0039 to 0040). The structure which provided the light-scattering part between the board | substrate and the organic LED light emitting element is proposed by making glass particle adhere to the board | substrate surface with an acrylic adhesive, and coheringly arrange | positioning on the board | substrate surface.
Further, Patent Document 2 intends to improve the extraction efficiency, and “on a light-transmitting substrate, a resin adhesive, spray, vapor deposition, sputtering, dip, spin coating, etc., SiO 2 particles, resin particles An organic LED light emitting device provided with a scattering layer composed of an additional layer made of a transparent material in which metal powder and metal oxide particles are dispersed (for example, paragraph 0057) is disclosed.
In Patent Document 3, there is provided a light emitting device in which a diffusion layer in which at least two kinds of fine particles having an average particle size different by one digit or more in a resin are dispersed is provided adjacent to a translucent electrode so that guided light is efficiently extracted. Disclosure.
 しかしながら、特許文献1乃至3では、いずれも基板における散乱効果の向上を企図しており、透光性電極と発光機能を有する層との界面での散乱による光取り出し効率の向上について言及したものではなかった。 However, Patent Documents 1 to 3 all intend to improve the scattering effect in the substrate, and do not mention improvement in light extraction efficiency due to scattering at the interface between the translucent electrode and the layer having a light emitting function. There wasn't.
 また、本出願人は、太陽電池の光電変換効率の向上のために、透明導電膜の表面に凹凸を形成しこの凹凸のピッチを最適化した太陽電池用基板を提案している(特許文献4)。 In addition, the present applicant has proposed a solar cell substrate in which irregularities are formed on the surface of a transparent conductive film and the pitch of the irregularities is optimized in order to improve the photoelectric conversion efficiency of the solar cell (Patent Document 4). ).
日本国特許第2931211号公報Japanese Patent No. 2932121 日本国特開2005-63704号公報Japanese Unexamined Patent Publication No. 2005-63704 日本国特開2005-190931号公報Japanese Unexamined Patent Publication No. 2005-190931 日本国特開2002-111025号公報Japanese Laid-Open Patent Publication No. 2002-111025
 特許文献4の太陽電池用基板の場合、光電変換層内で生起された光電子対を電極に向けて導くことで電流を流すもので、透明導電膜からこの上層に形成されるアモルファスシリコン層への光の取り込み効率を増大しかつアモルファスシリコン層内での多重反射などによる光閉じ込め効率を高めるようにしたものである。したがって電界をかけるわけでないため、透明導電膜表面の凹凸に起因する電極間距離のばらつきは、それほどに大きな問題ではなかった。また、使用する光の波長が、太陽光(波長領域300から800nm)のように、広帯域での光閉じ込め効率の向上には有効であった。 In the case of the solar cell substrate of Patent Document 4, a current flows by guiding the photoelectron pair generated in the photoelectric conversion layer toward the electrode. From the transparent conductive film to the amorphous silicon layer formed on this upper layer, The light capture efficiency is increased and the light confinement efficiency due to multiple reflection in the amorphous silicon layer is increased. Therefore, since an electric field is not applied, variation in the distance between the electrodes due to the unevenness on the surface of the transparent conductive film is not a significant problem. In addition, the wavelength of light to be used is effective in improving the light confinement efficiency in a wide band like sunlight (wavelength region 300 to 800 nm).
 これに対し、有機LED発光素子では、光の取り出し効率を高める必要がある。透明導電膜とこの上層に形成される発光機能を有する層との界面での散乱効果を高め、光の取り出し効率を高める必要がある。また、発光機能を有する層とこの上層に形成される上部電極の界面での散乱効果を高め、光の取り出し効率を高める必要がある。また、発光機能を有する層を挟む透明導電膜ともう一方の電極との間には電圧を印加するため、透明導電膜表面のばらつきは、電界集中の原因となる。 On the other hand, in the organic LED light emitting element, it is necessary to increase the light extraction efficiency. It is necessary to increase the light extraction efficiency by increasing the scattering effect at the interface between the transparent conductive film and the layer having a light emitting function formed thereon. Further, it is necessary to enhance the scattering effect at the interface between the layer having a light emitting function and the upper electrode formed in the upper layer, and to increase the light extraction efficiency. In addition, since a voltage is applied between the transparent conductive film sandwiching the layer having a light emitting function and the other electrode, variations in the surface of the transparent conductive film cause electric field concentration.
 ここで、第1の電極としての透明導電膜表面に凹凸がある場合、この上層に蒸着法などによって発光機能を有する層などを形成すると、これらの有機層の凹凸に対する被覆性が悪くなり、有機層の膜厚にばらつきが生じる。また、その結果、上記第1の電極と有機層上に形成される第2の電極表面との間の電極間距離にばらつきが生じることになる。その結果、電極間距離の小さい領域においては、有機層に局所的に大電流が流れることになり、電極間短絡を生じ不灯の原因となることがわかった。また高解像度ディスプレイのように、微細画素で構成する表示装置を形成する場合には、微細な画素パターンを形成する必要があり、表面の凹凸は、画素の位置やサイズにばらつきが生じる原因となるだけでなく、この凹凸で有機素子が短絡してしまうという問題もある。 Here, when the surface of the transparent conductive film as the first electrode is uneven, if a layer having a light emitting function or the like is formed on the upper layer by vapor deposition or the like, the coverage of the organic layer with respect to the unevenness is deteriorated. Variations in layer thickness occur. As a result, the interelectrode distance between the first electrode and the surface of the second electrode formed on the organic layer varies. As a result, it was found that in a region where the distance between the electrodes is small, a large current flows locally in the organic layer, causing a short circuit between the electrodes and causing a non-lighting. In addition, when forming a display device composed of fine pixels, such as a high-resolution display, it is necessary to form a fine pixel pattern, and surface irregularities cause variations in pixel positions and sizes. In addition, there is a problem that the organic element is short-circuited by the unevenness.
 しかしながら、前述したように、従来有機LED発光素子においては、透明導電膜と発光機能を有する層との界面での光の挙動や屈折率差については何等考察されていなかった。 However, as described above, in the conventional organic LED light emitting device, no consideration has been given to the behavior of light and the difference in refractive index at the interface between the transparent conductive film and the layer having a light emitting function.
 本発明は、前記実情に鑑みてなされたもので、光取り出し効率の高い有機LED発光素子を提供することを目的とする。
 また本発明は、高効率で長寿命の有機LED発光素子を提供することを目的とする。
This invention is made | formed in view of the said situation, and it aims at providing the organic LED light emitting element with high light extraction efficiency.
Another object of the present invention is to provide an organic LED light-emitting element with high efficiency and long life.
 そこで、本発明は、透光性基板と、透光性基板上にCVD法によって形成された、表面に凹凸を有する透光性酸化膜からなる第1の電極と、第1の電極上に形成されたバッファ層と、バッファ層上に形成された発光機能を有する層と、発光機能を有する層上に形成された第2の電極とを具備した有機LED発光素子を提供する。 Accordingly, the present invention provides a light-transmitting substrate, a first electrode formed on the light-transmitting substrate by a CVD method, and formed of a light-transmitting oxide film having irregularities on the surface, and formed on the first electrode. Provided is an organic LED light emitting device comprising: a buffer layer formed; a layer having a light emitting function formed on the buffer layer; and a second electrode formed on the layer having a light emitting function.
 また本発明は、上記有機LED発光素子において、第1の電極表面から、バッファ層の表面、前記発光機能を有する層の表面に行くに従い、順次凹凸が小さくなり、発光機能を有する層の表面が、第1の電極表面の凹凸に対応する凹凸を維持するものを含む。 Further, according to the present invention, in the organic LED light emitting device, the unevenness decreases in order from the surface of the first electrode to the surface of the buffer layer and the surface of the layer having the light emitting function, and the surface of the layer having the light emitting function is reduced. And those that maintain irregularities corresponding to the irregularities on the surface of the first electrode.
 また本発明は、上記有機LED発光素子において、前記バッファ層の表面は前記第1の電極表面の凹凸に対応する凹凸を有するものを含む。 In the organic LED light emitting device, the surface of the buffer layer has irregularities corresponding to the irregularities of the surface of the first electrode.
 また本発明は、上記有機LED発光素子において、前記発光機能を有する層の表面は前記第1の電極表面の凹凸に対応する凹凸を有し、前記第1の電極表面の凹凸、前記バッファ層表面の凹凸、及び前記発光機能を有する層表面の凹凸は、前記第1の電極表面から、前記バッファ層表面、前記発光機能を有する層表面に行くに従い、順次前記各凹凸の程度を表す表面粗さが小さくなるものを含む。 In the organic LED light emitting device, the surface of the layer having the light emitting function has irregularities corresponding to the irregularities of the first electrode surface, the irregularities of the first electrode surface, and the buffer layer surface. The roughness of the surface of the layer having the light emitting function is a surface roughness that represents the degree of each unevenness in order from the surface of the first electrode to the surface of the buffer layer and the surface of the layer having the light emitting function. Including those that become smaller.
 また本発明は、上記有機LED発光素子において、第1の電極表面の凹凸の内、凸は、規則的な角錐形状であるものを含む。 In addition, the present invention includes the organic LED light emitting device, wherein the convexity of the first electrode surface has a regular pyramid shape.
 また望ましくは、上記有機LED発光素子において、第1の電極の表面の凸は、先端が尖った角錐形状を有する表面形状をなすものがのぞましい。 Desirably, in the organic LED light emitting device, the first electrode has a convex surface having a pyramid shape with a sharp tip.
 また本発明は、上記有機LED発光素子において、第1の電極表面の凸の出現間隔の平均値W1に対する前記凸の高さの平均値H1の比が0.5以上であるものを含む。 Further, the present invention includes the organic LED light-emitting element in which the ratio of the average value H1 of the convex height to the average value W1 of the convex appearance interval on the first electrode surface is 0.5 or more.
 また本発明は、上記有機LED発光素子において、第1の電極の前記バッファ層側表面の表面粗さRaが60nm以上であるものを含む。
 ここで表面粗さRaはJIS B0601:2001によるものである。
Moreover, this invention contains the said organic LED light emitting element whose surface roughness Ra of the said buffer layer side surface of a 1st electrode is 60 nm or more.
Here, the surface roughness Ra is according to JIS B0601: 2001.
 また本発明は、上記有機LED発光素子において、第1の電極の前記バッファ層側表面の表面粗さRaが80nm以上120nm未満であるものを含む。 Further, the present invention includes the organic LED light emitting device, wherein the surface roughness Ra of the first electrode on the buffer layer side surface is 80 nm or more and less than 120 nm.
 また本発明は、上記有機LED発光素子において、第1の電極表面の凸の出現間隔が、0.1から0.3μmであるものを含む。 Further, the present invention includes the organic LED light emitting element in which the appearance interval of the convexity on the surface of the first electrode is 0.1 to 0.3 μm.
 また本発明は、上記有機LED発光素子において、前記バッファ層が溶液塗布型の有機層であるものを含む。
 ここで有機膜とは、分子量15000以上の高分子量の有機膜と、それ以下の分子量をもつ低分子量の有機膜があるが、ここでは前者を高分子層、後者を低分子層というものとする。
Further, the present invention includes the organic LED light emitting device, wherein the buffer layer is a solution coating type organic layer.
Here, the organic film includes a high molecular weight organic film having a molecular weight of 15000 or more and a low molecular weight organic film having a lower molecular weight. Here, the former is referred to as a polymer layer, and the latter is referred to as a low molecular layer. .
 また本発明は、上記有機LED発光素子において、バッファ層が溶液塗布型の高分子層であるのが望ましい。 Also, in the present invention, in the organic LED light emitting device, the buffer layer is preferably a solution coating type polymer layer.
 また本発明は、上記有機LED発光素子において、バッファ層が溶液塗布型の低分子層であるのが望ましい。 In the present invention, in the organic LED light emitting device, the buffer layer is preferably a solution coating type low molecular layer.
 また本発明は、上記有機LED発光素子において、バッファ層が金属酸化物薄膜であるものを含む。 Further, the present invention includes the above organic LED light emitting device in which the buffer layer is a metal oxide thin film.
 また本発明は、上記有機LED発光素子において、バッファ層は第1の電極表面との界面と、発光機能を有する層との界面とで、表面粗さがほぼ等しくなるようにするのが望ましい。 In the organic LED light-emitting device according to the present invention, it is desirable that the buffer layer has substantially the same surface roughness at the interface with the first electrode surface and the interface with the layer having a light emitting function.
 また本発明は、上記有機LED発光素子において、バッファ層は前記第1の電極側表面との界面よりも、発光機能を有する層との界面での表面粗さの方が小さくなるようにするのが望ましい。 According to the present invention, in the organic LED light emitting device, the buffer layer has a smaller surface roughness at the interface with the layer having a light emitting function than at the interface with the surface on the first electrode side. Is desirable.
 また本発明は、上記有機LED発光素子において、バッファ層表面の凹凸の内、凸の出現間隔の平均値W2に対する前記凸の高さの平均値H2の比が0.2以上であるものを含む。 Moreover, this invention contains the said organic LED light emitting element whose ratio of the average value H2 of the said convex height with respect to the average value W2 of the convex appearance space is 0.2 or more among the unevenness | corrugations of the buffer layer surface. .
 また本発明は、上記有機LED発光素子において、発光機能を有する層表面の凹凸の内、凸の出現間隔の平均値W3に対する高さの平均値H3の比が0.1以上であるものを含む。 In addition, the present invention includes the organic LED light-emitting element in which the ratio of the average value H3 of the height to the average value W3 of the convex appearance interval is 0.1 or more among the irregularities on the surface of the layer having a light emitting function. .
 また本発明は、上記有機LED発光素子において、発光機能を有する層の出力のピーク波長は、波長λは次式を満たすものを含む。(λ<450nm)・・・(式) In the organic LED light emitting device, the output wavelength of the layer having a light emitting function includes a wavelength λ satisfying the following formula. (Λ <450 nm) (formula)
 また本発明は、上記有機LED発光素子において、透光性基板が、ガラス基板であるものを含む。なお、透光性基板として、透光性樹脂基板を用いるようにしてもよい。 Further, the present invention includes the above organic LED light emitting element in which the translucent substrate is a glass substrate. Note that a translucent resin substrate may be used as the translucent substrate.
 また本発明は、上記有機LED発光素子において、透光性樹脂基板が可撓性基板であるものを含む。 Further, the present invention includes the above organic LED light emitting element in which the translucent resin substrate is a flexible substrate.
 また本発明は、上記有機LED発光素子において、第1の電極は、フッ素ドープされた酸化錫層で構成されるものを含む。
 またバッファ層としてはPDOTを用い、正孔注入層を兼ねるようにしてもよい。
In the organic LED light-emitting device, the first electrode includes a fluorine-doped tin oxide layer.
Further, PDOT may be used as the buffer layer and may also serve as a hole injection layer.
 また本発明は、透光性基板上にCVD法によって形成された、表面に凹凸を有する透光性酸化膜からなる第1の電極を形成する工程と、第1の電極上にバッファ層を形成する工程と、バッファ層上に発光機能を有する層を形成する工程と、発光機能を有する層上に第2の電極を形成する工程とを含むものを含む。 The present invention also includes a step of forming a first electrode made of a light-transmitting oxide film having a surface with irregularities formed on a light-transmitting substrate by a CVD method, and forming a buffer layer on the first electrode. Including a step of forming a layer having a light emitting function on the buffer layer, and a step of forming a second electrode on the layer having the light emitting function.
 また本発明は、上記有機LED発光素子の製造方法において、発光機能を有する層を形成する工程は、第1の電極表面上に形成された前記バッファ層上に前記第1の電極表面の凹凸に起因する凹凸を表面に残す程度のステップカバレッジを有するように成膜する工程であるものを含む。 According to the present invention, in the method for manufacturing an organic LED light emitting device, the step of forming a layer having a light emitting function is performed on the buffer layer formed on the surface of the first electrode by forming irregularities on the surface of the first electrode. This includes a process of forming a film so as to have a step coverage of leaving the unevenness caused by the surface on the surface.
 また、上記有機LED発光素子の製造方法において、前記バッファ層を形成する工程は、前記第1の電極表面の凹凸に対応する凹凸であって、より程度の小さな凹凸を前記バッファ層表面に形成し、前記発光機能を有する層を形成する工程は、前記第1の電極表面の凹凸に起因し、かつ、前記バッファ層表面の凹凸に対応する凹凸であって、前記バッファ層表面の凹凸より程度の小さな凹凸を前記発光機能を有する層表面に形成するように、成膜する工程であるものを含む。 Further, in the method for manufacturing the organic LED light emitting device, the step of forming the buffer layer is unevenness corresponding to the unevenness of the surface of the first electrode, and a smaller unevenness is formed on the surface of the buffer layer. The step of forming the layer having the light emitting function is caused by unevenness on the surface of the first electrode, and is uneven corresponding to the unevenness on the surface of the buffer layer, and is about the unevenness on the surface of the buffer layer. This includes a step of forming a film so that small irregularities are formed on the surface of the layer having a light emitting function.
 また、上記有機LED発光素子の製造方法において、バッファ層を形成する工程を、塗布法により高分子層を形成する工程としてもよい。 Further, in the method for manufacturing the organic LED light emitting element, the step of forming the buffer layer may be a step of forming the polymer layer by a coating method.
 また、上記有機LED発光素子の製造方法において、バッファ層を形成する工程を、塗布法により低分子層を形成する工程としてもよい。 Further, in the method for manufacturing an organic LED light emitting element, the step of forming the buffer layer may be a step of forming a low molecular layer by a coating method.
 また、上記有機LED発光素子の製造方法において、バッファ層を形成する工程を、ドライプロセスにより無機膜を形成する工程としてもよい。 Further, in the method for manufacturing an organic LED light emitting element, the step of forming the buffer layer may be a step of forming an inorganic film by a dry process.
 本発明によれば、表面にバッファ層を形成した第1の電極(透光性電極)と発光機能を有する層との界面に凹凸を形成し、この界面での散乱により、光取り出し効率を向上することができ、取り出し効率の高い光デバイスを提供することが可能な、透光性基板を提供することが可能となる。特にこの凹凸を最適寸法の角錐状の凹凸とすることで、より散乱効果を高めている。
 また、基板上に形成される第1の電極としての透光性電極上にバッファ層を形成し、電界集中を防止するとともに、屈折率差による光取り出し効率の向上を図ることが出来る。
 さらにまた、本来の有機LED発光素子に比べて、透光性電極と発光機能を有する層との間での散乱効果を増大するなど、散乱効果に優れた透光性基板を提供することが可能となる。
According to the present invention, unevenness is formed at the interface between the first electrode (translucent electrode) having a buffer layer formed on the surface and the layer having a light emitting function, and light extraction efficiency is improved by scattering at this interface. Therefore, it is possible to provide a light-transmitting substrate that can provide an optical device with high extraction efficiency. In particular, the scattering effect is further enhanced by making the irregularities into pyramid-shaped irregularities having optimum dimensions.
In addition, a buffer layer can be formed over the light-transmitting electrode as the first electrode formed on the substrate, so that electric field concentration can be prevented and the light extraction efficiency can be improved due to the difference in refractive index.
Furthermore, it is possible to provide a light-transmitting substrate that has an excellent scattering effect, such as increasing the scattering effect between the light-transmitting electrode and the layer having a light-emitting function, compared to the original organic LED light-emitting element. It becomes.
本発明の実施の形態1の有機LED発光素子を示す断面図Sectional drawing which shows the organic LED light emitting element of Embodiment 1 of this invention 本発明の実施の形態1の有機LED発光素子用基板を示す断面図Sectional drawing which shows the board | substrate for organic LED light emitting elements of Embodiment 1 of this invention. 本発明の実施の形態1の有機LED発光素子用基板の透光性の第1の電極表面を示す写真を表す図The figure showing the photograph which shows the translucent 1st electrode surface of the board | substrate for organic LED light emitting elements of Embodiment 1 of this invention. 本発明の実施の形態1の有機LED発光素子の透光性の第1の電極表面の要部拡大断面模式図The principal part expanded sectional schematic diagram of the translucent 1st electrode surface of the organic LED light emitting element of Embodiment 1 of this invention. 本発明の実施の形態1の有機LED発光素子のバッファ層表面の要部拡大断面模式図The principal part expanded sectional schematic diagram of the buffer layer surface of the organic LED light emitting element of Embodiment 1 of this invention 本発明の実施の形態1の有機LED発光素子の発光機能を有する層表面の要部拡大断面模式図The principal part expanded sectional schematic diagram of the layer surface which has the light emission function of the organic LED light emitting element of Embodiment 1 of this invention. 本発明の実施の形態2の有機LED発光素子用基板を示す断面図Sectional drawing which shows the board | substrate for organic LED light emitting elements of Embodiment 2 of this invention. 本発明の実施の形態2の有機LED発光素子を示す断面図Sectional drawing which shows the organic LED light emitting element of Embodiment 2 of this invention. 本発明の実施の形態3の有機LED発光素子用基板を示す断面図Sectional drawing which shows the board | substrate for organic LED light emitting elements of Embodiment 3 of this invention. 本発明の実施の形態3の有機LED発光素子を示す断面図Sectional drawing which shows the organic LED light emitting element of Embodiment 3 of this invention.
(実施の形態1)
 以下、図面を用いて、本発明の実施の形態1の有機LED発光素子について説明する。図1は、有機LED発光素子の構造を示す断面図、図2は要部拡大断面図、図3は、第1の電極表面を示すSEM写真を表す図、図4は第1の電極表面の角錐形状の凸を示す断面模式図、図5はバッファ層表面の凹凸を示す断面模式図、図6は発光機能を有する層表面の凹凸を示す断面模式図である。
 本発明の有機LED発光素子は、ガラス基板からなる基板101上に形成される透光性電極(第1の電極)を、表面に角錐形状の凸を含む凹凸を有する酸化錫で構成し、散乱効果を高め、光取り出し効率の向上を図るものである。この第1の電極は、条件を制御してCVD法で形成される。すなわち、図1に示すように、電極付き透光性基板100と、有機層110からなる発光機能を有する層と、反射性の第2の電極120とにより構成される。ここで電極付き透光性基板100は、透光性のガラス基板からなる基板101と、透光性の第1の電極102と、バッファ層103とにより構成される。また角錐形状の凸に起因して有機層110と、第2の電極120との界面にも凹凸が形成されている。この凹凸によって有機層110と、第2の電極120との界面での反射方向が多方向となる。この記バッファ層103の表面は第1の電極102表面の凹凸に対応する凹凸を有する。また発光機能を有する層を構成する有機層110の表面は第1の電極102表面の凹凸に対応する凹凸を有する。そして、第1の電極102表面の凹凸、バッファ層103表面の凹凸、有機層110表面の凹凸は、第1の電極102表面から、バッファ層103表面、有機層110表面に行くに従い、順次前記各凹凸の程度を表す表面粗さが小さくなる。
(Embodiment 1)
Hereinafter, the organic LED light-emitting element according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of an organic LED light-emitting element, FIG. 2 is an enlarged cross-sectional view of the main part, FIG. 3 is a diagram showing an SEM photograph showing the first electrode surface, and FIG. FIG. 5 is a schematic cross-sectional view showing irregularities on the surface of the buffer layer, and FIG. 6 is a schematic cross-sectional view showing irregularities on the surface of the layer having a light emitting function.
In the organic LED light-emitting device of the present invention, a translucent electrode (first electrode) formed on a substrate 101 made of a glass substrate is made of tin oxide having irregularities including pyramidal projections on the surface, and is scattered. The effect is enhanced and the light extraction efficiency is improved. This first electrode is formed by CVD under controlled conditions. That is, as shown in FIG. 1, the light-transmitting substrate 100 with electrodes, a layer having a light emitting function composed of the organic layer 110, and the reflective second electrode 120 are configured. Here, the translucent substrate 100 with an electrode includes a substrate 101 made of a translucent glass substrate, a translucent first electrode 102, and a buffer layer 103. In addition, unevenness is also formed at the interface between the organic layer 110 and the second electrode 120 due to the pyramidal protrusion. Due to the unevenness, the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multidirectional. The surface of the buffer layer 103 has unevenness corresponding to the unevenness of the surface of the first electrode 102. The surface of the organic layer 110 constituting the layer having a light emitting function has unevenness corresponding to the unevenness of the surface of the first electrode 102. Then, the unevenness on the surface of the first electrode 102, the unevenness on the surface of the buffer layer 103, and the unevenness on the surface of the organic layer 110 are sequentially changed from the surface of the first electrode 102 to the surface of the buffer layer 103 and the surface of the organic layer 110. The surface roughness representing the degree of unevenness is reduced.
 本発明で用いられる電極付き透光性基板100は、透光性のガラス基板からなる基板101と、CVD法で形成され表面に角錐形状の凸を有する酸化錫層からなる透光性電極としての第1の電極102と、塗布法により形成されたP-DOT/PSS(ポリチオフェンとポリスチレンスルホン酸の混合物)からなるバッファ層103とを具備している。 The translucent substrate with an electrode 100 used in the present invention is a translucent electrode composed of a translucent glass substrate 101 and a tin oxide layer formed by a CVD method and having a pyramid-shaped projection on the surface. A first electrode 102 and a buffer layer 103 made of P-DOT / PSS (a mixture of polythiophene and polystyrene sulfonic acid) formed by a coating method are provided.
 次に、この透光性の第1の電極102について説明する。本発明においても、特許文献4と同様、CVD法を用いて形成した酸化錫薄膜を用いている。
 すなわち、CVD法を用いて、酸化錫を主成分とする薄膜を成膜すると、結晶核が随時生成して薄膜中に混入する。そして、酸化錫を主成分とする薄膜は結晶成長しながら堆積するため、それぞれの結晶核が随時放射状もしくはランダムな一方向に成長する。そのため、薄膜成形初期から成長した結晶と後期に発生した結晶が混在することになり、薄膜の表面凹凸が不均一となる。また、この薄膜の表面には、ドーム状すなわち頂上部が滑らかな凸が観察される。
Next, the translucent first electrode 102 will be described. In the present invention, similarly to Patent Document 4, a tin oxide thin film formed using a CVD method is used.
That is, when a thin film containing tin oxide as a main component is formed using the CVD method, crystal nuclei are generated at any time and mixed into the thin film. And since the thin film which has a tin oxide as a main component is deposited while growing a crystal, each crystal nucleus grows in a radial or random one direction at any time. Therefore, crystals grown from the early stage of thin film formation and crystals generated in the later stage are mixed, and the surface unevenness of the thin film becomes non-uniform. Further, on the surface of the thin film, a dome shape, that is, a convexity with a smooth top is observed.
 しかし、薄膜成形途中での結晶核の生成を抑制すれば、薄膜成形初期に発生した結晶核から選択的に結晶成長が始まるため、薄膜の表面には均一、かつ、緻密な凸が形成される。なお、この場合の凸の外形は、多角錘または台地状となる。したがって、結晶核が薄膜成形途中で生成しないように、かつ成膜速度を高めることの出来る条件を選択する必要がある。 However, if the formation of crystal nuclei in the middle of thin film formation is suppressed, crystal growth starts selectively from the crystal nuclei generated in the initial stage of thin film formation, so that a uniform and dense projection is formed on the surface of the thin film. . In this case, the convex outer shape is a polygonal pyramid or a plateau. Therefore, it is necessary to select conditions that can increase the deposition rate so that crystal nuclei are not generated during thin film formation.
 そこで、酸化錫を主成分とする薄膜の形成において、CVD法においてキャリアガスにヘリウムを用いることで、結晶核を生成させずに結晶成長速度を速めるという方法をとる。 Therefore, in the formation of a thin film containing tin oxide as a main component, helium is used as a carrier gas in the CVD method to increase the crystal growth rate without generating crystal nuclei.
 キャリアガスにヘリウムを用いた場合に、薄膜成形途中で結晶核が生成しない理由および結晶成長速度が速くなる理由は明らかではないとされているが、ヘリウムガスは、分子量が小さいため分子運動速度が速く、原料ガスとの衝突回数が多い。そのため、原料ガス同士が気相中で反応して結晶核に成長することを阻害する。一方で、薄膜の成形段階では、ヘリウムガスは原料ガスと共に基板/薄膜表面に吹き付けられるが、分子量の小さいヘリウムガスが選択的に上昇して排出される。そのため、原料ガスが基板/薄膜の表面付近に溜まり易くなり、結晶成長が促進されるものと考えられる。すなわち、ヘリウムガスには、基板/薄膜表面付近での原料ガスの濃度を高く維持する機能がある。さらに、ヘリウムガスは化学的安定性が極めて高いため、原料ガスとの間に化学的相互作用が働かず、薄膜の結晶成長を阻害しない。 When helium is used as the carrier gas, it is not clear why crystal nuclei are not generated during thin film formation and why the crystal growth rate is high, but helium gas has a small molecular weight, so the molecular motion rate is low. Fast and many collisions with source gas. For this reason, the raw material gases are inhibited from reacting in the gas phase and growing into crystal nuclei. On the other hand, in the thin film forming stage, helium gas is sprayed on the substrate / thin film surface together with the raw material gas, but helium gas having a small molecular weight is selectively raised and discharged. For this reason, it is considered that the source gas is likely to accumulate near the surface of the substrate / thin film, and the crystal growth is promoted. That is, the helium gas has a function of maintaining a high concentration of the source gas near the substrate / thin film surface. Furthermore, since helium gas has extremely high chemical stability, chemical interaction does not work with the source gas, and the crystal growth of the thin film is not hindered.
 また、酸化錫を主成分とする薄膜としては、酸化錫薄膜のほかに、インジウムをドープした酸化インジウム錫(ITO)、または酸化チタン、フッ素もしくは塩素をドープした酸化錫の薄膜などが適用可能である。これらのドープ成分は、とくに限定されるものではないが、酸化錫の結晶成長を著しく阻害するものでないことが条件とされる。このように酸化錫に異なる成分をドープすると、薄膜に新たな特性を付与することができる。たとえば、酸化チタンをドープすると、薄膜の可視光透過率が高まり、またフッ素をドープすると、赤外線反射率が向上する。 As the thin film mainly composed of tin oxide, indium tin oxide doped with indium (ITO) or tin oxide thin film doped with titanium oxide, fluorine or chlorine can be used in addition to the tin oxide thin film. is there. These dope components are not particularly limited, but are required not to significantly inhibit the crystal growth of tin oxide. Thus, when different components are doped into tin oxide, new characteristics can be imparted to the thin film. For example, when titanium oxide is doped, the visible light transmittance of the thin film is increased, and when fluorine is doped, the infrared reflectance is improved.
 この薄膜の原料ガスには、つぎのものを使用することができる。たとえば、四塩化錫、モノブチル錫トリクロライド、ジメチル錫ジクロライド(DMT)、ジブチル錫ジクロライド、ジオクチル錫ジクロライドなどである。これらの化合物の中では、有機錫化合物(有機錫塩化物)、とくにモノブチル錫トリクロライド、ジメチル錫ジクロライドが好ましい。また、ITOの薄膜を成形する場合は、ジメチルインジウムクロライドが好ましい。なお、原料ガスには、酸素または酸化物が適量含まれている必要があり、酸化物としてたとえば水蒸気、一酸化炭素、二酸化窒素およびオゾンなどを使用することができる。また、上述のドープ成分として、フッ化水素、塩素または塩化水素を原料ガスに添加してもよい。 The following can be used as the raw material gas for this thin film. For example, tin tetrachloride, monobutyltin trichloride, dimethyltin dichloride (DMT), dibutyltin dichloride, dioctyltin dichloride, and the like. Among these compounds, organotin compounds (organotin chlorides), particularly monobutyltin trichloride and dimethyltin dichloride are preferred. Further, when forming an ITO thin film, dimethylindium chloride is preferred. The source gas must contain an appropriate amount of oxygen or oxide, and for example, water vapor, carbon monoxide, nitrogen dioxide and ozone can be used as the oxide. Moreover, you may add hydrogen fluoride, chlorine, or hydrogen chloride to source gas as above-mentioned dope component.
 また、図4に第1の電極表面の突出部すなわち凸T1の要部拡大図を示す。このように凸の出現間隔W1の平均値に対する高さH1の平均値の比は0.5となっている。ここで凸の出現間隔W1の平均値に対する高さH1の平均値の比は0.5以上であるのが望ましい。この程度とすることで、電極表面の凹凸がバッファ層表面の凹凸よりも大きいという状態での成膜が容易となり、この構成により、より良好に光取り出し効率を向上することができる。 FIG. 4 shows an enlarged view of the main part of the protrusion on the surface of the first electrode, that is, the protrusion T1. Thus, the ratio of the average value of the height H1 to the average value of the convex appearance interval W1 is 0.5. Here, the ratio of the average value of the height H1 to the average value of the convex appearance interval W1 is preferably 0.5 or more. By setting this level, film formation can be facilitated in a state where the unevenness on the electrode surface is larger than the unevenness on the surface of the buffer layer. With this configuration, the light extraction efficiency can be improved more favorably.
 また、第1の電極101の前記バッファ層103側表面の表面粗さRaは、60nmである。バッファ層103側表面の表面粗さRaは60nm以上であるのが望ましい。この程度とすることで、電極表面の凹凸がバッファ層103表面の凹凸よりも大きいという状態での成膜が容易となり、この構成により、より良好に光取り出し効率を向上することができる。 The surface roughness Ra of the surface of the first electrode 101 on the buffer layer 103 side is 60 nm. The surface roughness Ra of the surface on the buffer layer 103 side is desirably 60 nm or more. By setting it to this extent, film formation can be facilitated in a state where the unevenness of the electrode surface is larger than the unevenness of the buffer layer 103 surface, and this configuration can improve the light extraction efficiency more favorably.
 また、図5にバッファ層表面の凸T2の要部拡大断面図を示す。第1の電極102表面のバッファ層103側表面の凸T2の出現間隔W2は、0.1から0.3μmであるのが望ましい(図5参照)。0.3μmを超えると、発光色の視野角依存性が強くなる。凸T2の出現間隔W2に対する高さの平均値H2の比は0.2となっている。この比は0.2以上であるのが望ましい。この構成により、電極表面の凹凸がバッファ層103表面の凹凸よりも大きいという状態での成膜が容易となり、より良好に光取り出し効率を向上することができる。
 このように、バッファ層103表面も凹凸面を構成し、この上層に形成される有機層表面も凹凸部を構成する。
FIG. 5 shows an enlarged cross-sectional view of the main part of the protrusion T2 on the buffer layer surface. The appearance interval W2 of the protrusion T2 on the surface of the first electrode 102 on the buffer layer 103 side is preferably 0.1 to 0.3 μm (see FIG. 5). When it exceeds 0.3 μm, the viewing angle dependency of the emitted color becomes strong. The ratio of the average value H2 of the height to the appearance interval W2 of the protrusion T2 is 0.2. This ratio is desirably 0.2 or more. With this configuration, film formation can be facilitated in a state where the unevenness of the electrode surface is larger than the unevenness of the surface of the buffer layer 103, and the light extraction efficiency can be improved more favorably.
As described above, the surface of the buffer layer 103 also forms an uneven surface, and the surface of the organic layer formed as an upper layer also forms an uneven portion.
 また図6に有機層表面の凸T3の要部拡大図を示す。このように、前記発光機能を有する層を構成する有機層110は、第2の電極120側表面が凹凸面を構成し、凸の出現間隔W3の平均値に対する高さH3の平均値の比は0.18となっている。この比は0.1以上であるのが望ましい。有機層110と、第2の電極120との界面に凹凸が形成されていることで、有機層110と、第2の電極120との界面での反射方向が多方向となり、有機層110から第1の電極を経て基板側に向かう光の増大をはかることができる。従って、より良好に光取り出し効率を向上することができる。 FIG. 6 shows an enlarged view of the main part of the convex T3 on the surface of the organic layer. Thus, in the organic layer 110 constituting the layer having the light emitting function, the surface on the second electrode 120 side forms an uneven surface, and the ratio of the average value of the height H3 to the average value of the convex appearance interval W3 is It is 0.18. This ratio is desirably 0.1 or more. Since the unevenness is formed at the interface between the organic layer 110 and the second electrode 120, the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multi-directional, and It is possible to increase light traveling toward the substrate through one electrode. Therefore, the light extraction efficiency can be improved more favorably.
 この構成によれば、第1の電極102をCVD法によって、表面に凹凸を有するように形成し、この上層に、この凹凸を反映して凹凸を有するバッファ層103を形成している。従って、第1の電極101とバッファ層103との界面、バッファ層103と発光機能を有する層との界面で、散乱効果を有するようにし、光取り出し効率を高めることが出来る。また、この凹凸が基板101の表面ではなく、第1の電極110表面に形成されているため、発光領域により近い位置で散乱を生じ、より光取り出し特性が良好となる。 According to this configuration, the first electrode 102 is formed by the CVD method so as to have irregularities on the surface, and the buffer layer 103 having irregularities reflecting the irregularities is formed on the upper layer. Therefore, the light extraction efficiency can be increased by having a scattering effect at the interface between the first electrode 101 and the buffer layer 103 and at the interface between the buffer layer 103 and the layer having a light emitting function. Further, since the unevenness is formed not on the surface of the substrate 101 but on the surface of the first electrode 110, scattering occurs at a position closer to the light emitting region, and the light extraction characteristics are further improved.
 またバッファ層103の存在により、凹凸を有しながらも平滑な表面を得ることができる。このため、例えば有機LED発光素子を形成する場合、バッファ層103表面の凹凸が少ないため、この上層に塗布法などによって発光機能を有する層などを形成する場合にも、発光機能を有する層を均一に形成することができ、透光性電極(第1の電極)と、発光機能を有する層上に形成される反射性電極(第2の電極)表面との間の電極間距離も均一となる。その結果、発光機能を有する層に局所的に大電圧が印加されることもないため、長寿命化をはかることができる。 Further, the presence of the buffer layer 103 makes it possible to obtain a smooth surface while having irregularities. For this reason, for example, when forming an organic LED light-emitting element, the surface of the buffer layer 103 has little unevenness. Therefore, even when a layer having a light-emitting function is formed on the upper layer by a coating method or the like, the layer having a light-emitting function is uniform. The distance between the translucent electrode (first electrode) and the surface of the reflective electrode (second electrode) formed on the layer having a light emitting function is also uniform. . As a result, since a large voltage is not locally applied to the layer having a light emitting function, the life can be extended.
 また、本発明によれば、比抵抗が透光性電極の比抵抗に近く、透光性電極との屈折率差の大きい材料をバッファ層として選択することにより、電界を印加するときの(電気的)界面と散乱面となる光学的界面とをずらすことができる。このとき、図1に実線矢印で実質的な電界が印加される領域、破線矢印で散乱効果を有する光学的界面となる、透光性電極(第1の電極)表面と反射性電極(第2の電極)表面とを示す。実線矢印間の間隔が、実質的に電界印加がなされる電極間距離、破線矢印が光学的な界面の間隔に相当する。従って、有機LED発光素子の電極間距離を実質的に均一に維持しつつ、発光機能を有する層の近傍での散乱効果を高めることができ、光取り出し効率の向上と長寿命化をはかることができる。 In addition, according to the present invention, when a material having a specific resistance close to that of the translucent electrode and having a large refractive index difference from the translucent electrode is selected as the buffer layer, It is possible to shift the interface and the optical interface that becomes the scattering surface. At this time, the surface of the translucent electrode (first electrode) and the reflective electrode (second electrode), which are regions where a substantial electric field is applied with solid arrows in FIG. Electrode) surface. The interval between the solid line arrows corresponds to the distance between the electrodes where the electric field is substantially applied, and the broken line arrow corresponds to the interval between the optical interfaces. Therefore, the scattering effect in the vicinity of the layer having a light emitting function can be enhanced while maintaining the distance between the electrodes of the organic LED light emitting element substantially uniform, and the light extraction efficiency can be improved and the life can be extended. it can.
 有機層110と、第2の電極120との界面に凹凸が形成されていることで、有機層110と、第2の電極120との界面での反射方向が多方向となり、有機層110から第1の電極を経て基板側に向かう光のさらなる増大をはかることができる点について前述したが、下地層である第1の電極表面に凹凸がない場合に、有機層110の表面に凹凸を生成すると、結果的に有機層110の厚みの異なる領域を形成することになる。このため、第1の電極と第2の電極との距離にばらつきが形成されることになり、発光機能を有する層に局所的に大電圧が印加されることになり、寿命低下の原因となる。
 一方、有機層110表面に独立した凹凸を形成しようとすると、パターニング工程などの表面処理が必要となり、この上層に形成される第2の電極との界面特性が低下することになる。
Since the unevenness is formed at the interface between the organic layer 110 and the second electrode 120, the reflection direction at the interface between the organic layer 110 and the second electrode 120 becomes multi-directional, and As described above, it is possible to further increase the light directed to the substrate side through one electrode. When the surface of the first electrode, which is the base layer, has no unevenness, the unevenness is generated on the surface of the organic layer 110. As a result, regions having different thicknesses of the organic layer 110 are formed. For this reason, a variation is formed in the distance between the first electrode and the second electrode, and a large voltage is locally applied to the layer having a light emitting function, which causes a reduction in lifetime. .
On the other hand, when an independent unevenness is formed on the surface of the organic layer 110, a surface treatment such as a patterning process is required, and the interface characteristics with the second electrode formed on the upper layer are deteriorated.
 従って、有機層110と、第2の電極120との界面での反射方向が多方向となるように、有機層110と第2の電極120との界面に凹凸を形成するためには、凹凸を有する第1の電極102表面に凹凸を形成するという方法が最も優れていることがわかる。第1の電極102表面の凹凸よりも有機層110表面の凹凸の方が小さい場合にも、同一ピッチで、なだらかに電極間距離が変化することになり、局所的に大電圧が印加されるという状況を避けることが可能となる。 Therefore, in order to form irregularities at the interface between the organic layer 110 and the second electrode 120 so that the reflection direction at the interface between the organic layer 110 and the second electrode 120 is multidirectional, the irregularities are not formed. It can be seen that the method of forming irregularities on the surface of the first electrode 102 has the most excellent method. Even when the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, the distance between the electrodes gently changes at the same pitch, and a large voltage is applied locally. It is possible to avoid the situation.
 以上のように、第1の電極102表面に凹凸を形成することにより、第1の電極とバッファ層103との界面、バッファ層103と有機層110との界面、有機層110と第2の電極120との界面、それぞれで多方向の反射および屈折を繰り返しながら、長寿命を維持し、効率よく光の取り出しを実現することができる。 As described above, by forming irregularities on the surface of the first electrode 102, the interface between the first electrode and the buffer layer 103, the interface between the buffer layer 103 and the organic layer 110, the organic layer 110 and the second electrode. While repeating multi-directional reflection and refraction at each of the interfaces with 120, a long life can be maintained and light can be extracted efficiently.
 以下各部材について詳細に説明する。
 <基板>
 透光性基板の形成に用いられる透光性の基板としては、主としてガラス基板など、上層の機能性膜を形成する温度に耐えて、かつ可視光に対する透過率が高い材料が用いられる。ガラス基板の材料としては、アルカリガラス、無アルカリガラスまたは石英ガラスなどの無機ガラスがある。透光性の基板101の厚さは、0.1mm~2.0mmのものが用いられればよいが、大面積になった場合にはより厚くてもよい。また樹脂基板でもよく、可撓性の樹脂基板も適用可能である。
Hereinafter, each member will be described in detail.
<Board>
As the light-transmitting substrate used for forming the light-transmitting substrate, a material that can withstand the temperature at which the upper functional film is formed and that has a high visible light transmittance, such as a glass substrate, is mainly used. Examples of the material of the glass substrate include inorganic glass such as alkali glass, non-alkali glass, and quartz glass. The light-transmitting substrate 101 may have a thickness of 0.1 mm to 2.0 mm, but may be thicker when the area becomes large. Further, a resin substrate may be used, and a flexible resin substrate is also applicable.
 <透光性電極(第1の電極)>
 透光性電極(陽極)は、散乱効果を高めて光取り出し効率を向上するために、角錐形状の凸を有するという表面形状を特徴とするものである。そしてさらに、有機層110からなる発光機能を有する層で発生した光を外部に取り出すために、80%以上の透光性が要求される。また、多くの正孔を注入するため、仕事関数が高いものが要求される。具体的には、ITO(Indium Tin Oxide)、SnO、ZnO、IZO(Indium Zinc Oxide)、AZO(ZnO-Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO-Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、TaドープTiOなどの材料が用いられる。透光性の第1の電極102の厚さは、100nm以上が好ましい。なお、透光性の第1の電極102の屈折率は、1.9~2.2である。ここで、キャリア濃度を増加させると、ITOの屈折率を低下させることができる。市販されているITOは、SnO:10wt%が標準となっているが、これより、Sn濃度を増やすことで、ITOの屈折率を下げることができる。但し、Sn濃度増加により、キャリア濃度は増加するが、移動度及び透過率の低下がある為、これらのバランスをとって、Sn量を決める必要がある。
 なお、透光性電極を陰極としてもよいことは言うまでもない。
<Translucent electrode (first electrode)>
The translucent electrode (anode) is characterized by a surface shape having pyramid-shaped projections in order to enhance the scattering effect and improve the light extraction efficiency. Further, in order to extract the light generated in the layer having the light emitting function made of the organic layer 110 to the outside, 80% or more of translucency is required. In addition, a high work function is required to inject many holes. Specifically, ITO (Indium Tin Oxide), SnO 2 , ZnO, IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 and other materials are used. The thickness of the light-transmitting first electrode 102 is preferably 100 nm or more. Note that the refractive index of the light-transmitting first electrode 102 is 1.9 to 2.2. Here, when the carrier concentration is increased, the refractive index of ITO can be lowered. As for the commercially available ITO, SnO 2 : 10 wt% is standard. From this, the refractive index of ITO can be lowered by increasing the Sn concentration. However, although the carrier concentration increases with an increase in Sn concentration, there is a decrease in mobility and transmittance, so it is necessary to determine the Sn amount by balancing these.
Needless to say, the translucent electrode may be a cathode.
 <バッファ層>
 バッファ層は、P-DOT/PSSなどの有機膜のほか、モリブデン酸化物、タングステン酸化物、バナジウム酸化物をはじめとする高融点金属酸化物などの無機物などが適用可能である。
<Buffer layer>
As the buffer layer, in addition to an organic film such as P-DOT / PSS, inorganic materials such as refractory metal oxides such as molybdenum oxide, tungsten oxide, and vanadium oxide can be used.
 <発光機能を有する層>
 発光機能を有する層は有機層であり、正孔注入層と、正孔輸送層と、発光層と、電子輸送層と、電子注入層とにより構成される。ここでも高分子層、低分子層いずれも適用可能である。有機層の屈折率は、1.7~1.8程度である。
<Layer having a light emitting function>
The layer having a light emitting function is an organic layer, and includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. Here, either a high molecular layer or a low molecular layer can be applied. The refractive index of the organic layer is about 1.7 to 1.8.
 <正孔注入層>
 正孔注入層は、第1の電極である透光性電極からの正孔注入障壁を低くするために、イオン化ポテンシャルの差が小さいものが要求される。正孔注入層における電極界面からの電荷の注入効率の向上は、素子の駆動電圧を下げるとともに、電荷の注入効率を高める。高分子では、ポリスチレンスルホン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)、低分子ではフタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。
<Hole injection layer>
The hole injection layer is required to have a small difference in ionization potential in order to lower the hole injection barrier from the translucent electrode as the first electrode. Improvement of the charge injection efficiency from the electrode interface in the hole injection layer lowers the drive voltage of the device and increases the charge injection efficiency. Polyethylene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is widely used for polymers, and phthalocyanine-based copper phthalocyanine (CuPc) is widely used for low molecules.
 <正孔輸送層>
 正孔輸送層は、正孔注入層から注入された正孔を発光層に輸送する役割をする。適切なイオン化ポテンシャルと正孔移動度を有することが必要である。正孔輸送層は、具体的には、トリフェニルアミン誘導体、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)、N,N’-ジフェニル-N,N’-ビス[N-フェニル-N-(2-ナフチル)-4’-アミノビフェニル-4-イル]-1,1’-ビフェニル-4,4’-ジアミン(NPTE)、1,1-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(HTM2)およびN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン(TPD)などが用いられる。正孔輸送層の厚さは、10nm~150nmが好ましい。厚さは薄ければ薄いほど低電圧化できるが、電極間短絡の問題から10nm~150nmであることが特に好ましい。
<Hole transport layer>
The hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer. It is necessary to have an appropriate ionization potential and hole mobility. Specifically, the hole transport layer may be a triphenylamine derivative, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD ), N, N′-diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4 ′ -Diamine (NPTE), 1,1-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2) and N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1 '-Diphenyl-4,4'-diamine (TPD) or the like is used. The thickness of the hole transport layer is preferably 10 nm to 150 nm. The thinner the thickness is, the lower the voltage can be. However, the thickness is particularly preferably 10 nm to 150 nm from the problem of short circuit between electrodes.
 <発光層>
 発光層は、注入された電子と正孔が再結合する場を提供し、かつ、発光効率の高い材料を用いる。詳細に説明すると、発光層に用いられる発光ホスト材料および発光色素のドーピング材料は、陽極及び陰極から注入された正孔及び電子の再結合中心として機能する、また、発光層におけるホスト材料への発光色素のドーピングは、高い発光効率を得ると共に、発光波長を変換させる。これらは電荷注入のための適切なエネルギーレベルを有すること、化学的安定性や耐熱性に優れ、均質はアモルファス薄膜を形成することなどが求められる。また、発光色の種類や色純度が優れていることや発光効率の高いことが求められる。有機材料である発光材料には、低分子系と高分子系の材料がある。低分子系の材料の場合は蒸着法などによって形成され、高分子系の材料の場合は塗布法などによって形成される。さらに、発光機構によって、蛍光材料、りん光材料に分類される。発光層は、具体的には、トリス(8-キノリノラート)アルミニウム錯体(Alq)、ビス(8-ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq′OPh)、ビス(8-ヒドロキシ)キナルジンアルミニウム-2,5-ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体(Liq)、モノ(8-キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ナトリウム錯体およびビス(8-キノリノラート)カルシウム錯体(Caq)などのキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン並びにコロネンなどの蛍光性物質が挙げられる。ホスト材料としては、キノリノラート錯体が好ましく、特に、8-キノリノールおよびその誘導体を配位子としたアルミニウム錯体が好ましい。
<Light emitting layer>
The light-emitting layer uses a material that provides a field where injected electrons and holes are recombined and has high emission efficiency. More specifically, the light-emitting host material and the light-emitting dye doping material used in the light-emitting layer function as recombination centers of holes and electrons injected from the anode and the cathode, and light emission to the host material in the light-emitting layer The doping of the dye obtains high luminous efficiency and converts the emission wavelength. These are required to have an appropriate energy level for charge injection, excellent in chemical stability and heat resistance, and to form an amorphous thin film homogeneously. In addition, it is required that the type and color purity of the luminescent color are excellent and the luminous efficiency is high. Light emitting materials that are organic materials include low-molecular materials and high-molecular materials. In the case of a low molecular material, it is formed by vapor deposition, and in the case of a high molecular material, it is formed by a coating method. Further, it is classified into a fluorescent material and a phosphorescent material according to the light emission mechanism. Specifically, the light-emitting layer comprises tris (8-quinolinolato) aluminum complex (Alq 3 ), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq ′ 2 OPh), bis (8-hydroxy) quinaldine aluminum— 2,5-dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), Mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis ( 8-quinolinolato) calcium complex (CAQ 2) metal complexes of quinoline derivatives such as tetraphenyl butadiene, E D Lucina click polyhedrin (QD), anthracene, and a fluorescent substance such as perylene and coronene. As the host material, a quinolinolate complex is preferable, and an aluminum complex having 8-quinolinol and its derivative as a ligand is particularly preferable.
 <電子輸送層>
 電子輸送層は、電極から注入された電子を輸送するという役割をする。電子輸送層は、具体的には、キノリノールアルミニウム錯体(Alq)、オキサジアゾール誘導体(例えば、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)および2-(4-t-ブチルフェニル)-5-(4-ビフェニル)-1,3,4-オキサジアゾール(PBD)など)、トリアゾール誘導体、バソフェナントロリン誘導体、シロール誘導体などが用いられる。
<Electron transport layer>
The electron transport layer serves to transport electrons injected from the electrode. Specifically, the electron transport layer is formed of a quinolinol aluminum complex (Alq 3 ), an oxadiazole derivative (for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2 -(4-t-butylphenyl) -5- (4-biphenyl) -1,3,4-oxadiazole (PBD) and the like), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like are used.
 <電子注入層>
 電子注入層は、電子の注入効率を高めるものが要求される。電子注入層は、具体的には、陰極界面にリチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層を設ける。
<Electron injection layer>
The electron injection layer is required to increase the electron injection efficiency. Specifically, the electron injection layer is provided with a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) at the cathode interface.
 <反射性電極(第2の電極)>
 反射性電極(陰極)である第2の電極は、仕事関数の小さな金属またはその合金が用いられる。第2の電極は、具体的には、アルカリ金属、アルカリ土類金属および周期表第3属の金属などが挙げられる。このうち、安価で化学的安定性の良い材料であることから、アルミニウム(Al)、マグネシウム(Mg)またはこれらの合金などが好ましく用いられる。また、Al、MgAgの共蒸着膜、LiFまたはLi0の薄膜蒸着膜の上にAlを蒸着した積層電極等が用いられる。また、高分子系では、カルシウム(Ca)またはバリウム(Ba)とアルミニウム(Al)の積層等が用いられる。
 なお、第2の電極としての反射性電極を陽極としてもよいことは言うまでもない。
焼成品では、ガラス層中の気泡が球形となっていて、表面も平滑になっている。
<Reflective electrode (second electrode)>
A metal having a small work function or an alloy thereof is used for the second electrode which is a reflective electrode (cathode). Specific examples of the second electrode include alkali metals, alkaline earth metals, and metals belonging to Group 3 of the periodic table. Of these, aluminum (Al), magnesium (Mg), or alloys thereof are preferably used because they are inexpensive and have good chemical stability. In addition, a co-deposited film of Al, MgAg, a laminated electrode obtained by depositing Al on a thin film deposited film of LiF or Li 2 O, or the like is used. In the polymer system, a laminate of calcium (Ca) or barium (Ba) and aluminum (Al) is used.
Needless to say, the reflective electrode as the second electrode may be used as the anode.
In the fired product, the bubbles in the glass layer are spherical and the surface is also smooth.
(実施例)
 以下、本発明の実施例に従い、本発明をさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(Example)
Hereinafter, the present invention will be described more specifically according to examples of the present invention. In addition, this invention is not limited to a following example.
 〔酸化スズを主成分とする薄膜の成形方法〕
 酸化スズを主成分とする薄膜の成形方法としては、以下に記すように、オンライン成形によりガラスリボン上に酸化スズ薄膜を成形する方法と、ガラス基板形成後、このガラス基板上に酸化スズ薄膜を成形する方法とがある。
 最初に、ガラスリボン上に表面に凹凸を有する酸化スズ薄膜を成形する方法について説明する。まず、浴を使用し、通例のフロート法によるシート状ガラスの製造装置を用いて、ガラスリボン上にオンライン成形により酸化スズを主成分とする表面に凹凸を有する酸化スズ薄膜を成形し、この上層にバッファ層を形成する。まず、ケイ砂などの通常のガラス原料を熔融窯で加熱熔融し、その熔融ガラスを熔融スズで充たされた浴中に導く。ガラスはスズより比重が小さいため、浴中ではガラスリボンは熔融スズ上に浮く。浴の内部は、窒素ガス98体積%と水素ガス2体積%との混合ガスで充たされ、大気圧よりもやや高圧に維持される。
 このようにして、ガラスリボンは、徐冷ラインの方向に引っ張られ、その途中でコータにより、透明導電膜からなる第1の電極102、バッファ層103が形成される(図2参照)。コータの機械的構造はすべて同様に形成されている。ここでは供給ノズルから原料ガスとキャリアガスの混合ガスがガラスリボンに向かって吹き付けられており、この混合ガスはガラスリボン上を伝わりながら排気口に向かって流れる。このときガラスリボンは相当な高温状態にあり、その熱を利用して薄膜(透明導電膜)が形成(結晶成長)される。
 次に、ガラス基板上に表面に凹凸を有する酸化スズ薄膜を成形する方法について説明する。所定のサイズのガラス基板を用意し、十分に洗浄を行う。ついで、ガラス基板を高温にし、ガラス基板表面上に、常圧CVD法により四塩化スズと水との加水分解反応を行って、酸化スズ透明導電膜(フッ素ドープ酸化スズ膜)を形成する。このときガラス基板は高温状態にあり、その熱を利用して薄膜(透明導電膜)が形成(結晶成長)される。
 このように上記いずれかの方法を用いて、透光性電極(第1の電極)を具備した透光性基板を得る。
 そして、正孔注入層、発光層、電子注入層などの発光機能を有する層(有機層110)をたとえば蒸着法で形成する。
[Method of forming a thin film mainly composed of tin oxide]
As described below, the method for forming a thin film containing tin oxide as a main component is a method of forming a tin oxide thin film on a glass ribbon by online forming, and a tin oxide thin film on the glass substrate after the glass substrate is formed. There is a method of molding.
First, a method for forming a tin oxide thin film having irregularities on the surface thereof on a glass ribbon will be described. First, using a bath and using a sheet glass manufacturing apparatus by a usual float method, a tin oxide thin film having irregularities on the surface mainly composed of tin oxide is formed on a glass ribbon by online molding. A buffer layer is formed. First, ordinary glass raw materials such as silica sand are heated and melted in a melting furnace, and the molten glass is introduced into a bath filled with molten tin. Since glass has a lower specific gravity than tin, the glass ribbon floats on the molten tin in the bath. The inside of the bath is filled with a mixed gas of 98% by volume of nitrogen gas and 2% by volume of hydrogen gas, and is maintained at a pressure slightly higher than atmospheric pressure.
Thus, the glass ribbon is pulled in the direction of the slow cooling line, and the first electrode 102 and the buffer layer 103 made of a transparent conductive film are formed by a coater in the middle (see FIG. 2). The mechanical structure of the coater is all formed similarly. Here, a mixed gas of a raw material gas and a carrier gas is blown toward the glass ribbon from the supply nozzle, and this mixed gas flows toward the exhaust port while traveling on the glass ribbon. At this time, the glass ribbon is in a considerably high temperature state, and a thin film (transparent conductive film) is formed (crystal growth) using the heat.
Next, a method for forming a tin oxide thin film having irregularities on its surface on a glass substrate will be described. A glass substrate of a predetermined size is prepared and thoroughly cleaned. Next, the glass substrate is heated to a high temperature, and a hydrolysis reaction between tin tetrachloride and water is performed on the glass substrate surface by atmospheric pressure CVD to form a tin oxide transparent conductive film (fluorine-doped tin oxide film). At this time, the glass substrate is in a high temperature state, and a thin film (transparent conductive film) is formed (crystal growth) using the heat.
Thus, a translucent substrate provided with a translucent electrode (first electrode) is obtained using any of the above methods.
Then, a layer (organic layer 110) having a light emitting function such as a hole injection layer, a light emitting layer, and an electron injection layer is formed by, for example, a vapor deposition method.
 このようにして、透光性の第1の電極102上に有機層110からなる発光機能を有する層と、さらにこの上層に反射性の第2の電極120が形成されて、発光領域を構成し、ガラスからなる基板101側に光を取り出す、ボトムエミッション型の有機LED発光素子が形成される。この発光領域は透光性の第1の電極102とこの上層に形成される有機層110からなる発光機能を有する層と、さらにこの上層に形成される反射性の第2の電極120との重なり合った領域である。 In this manner, a layer having a light emitting function composed of the organic layer 110 is formed on the light-transmitting first electrode 102, and a reflective second electrode 120 is formed on the upper layer to form a light-emitting region. Then, a bottom emission type organic LED light emitting element is formed which extracts light to the glass substrate 101 side. This light-emitting region is formed by overlapping a light-transmitting layer composed of a light-transmitting first electrode 102 and an organic layer 110 formed thereon, and a reflective second electrode 120 formed thereon. Area.
 本実施の形態の有機LED発光素子の場合、第1の電極と第2の電極との間に、通常、発光機能を有する層すなわち、正孔注入層、発光層、電子注入層を挟持して用いており、ここではこれが機能性素子を構成する。なおこれら発光機能を有する層は、蒸着法などのドライプロセスに限定されることなく、塗布法などのウェットプロセスで形成するものにも適用可能であることはいうまでもない。もちろん本発明はこの5層構造に限定されるものではないし、有機LED発光素子にも限定されるものではなく、少なくとも基板側に電極を有する機能性素子であればよい。 In the case of the organic LED light emitting device of the present embodiment, a layer having a light emitting function, that is, a hole injection layer, a light emitting layer, and an electron injection layer is usually sandwiched between the first electrode and the second electrode. Here, this constitutes a functional element. Needless to say, the layer having a light emitting function is not limited to a dry process such as an evaporation method, but can be applied to a layer formed by a wet process such as a coating method. Of course, the present invention is not limited to this five-layer structure, and is not limited to an organic LED light-emitting element, as long as it is a functional element having an electrode on at least the substrate side.
 正孔注入層、発光層、電子注入層などは公知の材料や構造が用いられる。第1の電極は透光性電極とされるが、第2の電極は透光性電極でも反射性電極でもよい。
 透光性電極は、前記したITOの他に酸化錫や他の材料でも使用できる。第2の電極120としての反射性電極は、各種金属性の電極が使用できるが、代表的な材料としては、アルミニウム、AgMg合金、Caなどが考えられる。
Known materials and structures are used for the hole injection layer, the light emitting layer, the electron injection layer, and the like. The first electrode is a translucent electrode, but the second electrode may be a translucent electrode or a reflective electrode.
The translucent electrode can be used with tin oxide or other materials in addition to the above-mentioned ITO. Various metallic electrodes can be used as the reflective electrode as the second electrode 120, but typical materials include aluminum, an AgMg alloy, and Ca.
 アルカリバリアー層(基板からのアルカリ成分の拡散を防止する層)として厚さ約50nmのシリカ膜が形成されたソーダライムガラス基板(30cm×40cm×1.1mm)を用意し、十分に洗浄を行った後、常圧CVD法により四塩化スズと水との加水分解反応を行って、酸化スズ透明導電膜(フッ素ドープ酸化スズ膜)を形成させた。具体的には、以下の手順で行った。四塩化スズを55℃に保持したバブラータンクに入れ、ボンベから窒素を導入して気化させた。水は100℃以上に保10持したボイラーから供給した。両者をそれぞれ150℃に加熱した後、150℃に保温した導管を経由して、インジェクター本体に輸送し、混合させた。混合比(mol比)は、四塩化スズ/水=1/10とした。インジェクター本体の温度は熱媒体(油)により約150℃に保持した。混合したガスをインジェクター吐出部から約500℃のガラス基板に吐出させ、ガラス基板表面に酸化スズ透明導電膜を形成させた。 Prepare a soda-lime glass substrate (30 cm x 40 cm x 1.1 mm) with a silica film with a thickness of about 50 nm as an alkali barrier layer (a layer that prevents the diffusion of alkali components from the substrate), and wash it thoroughly. Thereafter, a hydrolysis reaction between tin tetrachloride and water was performed by an atmospheric pressure CVD method to form a tin oxide transparent conductive film (fluorine-doped tin oxide film). Specifically, the following procedure was used. Tin tetrachloride was placed in a bubbler tank maintained at 55 ° C., and nitrogen was introduced from a cylinder to vaporize it. Water was supplied from a boiler maintained at 10 ° C. or higher. Both were heated to 150 ° C. and then transported to the injector body via a conduit kept at 150 ° C. and mixed. The mixing ratio (mol ratio) was tin tetrachloride / water = 1/10. The temperature of the injector body was kept at about 150 ° C. by a heat medium (oil). The mixed gas was discharged from the injector discharge portion onto a glass substrate at about 500 ° C., and a tin oxide transparent conductive film was formed on the glass substrate surface.
 この上層に、塗布法によりP-DOT/PSS(ポリチオフェンとポリスチレンスルホン酸の混合物)からなるバッファ層103を形成する。そしてこれを、適当な大きさに切断してサンプルとした。このサンプルを傾斜30°の撮影台に乗せ、その表面形状を鉛直方向からSEMを用いて写真撮影した。その写真を図3に示す。 On this upper layer, a buffer layer 103 made of P-DOT / PSS (mixture of polythiophene and polystyrene sulfonic acid) is formed by a coating method. And this was cut | disconnected to a suitable magnitude | size and it was set as the sample. This sample was placed on an imaging stand with an inclination of 30 °, and the surface shape was photographed using an SEM from the vertical direction. The photograph is shown in FIG.
 このようにして得られた倍率×20,000のSEM写真について、高さ100nm以上の凸(多角錘および台地状突起)の個数と間隔と高さとを測定した。高さについては断面をとりAFM写真で測定したが、断面を切り出しSEM写真をとるようにしてもよい。その結果、この薄膜表面の凸の平均個数は1μm□あたり20個程度であった。ここでは幅W1は約200nmとなるため、H1/W1は約0.5となっている。 The number, spacing, and height of protrusions (polygonal pyramids and plateau-shaped protrusions) having a height of 100 nm or more were measured on the SEM photograph having a magnification of 20,000. The height was measured by taking a cross section and using an AFM photograph, but the cross section may be cut out and an SEM photograph taken. As a result, the average number of protrusions on the surface of the thin film was about 20 per 1 μm □. Here, since the width W1 is about 200 nm, H1 / W1 is about 0.5.
 このようにして、図2に示すように、規則的な角錐形状の凸を有する表面形状をもつ第1の電極(透光性電極)を備えた透光性基板を得ることができ、光取り出し効率が50%以上となり、光取り出し効率の高い有機LED発光素子用基板が形成される。
 また本発明は、上記有機LED発光素子において、この第1の電極の凸は、先端が尖った錐形状をなすことで角垂部の傾斜部の面積が増大することにより屈折の増大をはかることができる。
Thus, as shown in FIG. 2, a translucent substrate having a first electrode (translucent electrode) having a surface shape having regular pyramid-shaped projections can be obtained, and light extraction is performed. The efficiency is 50% or more, and a substrate for an organic LED light emitting element with high light extraction efficiency is formed.
Further, according to the present invention, in the organic LED light emitting element, the convexity of the first electrode increases the refraction by increasing the area of the inclined portion of the angled portion by forming a conical shape with a sharp tip. Can do.
 本発明によれば、透光性電極(第1の電極)に角錐形状の凸を形成し、光散乱効果を持たせることで、発光スペクトル範囲全域(430nm~650nm)に亘って、上記の光取り出し効率を改善することができる。これは、素子内部を伝播する光を散乱により方向を変え、外部に放出する確率が増えるからである。また外部に取り出せない角度で素子内を伝播する場合でも、反射性電極で反射し再び光が透光性電極に到達するので、これを繰り返すうちに光を外部に取り出せるのである。 According to the present invention, the light-transmitting electrode (first electrode) is formed with a pyramid-shaped convex and has a light scattering effect, so that the above-described light can be obtained over the entire emission spectrum range (430 nm to 650 nm). The extraction efficiency can be improved. This is because the probability that light propagating inside the device changes its direction by scattering and is emitted to the outside increases. Further, even when propagating through the element at an angle that cannot be extracted to the outside, the light is reflected by the reflective electrode and the light reaches the translucent electrode again.
 なお、さらなる光取り出し効率の向上を実現するためには、ガラス基板の屈折率は、第1の電極材料の屈折率と同等若しくは高くすることが望ましい。屈折率が低い場合、ガラス基板と第1の電極材料との界面において、全反射による損失が生じてしまうためである。ガラス基板の屈折率は、少なくとも発光層の発光スペクトル範囲における一部分(例えば、赤、青、緑など)において上回っていればよいが、発光スペクトル範囲全域(430nm~650nm)に亘って上回っていることが望ましく、可視光の波長範囲全域(360nm~830nm)に亘って上回っていることがより望ましい。
 なお、ここで用いたP-DOT/PSSは、バッファ層として有効であるが、電荷注入層としての役割も有する。
In order to further improve the light extraction efficiency, it is desirable that the refractive index of the glass substrate be equal to or higher than the refractive index of the first electrode material. This is because when the refractive index is low, a loss due to total reflection occurs at the interface between the glass substrate and the first electrode material. The refractive index of the glass substrate only needs to exceed at least a part of the emission spectrum range of the light emitting layer (eg, red, blue, green, etc.), but exceeds the entire emission spectrum range (430 nm to 650 nm). It is more desirable that it exceeds the entire visible light wavelength range (360 nm to 830 nm).
The P-DOT / PSS used here is effective as a buffer layer, but also has a role as a charge injection layer.
 また、図4に凸T1の要部拡大図を示すように、この第1の電極表面の凸T1の出現間隔の平均値W1に対する高さの平均値H1の比が0.5以上であるのが望ましい。
 ここで平均値W1に対する高さの平均値H1の比が0.5に満たない場合は、この上層に形成されるバッファ層表面の凹凸が所望の値に形成されにくくなる。この程度とすることで、電極表面の凹凸がバッファ層表面の凹凸よりも大きいという状態での成膜が容易となり、この構成により、より良好に光取り出し効率を向上することができる。
 さらにまた、この第1の電極の前記バッファ層側表面の表面粗さRaは60nm以上であるのが望ましい。
Further, as shown in the enlarged view of the main part of the projection T1 in FIG. 4, the ratio of the average value H1 of the height to the average value W1 of the appearance interval of the projection T1 on the surface of the first electrode is 0.5 or more. Is desirable.
Here, when the ratio of the average value H1 of the height to the average value W1 is less than 0.5, the unevenness on the surface of the buffer layer formed in the upper layer is hardly formed to a desired value. By setting this level, film formation can be facilitated in a state where the unevenness on the electrode surface is larger than the unevenness on the surface of the buffer layer. With this configuration, the light extraction efficiency can be improved more favorably.
Furthermore, the surface roughness Ra of the surface on the buffer layer side of the first electrode is preferably 60 nm or more.
 また、前記第1の電極の前記バッファ層側表面の表面粗さRaはより望ましくは、80nm以上120nm未満である。表面粗さが120nmより大きいと、短絡を生じたりすることがある。
 発光層の厚さが100から150nmであるため、発光層よりもバッファ層の表面粗さは80nm以上120nm未満が望ましい。バッファ層の表面粗さが120nmより大きいと、短絡を生じたりすることがある。
 また第1の電極上に形成されたバッファ層側表面の凸T2の出現間隔が、0.1から0.3μmである。
 この構成によれば、波長依存性を招くことなく、視認性が良好な光取出しを行うことができる。
The surface roughness Ra of the buffer layer side surface of the first electrode is more desirably 80 nm or more and less than 120 nm. If the surface roughness is larger than 120 nm, a short circuit may occur.
Since the thickness of the light emitting layer is 100 to 150 nm, the surface roughness of the buffer layer is desirably 80 nm or more and less than 120 nm rather than the light emitting layer. If the surface roughness of the buffer layer is greater than 120 nm, a short circuit may occur.
Further, the appearance interval of the protrusion T2 on the buffer layer side surface formed on the first electrode is 0.1 to 0.3 μm.
According to this configuration, light extraction with good visibility can be performed without incurring wavelength dependency.
 こののち、通例の方法で、発光機能を有する層として有機層110を順次塗布法により形成し、更に反射性電極からなる第2の電極120を形成し、図1に示すように有機LED発光素子が形成される。 Thereafter, an organic layer 110 is sequentially formed by a coating method as a layer having a light emitting function by a usual method, and a second electrode 120 made of a reflective electrode is further formed. As shown in FIG. Is formed.
 また図1に示すように、バッファ層103は透光性の第1の電極102表面との界面よりも、発光機能を有する層としての有機層110との界面での表面粗さの方が小さいものが望ましい。そして、バッファ層103表面が凹凸面を構成し、凸T2の出現間隔の平均値W2に対する高さの平均値H2の比が0.2以上であるものが望ましい。
 また、発光機能を有する層である有機層110は、第2の電極120側表面が凹凸面を構成し、凸T3の出現間隔W3の平均値に対する高さH3の平均値の比が0.1以上であるものが望ましい。
Further, as shown in FIG. 1, the buffer layer 103 has a smaller surface roughness at the interface with the organic layer 110 as a layer having a light emitting function than the interface with the surface of the light-transmitting first electrode 102. Things are desirable. Further, it is desirable that the surface of the buffer layer 103 forms an uneven surface, and the ratio of the average value H2 of the height to the average value W2 of the appearance interval of the convex T2 is 0.2 or more.
In addition, the organic layer 110 that is a layer having a light emitting function has an uneven surface on the second electrode 120 side surface, and the ratio of the average value of the height H3 to the average value of the appearance intervals W3 of the protrusions T3 is 0.1. The above is desirable.
 このようにして形成された有機LED発光素子において、前記発光機能を有する層の出力のピーク波長λは、次式を満たす。
 (λ<450nm)・・・(式)
In the organic LED light-emitting device formed as described above, the output peak wavelength λ of the layer having the light emitting function satisfies the following formula.
(Λ <450 nm) (formula)
 したがって、実施例1のフッ素をドープした酸化スズの薄膜を備えるガラス基板によれば、有機LED素子として利用する場合に、可視光の光閉じ込め効果が有効に発揮される。 Therefore, according to the glass substrate provided with the thin film of tin oxide doped with fluorine of Example 1, when used as an organic LED element, the light confinement effect of visible light is effectively exhibited.
 なお、ここで用いたP-DOT/PSSは、バッファ層103として有効であるが、酸化モリブデンなどの高融点金属の酸化物をバッファ層103として用いることで、このバッファ層が電荷注入効果をも有するため、より高効率化をはかることができる。
 また、発光機能を有する層としての有機層110は、塗布法によっても蒸着法などのドライプロセスによっても形成可能である。
 また酸化モリブデンは比抵抗が小さく、第1の電極に近い比抵抗をもつことから、バッファ層内での電圧降下は無視できることになり、電界は、このバッファ層103と第2の電極120との間で大きくなる。また、第1の電極表面の尖った錐形状の先端はバッファ層で緩和されている。従ってバッファ層103の存在により、電界集中はより低減され、寿命は向上する。一方、屈折率は、基板101上の第1の電極102とバッファ層103との界面で、より大きく異なり、この部分で散乱効果が向上する。また、バッファ層と発光機能を有する層(有機層110)との界面でも屈折率差がありかつ凹凸を有するため、散乱効果は高い。このため、第1の電極側で、2段階の散乱が生じ、光取り出し効率が向上する。
Note that the P-DOT / PSS used here is effective as the buffer layer 103. However, by using an oxide of a refractory metal such as molybdenum oxide as the buffer layer 103, the buffer layer has a charge injection effect. Therefore, higher efficiency can be achieved.
In addition, the organic layer 110 as a layer having a light emitting function can be formed by a coating method or a dry process such as an evaporation method.
In addition, since molybdenum oxide has a small specific resistance and a specific resistance close to that of the first electrode, a voltage drop in the buffer layer can be ignored, and an electric field is generated between the buffer layer 103 and the second electrode 120. Get bigger in between. Further, the pointed cone-shaped tip of the first electrode surface is relaxed by the buffer layer. Therefore, the presence of the buffer layer 103 further reduces the electric field concentration and improves the lifetime. On the other hand, the refractive index differs greatly at the interface between the first electrode 102 and the buffer layer 103 on the substrate 101, and the scattering effect is improved at this portion. Further, since there is a difference in refractive index at the interface between the buffer layer and the layer having a light emitting function (organic layer 110) and there are irregularities, the scattering effect is high. For this reason, two-stage scattering occurs on the first electrode side, and the light extraction efficiency is improved.
 以上のように、本実施の形態の有機LED発光素子によれば、上層側の第2の電極と発光機能を有する層との間の界面でも凹凸を維持するように成膜することができる。このように、有機層と、第2の電極との界面に凹凸が形成されていることで、有機層と、第2の電極との界面での拡散性を高めることができ、更なる光取り出し効率の向上を図ることが可能となる。たとえば第2の電極が透光性電極であって両面への光取り出しを行う場合にも両方向への光取り出しが良好となる。
 また、上層側の第2の電極と発光機能を有する層との間の界面でも凹凸を維持するように成膜することができ、有機層と、第2の電極との界面に凹凸が形成されていることで、上層側の第2の電極が反射性電極である場合には、有機層と、第2の電極との界面での反射方向が多方向となり、有機層から第1の電極を経て基板側に向かう光の増大をはかることができ、更なる光取り出し効率の向上を図ることが可能となる。
As described above, according to the organic LED light emitting element of the present embodiment, it is possible to form a film so as to maintain unevenness even at the interface between the second electrode on the upper layer side and the layer having a light emitting function. As described above, the unevenness is formed at the interface between the organic layer and the second electrode, so that the diffusibility at the interface between the organic layer and the second electrode can be increased, and further light extraction is performed. Efficiency can be improved. For example, when the second electrode is a translucent electrode and light is extracted from both sides, light extraction in both directions is good.
In addition, the film can be formed so as to maintain unevenness at the interface between the second electrode on the upper layer side and the layer having a light emitting function, and unevenness is formed at the interface between the organic layer and the second electrode. Therefore, when the second electrode on the upper layer side is a reflective electrode, the reflection direction at the interface between the organic layer and the second electrode becomes multi-directional, and the first electrode is moved from the organic layer. As a result, it is possible to increase the light traveling toward the substrate side, and to further improve the light extraction efficiency.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 図7は、本発明の実施の形態2の有機LED発光素子用基板を示す断面図、図8は、本発明の実施の形態2の有機LED発光素子を示す断面図である。
 前記実施の形態1では表面の凹凸が、バッファ層上でもエッジがシャープとなるように形成したが、図7に示すように、透光性の第1の電極102表面の凹凸よりも、バッファ層103P上での凹凸の方がなだらかな形状であってもよい。
 この構成によれば、この上層に形成される発光機能を有する層が薄い場合にも段切れが生じたりすることもない。
 また透光性の第1の電極102表面の凹凸よりも、バッファ層103P上での凹凸は小さくてもよいが、同程度で、凹凸形状がなだらかであってもよい。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
FIG. 7 is a cross-sectional view showing a substrate for an organic LED light-emitting element according to Embodiment 2 of the present invention, and FIG. 8 is a cross-sectional view showing the organic LED light-emitting element according to Embodiment 2 of the present invention.
In the first embodiment, the unevenness on the surface is formed so that the edge is sharp even on the buffer layer. However, as shown in FIG. 7, the buffer layer is more uneven than the unevenness on the surface of the translucent first electrode 102. The unevenness on 103P may be a gentler shape.
According to this configuration, even when the layer having the light emitting function formed on the upper layer is thin, no disconnection occurs.
Further, the unevenness on the buffer layer 103P may be smaller than the unevenness on the surface of the light-transmitting first electrode 102, but the unevenness shape may be gentle to the same extent.
 このように、本実施の形態では図8に示すように、透光性の第1の電極102表面の凹凸を、P-DOT/PSSで構成するバッファ層103Pを塗布形成することで、ややなだらかにし、この上層に発光機能を有する層である有機層110を表面の凹凸がややなだらかになるように形成する。つまりバッファ層103Pは第1の電極102である透光性電極表面との界面よりも、発光機能を有する層である有機層110との界面での表面粗さの方がやや小さいことを特徴とする。 As described above, in the present embodiment, as shown in FIG. 8, the unevenness of the surface of the light-transmitting first electrode 102 is applied with the buffer layer 103P formed of P-DOT / PSS, so that the surface is slightly gentle. Then, the organic layer 110, which is a layer having a light emitting function, is formed on the upper layer so that the unevenness of the surface becomes slightly gentle. That is, the buffer layer 103P is characterized in that the surface roughness at the interface with the organic layer 110 which is a layer having a light emitting function is slightly smaller than the interface with the surface of the translucent electrode which is the first electrode 102. To do.
 本実施の形態においても、有機層110と、第2の電極120との界面に凹凸が形成されていることで、有機層110と、第2の電極120との界面での反射方向が多方向となり、有機層110から第1の電極102を経て基板側に向かう光のさらなる増大をはかることができる。
 つまり、第1の電極102表面の凹凸よりも有機層110表面の凹凸の方が小さいが、同一ピッチで、なだらかに電極間距離が変化するため、局所的に大電圧が印加されるという状況を避けることが可能となる。
 以上のように、第1の電極102表面に凹凸を形成することにより、第1の電極とバッファ層103Pとの界面、バッファ層103Pと有機層110との界面、有機層110と第2の電極120との界面、それぞれで多方向の反射を繰り返しながら、長寿命を維持し、効率よく光の取り出しを実現することができる。
Also in this embodiment, the unevenness is formed at the interface between the organic layer 110 and the second electrode 120, so that the reflection direction at the interface between the organic layer 110 and the second electrode 120 is multidirectional. Thus, further increase in light traveling from the organic layer 110 to the substrate side through the first electrode 102 can be achieved.
That is, the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, but the distance between the electrodes gently changes at the same pitch, so that a large voltage is applied locally. It can be avoided.
As described above, by forming irregularities on the surface of the first electrode 102, the interface between the first electrode and the buffer layer 103P, the interface between the buffer layer 103P and the organic layer 110, the organic layer 110 and the second electrode While long-term reflection is repeated at each of the interfaces with 120, a long life can be maintained and light can be extracted efficiently.
 この構成によれば、バッファ層103Pの上層に形成される発光機能を有する層が薄い場合にも段切れが生じたりすることもない。 According to this configuration, even when the layer having a light emitting function formed on the buffer layer 103P is thin, no disconnection occurs.
 また、第1の電極表面から、前記バッファ層の表面、前記発光機能を有する層の表面に行くに従い、順次前記凹凸が小さくなり、前記発光機能を有する層の表面が、前記第1の電極表面の凹凸に対応する凹凸を維持するようにすることで、光取り出し効率が良好でかつ、より信頼性の高い有機LED発光素子を提供することが可能となる。 Further, as the surface of the buffer layer and the surface of the layer having a light emitting function are moved from the surface of the first electrode to the surface of the layer having the light emitting function, the unevenness gradually decreases, and the surface of the layer having the light emitting function becomes the surface of the first electrode. By maintaining the unevenness corresponding to the unevenness, it is possible to provide an organic LED light-emitting element with good light extraction efficiency and higher reliability.
 また、この凹凸が基板101の表面ではなく、第1の電極110表面に形成されているため、発光領域により近い位置で散乱を生じ、より光取り出し特性が良好となる。
 図8において、実線矢印で示す領域が実質的に電界が印加される領域、破線矢印で示す領域が電極間距離となる。バッファ層103Pの比抵抗が小さいため、バッファ層103P内に印加される電界は極めて小さく、有機層110に印加される電界が大部分を占めるからである。実線矢印間の間隔が、実質的に電界印加がなされる電極間距離、破線矢印が散乱効果を有する光学的な界面となる、透光性電極(第1の電極)表面と反射性電極(第2の電極)表面との間隔に相当する。この図からも電気的界面は間隔がそろっているのに対し、光学的界面は凹凸を有していることがわかる。従って寿命を維持しつつ、散乱効果を高めることができる。
Further, since the unevenness is formed not on the surface of the substrate 101 but on the surface of the first electrode 110, scattering occurs at a position closer to the light emitting region, and the light extraction characteristics are further improved.
In FIG. 8, a region indicated by a solid line arrow is a region where an electric field is substantially applied, and a region indicated by a broken line arrow is a distance between electrodes. This is because, since the specific resistance of the buffer layer 103P is small, the electric field applied to the buffer layer 103P is extremely small, and the electric field applied to the organic layer 110 occupies most of the electric field. The distance between the solid-line arrows is the distance between the electrodes where the electric field is applied substantially, and the broken-line arrow is the optical interface having a scattering effect, and the surface of the translucent electrode (first electrode) and the reflective electrode (first Corresponds to the distance from the surface. From this figure, it can be seen that the electrical interface has a uniform spacing, while the optical interface has irregularities. Accordingly, the scattering effect can be enhanced while maintaining the lifetime.
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 図9は、本発明の実施の形態3の有機LED発光素子用基板を示す断面図、図10は、本発明の実施の形態3の有機LED発光素子を示す断面図である。
 前記実施の形態2では、透光性の第1の電極102表面の凹凸よりも、バッファ層103P上での凹凸の方がなだらかな形状となるようにしたが、本実施の形態の有機LED発光素子は、図9及び図10に示すように、低抵抗のバッファ層103Qを用いこのバッファ層103Q表面がほぼ平坦となっているようにしたことを特徴とする。
 この構成によれば、この上層に形成される発光機能を有する層は平坦面上に形成されることになり、発光機能を有する層が薄い場合にも発光機能を有する層による下の層の被覆が不十分になることもない。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
FIG. 9 is a cross-sectional view showing a substrate for an organic LED light-emitting element according to Embodiment 3 of the present invention, and FIG. 10 is a cross-sectional view showing the organic LED light-emitting element according to Embodiment 3 of the present invention.
In the second embodiment, the unevenness on the buffer layer 103P has a gentler shape than the unevenness on the surface of the translucent first electrode 102. However, the organic LED light emission of this embodiment As shown in FIGS. 9 and 10, the element is characterized in that a low-resistance buffer layer 103Q is used and the surface of the buffer layer 103Q is substantially flat.
According to this configuration, the layer having the light emitting function formed on the upper layer is formed on the flat surface, and even when the layer having the light emitting function is thin, the lower layer is covered with the layer having the light emitting function. Does not become insufficient.
 このように、本実施の形態では図9に示すように、透光性の第1の電極102表面の凹凸を、高濃度ドープされた低抵抗のP-DOT/PSSで構成するバッファ層103Qを塗布形成することで、表面を平坦にし、この上層に発光機能を有する層である有機層110を形成する。つまりバッファ層103Qは第1の電極102である透光性電極表面との界面よりも、発光機能を有する層である有機層110との界面での表面粗さに依存することなく平坦な表面をもつようにしたことを特徴とする。 As described above, in the present embodiment, as shown in FIG. 9, the unevenness of the surface of the light-transmitting first electrode 102 is provided with the buffer layer 103Q configured by the highly doped low resistance P-DOT / PSS. By applying and forming, the surface is flattened, and the organic layer 110 which is a layer having a light emitting function is formed thereon. That is, the buffer layer 103Q has a flat surface without depending on the surface roughness at the interface with the organic layer 110 which is a layer having a light emitting function, rather than the interface with the surface of the transparent electrode which is the first electrode 102. It is characterized by having it.
 本実施の形態においては、第1の電極102表面の凹凸よりも有機層110表面の凹凸の方が小さいが、同一ピッチで、なだらかに電極間距離が変化するうえ、バッファ層が絶縁層であるため、実質的な有機層110の厚さは一定となり、局所的に大電圧が印加されるという状況を避けることが可能となる。
 以上のように、第1の電極102表面に凹凸を形成することにより、第1の電極とバッファ層103Qとの界面、バッファ層103Qと有機層110との界面、それぞれで多方向の反射を繰り返しながら、長寿命を維持し、効率よく光の取り出しを実現することができる。
In this embodiment, the unevenness on the surface of the organic layer 110 is smaller than the unevenness on the surface of the first electrode 102, but the distance between the electrodes gently changes at the same pitch, and the buffer layer is an insulating layer. Therefore, the substantial thickness of the organic layer 110 is constant, and it is possible to avoid a situation in which a large voltage is applied locally.
As described above, by forming irregularities on the surface of the first electrode 102, multi-directional reflection is repeated at the interface between the first electrode and the buffer layer 103Q and the interface between the buffer layer 103Q and the organic layer 110, respectively. However, a long life can be maintained and light can be extracted efficiently.
 この構成によれば、バッファ層103Pの上層に形成される発光機能を有する層が薄い場合にも段切れが生じたりすることもない。 According to this configuration, even when the layer having a light emitting function formed on the buffer layer 103P is thin, no disconnection occurs.
 また、第1の電極表面の凹凸は、前記バッファ層の表面でほぼ平坦となっており、バッファ層は低抵抗材料で構成されているため、実質的な電極間距離はこの平坦なバッファ層表面から第2の電極間の距離となっている。
 このようにして、光取り出し効率が良好でかつ、電力集中がなく、より信頼性の高い有機LED発光素子を提供することが可能となる。
Further, the unevenness of the surface of the first electrode is substantially flat on the surface of the buffer layer, and the buffer layer is made of a low resistance material, so that the substantial distance between the electrodes is the surface of the flat buffer layer. To the distance between the second electrodes.
In this way, it is possible to provide a more reliable organic LED light-emitting element with good light extraction efficiency and no power concentration.
 なお、酸化モリブデンなどの低抵抗無機物は比抵抗が小さく、第1の電極に近い比抵抗をもつことから、バッファ層内での電圧降下は無視できることになり、電界は、このバッファ層103と第2の電極120との間で大きくなる。また、第1の電極表面の尖った錐形状の先端はバッファ層で緩和されている。従ってバッファ層103の存在により、バッファ層103と第2の電極120との距離がほぼ均一となり、電界集中はより低減され、寿命は向上する。一方、屈折率は、基板101上の第1の電極102とバッファ層103との界面で、より大きく異なり、この部分で散乱効果が向上する。また、バッファ層と発光機能を有する層(有機層110)との界面でも屈折率差がありかつ凹凸を有するため、散乱効果は高い。このため、第1の電極側で、2段階の散乱が生じ、光取り出し効率が向上する。例えば、例えばMoCVD法で形成した、比抵抗8.1×10-5Ωの酸化モリブデンをバッファ層とし、1.5×10-4ΩのITOを第1の電極として用いることで、このような効果を奏功し得る有機LED発光素子を得ることができる。 Note that a low-resistance inorganic material such as molybdenum oxide has a small specific resistance and a specific resistance close to that of the first electrode, so that a voltage drop in the buffer layer can be ignored. Between the two electrodes 120. Further, the pointed cone-shaped tip of the first electrode surface is relaxed by the buffer layer. Accordingly, due to the presence of the buffer layer 103, the distance between the buffer layer 103 and the second electrode 120 becomes substantially uniform, the electric field concentration is further reduced, and the lifetime is improved. On the other hand, the refractive index differs greatly at the interface between the first electrode 102 and the buffer layer 103 on the substrate 101, and the scattering effect is improved at this portion. Further, since there is a difference in refractive index at the interface between the buffer layer and the layer having a light emitting function (organic layer 110) and there are irregularities, the scattering effect is high. For this reason, two-stage scattering occurs on the first electrode side, and the light extraction efficiency is improved. For example, by using molybdenum oxide having a specific resistance of 8.1 × 10 −5 Ω, which is formed by, for example, MoCVD, as a buffer layer and using ITO of 1.5 × 10 −4 Ω as the first electrode, An organic LED light-emitting element that can achieve the effect can be obtained.
 また、本発明によれば、比抵抗が透光性電極の比抵抗に近く、透光性電極との屈折率差の大きい材料を選択することにより、電界を印加するときの(電気的)界面と散乱面となる光学的界面とをずらすことができる。図10に実線矢印で実際に電界が印加される領域、破線矢印で電極間距離を示す。実線矢印間の間隔が、電界印加がなされる電極間距離、破線矢印が光学的な界面の間隔に相当する。従って、光学的界面には凹凸を残しつつ、電気的界面はより平坦となることで、有機LED発光素子の電極間距離を実質的に均一に維持しつつ、発光機能を有する層の近傍での散乱効果を高めることができ、光取り出し効率の向上と長寿命化をはかることができる。 In addition, according to the present invention, by selecting a material having a specific resistance close to that of the translucent electrode and having a large refractive index difference from the translucent electrode, an (electrical) interface when an electric field is applied And the optical interface serving as the scattering surface can be shifted. FIG. 10 shows a region where an electric field is actually applied by a solid arrow, and a distance between electrodes by a broken arrow. The distance between solid line arrows corresponds to the distance between electrodes to which an electric field is applied, and the broken line arrow corresponds to the distance between optical interfaces. Therefore, the electrical interface is flattened while leaving the unevenness in the optical interface, so that the distance between the electrodes of the organic LED light emitting element is maintained substantially uniform, and in the vicinity of the layer having the light emitting function. The scattering effect can be enhanced, and the light extraction efficiency can be improved and the life can be extended.
 前記実施の形態では基板側に光取り出しを行うボトムエミッション構造の有機LED発光素子について説明したが、これに限定されることなく、第1の電極と発光機能を有する層との界面の凹凸による光取り出し特性の向上だけでなく、第2の電極を透光性電極とし、第2の電極と発光機能を有する層との界面の凹凸による光取り出し特性の向上をはかった両面発光型の有機LED発光素子にも適用可能である。
 なお、発光機能を有する層としては有機層を用いたが、酸化モリブデン等の高融点金属酸化物で構成された無機膜をバッファ層として用いるなど、無機膜を含むようにしてもよい。
In the above-described embodiment, the organic LED light emitting element having a bottom emission structure that extracts light to the substrate side has been described. However, the present invention is not limited to this, and light generated by unevenness at the interface between the first electrode and the layer having a light emitting function. Double-sided organic LED light emission that not only improves the extraction characteristics, but also uses the second electrode as a translucent electrode to improve the light extraction characteristics due to irregularities at the interface between the second electrode and the layer having a light emitting function. It can also be applied to elements.
Although an organic layer is used as a layer having a light emitting function, an inorganic film such as an inorganic film made of a refractory metal oxide such as molybdenum oxide may be used as a buffer layer.
 以上、本発明を詳細に、特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2010年03月8日出願の日本特許出願(特願2010-050162)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2010-0500162) filed on Mar. 8, 2010, the contents of which are incorporated herein by reference.
 以上説明してきたように、本発明の有機LED発光素子は、光の取り出し効率を増大することができ、ディスプレイパネルなど種々の発光デバイスに適用可能である。 As described above, the organic LED light emitting element of the present invention can increase the light extraction efficiency and can be applied to various light emitting devices such as a display panel.
 100 電極付き透光性基板
 101 基板
 102 第1の電極(透光性電極)
 103、103P、103Q バッファ層
 110 有機層(発光機能を有する層)
 120 第2の電極(反射性電極)
100 Translucent substrate with electrode 101 Substrate 102 First electrode (translucent electrode)
103, 103P, 103Q Buffer layer 110 Organic layer (layer having light emitting function)
120 Second electrode (reflective electrode)

Claims (17)

  1.  透光性基板と、
     前記透光性基板上にCVD法によって形成され、表面に凹凸を有する透光性酸化膜からなる第1の電極と、
     前記第1の電極上に形成されたバッファ層と、
     前記バッファ層上に形成された発光機能を有する層と、
     前記発光機能を有する層上に形成された第2の電極とを具備した有機LED発光素子。
    A translucent substrate;
    A first electrode formed on the light-transmitting substrate by a CVD method and made of a light-transmitting oxide film having irregularities on the surface;
    A buffer layer formed on the first electrode;
    A layer having a light emitting function formed on the buffer layer;
    An organic LED light emitting device comprising: a second electrode formed on the layer having a light emitting function.
  2.  請求項1に記載の有機LED発光素子であって、
     前記バッファ層の表面は前記第1の電極表面の凹凸に対応する凹凸を有する有機LED発光素子。
    The organic LED light-emitting device according to claim 1,
    The surface of the buffer layer is an organic LED light emitting element having irregularities corresponding to the irregularities of the surface of the first electrode.
  3.  請求項2に記載の有機LED発光素子であって、
     前記発光機能を有する層の表面は前記第1の電極表面の凹凸に対応する凹凸を有し、
     前記第1の電極表面の凹凸、前記バッファ層表面の凹凸、及び前記発光機能を有する層表面の凹凸は、
     前記第1の電極表面から、前記バッファ層表面、前記発光機能を有する層表面に行くに従い、順次前記各凹凸の程度を表す表面粗さが小さくなる有機LED発光素子。
    The organic LED light-emitting device according to claim 2,
    The surface of the layer having a light emitting function has unevenness corresponding to the unevenness of the surface of the first electrode,
    The unevenness on the surface of the first electrode, the unevenness on the surface of the buffer layer, and the unevenness on the surface of the layer having the light emitting function are:
    An organic LED light-emitting element in which the surface roughness representing the degree of each unevenness decreases sequentially from the surface of the first electrode to the surface of the buffer layer and the surface of the layer having a light emitting function.
  4.  請求項1乃至3のいずれか1項に記載の有機LED発光素子であって、
     前記第1の電極表面の凹凸の内、凸は、規則的な角錐形状である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 3, Comprising:
    Of the irregularities on the surface of the first electrode, the convexes are organic LED light emitting elements having a regular pyramid shape.
  5.  請求項4に記載の有機LED発光素子であって、
     前記第1の電極表面の凸の出現間隔の平均値W1に対する前記凸の高さの平均値H1の比が0.5以上である有機LED発光素子。
    The organic LED light-emitting device according to claim 4,
    The organic LED light emitting element whose ratio of the average value H1 of the said convex height with respect to the average value W1 of the convex appearance interval of the said 1st electrode surface is 0.5 or more.
  6.  請求項1乃至5のいずれか1項に記載の有機LED発光素子であって、
     前記第1の電極表面の表面粗さRaが60nm以上である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 5, Comprising:
    The organic LED light emitting element whose surface roughness Ra of the said 1st electrode surface is 60 nm or more.
  7.  請求項6に記載の有機LED発光素子であって、
     前記第1の電極表面の表面粗さRaが80nm以上120nm未満である有機LED発光素子。
    The organic LED light-emitting device according to claim 6,
    The organic LED light emitting element whose surface roughness Ra of the said 1st electrode surface is 80 nm or more and less than 120 nm.
  8.  請求項6に記載の有機LED発光素子であって、
     前記第1の電極表面の凸の出現間隔が、0.1から0.3μmである有機LED発光素子。
    The organic LED light-emitting device according to claim 6,
    An organic LED light-emitting element in which a convex appearance interval on the surface of the first electrode is 0.1 to 0.3 μm.
  9.  請求項1乃至8のいずれか1項に記載の有機LED発光素子であって、
     前記バッファ層が溶液塗布型の有機層である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 8, Comprising:
    The organic LED light emitting element whose said buffer layer is a solution application type organic layer.
  10.  請求項1乃至8のいずれか1項に記載の有機LED発光素子であって、
     前記バッファ層が金属酸化物薄膜である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 8, Comprising:
    The organic LED light emitting element whose said buffer layer is a metal oxide thin film.
  11.  請求項4に記載の有機LED発光素子であって、
     前記バッファ層表面の凹凸の内、凸の出現間隔の平均値W2に対する前記凸の高さの平均値H2の比が0.2以上である有機LED発光素子。
    The organic LED light-emitting device according to claim 4,
    The organic LED light emitting element whose ratio of the average value H2 of the said convex height with respect to the average value W2 of the convex appearance interval among the unevenness | corrugations of the said buffer layer surface is 0.2 or more.
  12.  請求項11に記載の有機LED発光素子であって、
     前記発光機能を有する層表面の凹凸の内、凸の出現間隔の平均値W3に対する前記凸の高さの平均値H3の比が0.1以上である有機LED発光素子。
    The organic LED light-emitting device according to claim 11,
    The organic LED light emitting element whose ratio of the average value H3 of the said convex height with respect to the average value W3 of the convex appearance interval among the unevenness | corrugations of the layer surface which has the said light emission function is 0.1 or more.
  13.  請求項1乃至12のいずれか1項に記載の有機LED発光素子であって、
     前記透光性基板が、ガラス基板である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 12, Comprising:
    The organic LED light emitting element whose said translucent board | substrate is a glass substrate.
  14.  請求項1乃至12のいずれか1項に記載の有機LED発光素子であって、
     前記透光性基板が、可撓性基板である有機LED発光素子。
    It is an organic LED light emitting element of any one of Claims 1 thru | or 12, Comprising:
    The organic LED light emitting element whose said translucent board | substrate is a flexible substrate.
  15.  請求項1乃至14のいずれかに記載の有機LED発光素子であって、
     前記第1の電極は、フッ素ドープされた酸化錫層で構成される有機LED発光素子。
    The organic LED light-emitting element according to claim 1,
    The first electrode is an organic LED light-emitting element composed of a fluorine-doped tin oxide layer.
  16.  透光性基板上にCVD法によって形成された、表面に凹凸を有する透光性酸化膜からなる第1の電極を形成する工程と、
     前記第1の電極上にバッファ層を形成する工程と、
     前記バッファ層上に発光機能を有する層を形成する工程と、
     前記発光機能を有する層上に第2の電極を形成する工程とを含む有機LED発光素子の製造方法。
    Forming a first electrode made of a light-transmitting oxide film having irregularities on the surface, formed by a CVD method on a light-transmitting substrate;
    Forming a buffer layer on the first electrode;
    Forming a layer having a light emitting function on the buffer layer;
    And a step of forming a second electrode on the layer having the light emitting function.
  17.  請求項16に記載の有機LED発光素子の製造方法であって、
     前記バッファ層を形成する工程は、前記第1の電極表面の凹凸に対応する凹凸であって、より程度の小さな凹凸を前記バッファ層表面に形成し、
     前記発光機能を有する層を形成する工程は、前記第1の電極表面の凹凸に起因し、かつ、前記バッファ層表面の凹凸に対応する凹凸であって、前記バッファ層表面の凹凸より程度の小さな凹凸を前記発光機能を有する層表面に形成するように、成膜する工程である有機LED発光素子の製造方法。
    A method for producing an organic LED light-emitting device according to claim 16,
    The step of forming the buffer layer is a concavo-convex corresponding to the concavo-convex of the surface of the first electrode, forming a smaller concavo-convex on the surface of the buffer layer,
    The step of forming the layer having a light emitting function is unevenness corresponding to the unevenness on the surface of the buffer layer, and is smaller than the unevenness on the surface of the buffer layer. The manufacturing method of the organic LED light emitting element which is the process of forming into a film so that an unevenness | corrugation may be formed in the layer surface which has the said light emission function.
PCT/JP2011/055112 2010-03-08 2011-03-04 Organic led light-emitting element and process for production thereof WO2011111629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010050162 2010-03-08
JP2010-050162 2010-03-08

Publications (1)

Publication Number Publication Date
WO2011111629A1 true WO2011111629A1 (en) 2011-09-15

Family

ID=44563432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055112 WO2011111629A1 (en) 2010-03-08 2011-03-04 Organic led light-emitting element and process for production thereof

Country Status (2)

Country Link
TW (1) TW201212324A (en)
WO (1) WO2011111629A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225447A (en) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd Electrode foil and electronic device
WO2014017135A1 (en) * 2012-07-27 2014-01-30 三井金属鉱業株式会社 Metal foil and electronic device
JP2014067559A (en) * 2012-09-25 2014-04-17 Toshiba Corp Organic electroluminescent element and light emitting device
WO2019004061A1 (en) * 2017-06-26 2019-01-03 株式会社カネカ Flexible organic el panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381601B2 (en) * 2016-12-20 2019-08-13 Lg Display Co., Ltd. Organic electroluminescence display device including convex curve or concave curve and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309592A (en) * 1989-05-24 1990-12-25 Central Glass Co Ltd El element and its manufacture
JP2002111025A (en) * 2000-09-29 2002-04-12 Nippon Sheet Glass Co Ltd Substrate for photoelectric conversion element, manufacturing method of substrate, and photoelectric conversion element using the substrate
JP2007234254A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Organic electroluminescent element and its manufacturing method
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309592A (en) * 1989-05-24 1990-12-25 Central Glass Co Ltd El element and its manufacture
JP2002111025A (en) * 2000-09-29 2002-04-12 Nippon Sheet Glass Co Ltd Substrate for photoelectric conversion element, manufacturing method of substrate, and photoelectric conversion element using the substrate
JP2007234254A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Organic electroluminescent element and its manufacturing method
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225447A (en) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd Electrode foil and electronic device
WO2013161129A1 (en) * 2012-04-23 2013-10-31 三井金属鉱業株式会社 Electrode foil and electronic device
US9029885B2 (en) 2012-04-23 2015-05-12 Mitsui Mining & Smelting Co., Ltd. Electrode foil and electronic device
WO2014017135A1 (en) * 2012-07-27 2014-01-30 三井金属鉱業株式会社 Metal foil and electronic device
CN104488353A (en) * 2012-07-27 2015-04-01 三井金属矿业株式会社 Metal foil and electronic device
JPWO2014017135A1 (en) * 2012-07-27 2016-07-07 三井金属鉱業株式会社 Metal foil and electronic device
US9786404B2 (en) 2012-07-27 2017-10-10 Mitsui Mining & Smelting Co., Ltd. Metal foil and electronic device
JP2014067559A (en) * 2012-09-25 2014-04-17 Toshiba Corp Organic electroluminescent element and light emitting device
US9425432B2 (en) 2012-09-25 2016-08-23 Kabushiki Kaisha Toshiba Organic electroluminescent element and light emitting device with optical path control layer
WO2019004061A1 (en) * 2017-06-26 2019-01-03 株式会社カネカ Flexible organic el panel
US10777778B2 (en) 2017-06-26 2020-09-15 Kaneka Corporation Flexible organic EL panel

Also Published As

Publication number Publication date
TW201212324A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
KR101115154B1 (en) Organic light emitting diode and method for fabricating the same
JP5742838B2 (en) Organic LED element, translucent substrate, and manufacturing method of organic LED element
US9825258B2 (en) Layered structure for OLED device, method for manufacturing the same, and OLED device having the same
EP2132802B1 (en) Oled with improved light outcoupling
JP4440267B2 (en) High-efficiency organic light-emitting device using a substrate having nano-sized hemispherical recesses and a method for manufacturing the same
US9147856B2 (en) Organic light emitting device
US20080238310A1 (en) OLED with improved light outcoupling
US9508957B2 (en) OLED with improved light outcoupling
JP2008066027A (en) Substrate having concavo-convex front surface, and organic el element using it
CN102422453A (en) Organic light-emitting diode and method for manufacturing same
WO2011111629A1 (en) Organic led light-emitting element and process for production thereof
TW202125868A (en) Organic light-emitting diode (oled) display devices with uv-cured filler
JP7201442B2 (en) Display panel and its manufacturing method, electroluminescence device and display device
JP2018152358A (en) Transparent conductive oxide coating for solar device and organic light emitting diode
US8310150B2 (en) Light emitting device with high outcoupling
CN101106180B (en) Image display system
JP2004104064A (en) Light-emitting device
JP2007059195A (en) Upper face light emission type organic electroluminescent element
CN101114702A (en) System for displaying images
JP2006139932A (en) Organic electroluminescent element and its manufacturing method
JP2010171349A (en) Display panel substrate, manufacturing method therefor, display panel using the same, and manufacturing method therefor
KR101489780B1 (en) Organic light emitting diode and fabrication method the same
JP2007329054A (en) Image display device
JP2019079725A (en) Organic el element, lighting device including organic el element, surface light source, and display device
Zhou et al. Enhanced light extraction of organic light emitting diodes by embedding printed polymethyl methacrylate dot array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP