JPH0230945A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH0230945A
JPH0230945A JP1097320A JP9732089A JPH0230945A JP H0230945 A JPH0230945 A JP H0230945A JP 1097320 A JP1097320 A JP 1097320A JP 9732089 A JP9732089 A JP 9732089A JP H0230945 A JPH0230945 A JP H0230945A
Authority
JP
Japan
Prior art keywords
flow rate
air flow
internal combustion
combustion engine
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097320A
Other languages
Japanese (ja)
Inventor
Junichi Kobayashi
淳一 小林
Takashi Mizumori
隆司 水守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1097320A priority Critical patent/JPH0230945A/en
Publication of JPH0230945A publication Critical patent/JPH0230945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the precision deterioration due to the aging change of an intake air flow meter by setting the opening of an air flow control valve to the preset opening at the time of idling and calibrating the air flow meter with the intake air flow determined from the engine rotating speed as a reference. CONSTITUTION:The flow signal is outputted from a flow converter 6 in response to the output signal of the sensor section 5 of a hot-wire air flow meter detecting the flow in an intake passage 2, a fuel injection valve 7 is controlled by the signal from a fuel injection quantity setter 10 at the time of its operation to hold the engine rotating speed at the fixed value. The second flow signal Mj is determined by a flow converting device 13 based on output signals of a throttle valve opening setter 9 and an engine rotating speed detector 11, the verification curve for converting the output signal of the sensor section 5 of the flow converter 6 into the flow signal is calibrated by a verification curve calibrating circuit 14 based on the flow signal Mj.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸入空気量を検出する空気流量計
に係り、特に吸気中のダスト、オイル等の汚れ粒子のセ
ンサ部への付着によって起こる出力の経時変化に対処す
るのに好適な空気流量計を搭載した内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air flow meter that detects the intake air amount of an internal combustion engine. The present invention relates to an internal combustion engine equipped with an air flow meter suitable for dealing with changes in output over time caused by

〔従来の技術〕[Conventional technology]

内燃機関の高性能化や排ガス規制の強化に伴ない燃焼制
御装置の一部としての吸入空気流量値も精密な空燃比制
御が行えるようにより高度な精度と耐久性が要求されて
きた。しかし、これを実現するためには例えば熱線式空
気流量計の場合、熱線に付着する塵埃等が問題となる。
As the performance of internal combustion engines increases and exhaust gas regulations become stricter, the intake air flow rate value, which is part of the combustion control device, is required to have higher accuracy and durability so that precise air-fuel ratio control can be performed. However, in order to realize this, for example, in the case of a hot wire type air flowmeter, dust and the like that adhere to the hot wire become a problem.

熱線式空気流量計は、空気の流れの中に電気的に加熱し
た発熱抵抗体を置き、・空気流量の変化による放熱量の
変化、すなわち電気回路的には、発熱抵抗体がブリッジ
回路の一低抗となっているため、その発熱量の変化を生
じさせる抵抗体両端の電圧の変化をとらえて流量を検知
する。一般に、発熱抵抗体の抵抗値(換言すれば温度)
を一定に保つよう回路要構成される。発熱素子は、抵抗
値が温度依存性のよい白金、ニッケルなどの線、箔。
A hot wire air flow meter places an electrically heated heating resistor in the air flow, and changes the amount of heat dissipated due to changes in air flow rate. Because it has a low resistance, the flow rate is detected by capturing the change in voltage across the resistor, which causes a change in the amount of heat generated. Generally, the resistance value (in other words, the temperature) of the heating resistor
The circuit is constructed to keep the value constant. The heating element is a wire or foil made of platinum, nickel, etc. whose resistance value has good temperature dependence.

膜を発熱抵抗体本体として、単独あるいはセラミックス
、ガラス、ポリイミド樹脂などのボビンに巻回又は基板
に接合するなどの方法で形成されている。本明細書では
、発熱素子を総称して熱線素子あるいは熱線と呼ぶ。
The film is used as the main body of the heating resistor, and is formed either alone or by winding it around a bobbin of ceramics, glass, polyimide resin, etc., or bonding it to a substrate. In this specification, heating elements are collectively referred to as hot wire elements or hot wires.

吸入空気に塵埃が含まれていると、それが熱線に付着し
2発熱抵抗体の空気に対する熱伝達率が変化し、抵抗体
の冷却特性が変化する。この結果流量が一定であっても
、発熱抵抗体の抵抗値を一定に保つための抵抗体両端の
電圧、つまりセンサとしての出力値が変化するので、あ
らかじめ与えられたセンサ出力と流量の検定曲線により
流量を求めると、塵埃が付着するに従がい、経時変化を
起こし、流量の測定精度が悪くなり、空燃比制御の精度
が悪くなる。
When the intake air contains dust, it adheres to the hot wire, changing the heat transfer coefficient of the two heating resistors to the air, and changing the cooling characteristics of the resistor. As a result, even if the flow rate is constant, the voltage across the resistor to keep the resistance value of the heating resistor constant, that is, the output value as a sensor, changes, so the pre-given sensor output and flow rate verification curve If the flow rate is determined by , as dust adheres to the flow rate, it will change over time, resulting in poor flow rate measurement precision and air-fuel ratio control precision.

その対策として、例えば、特開昭54−76182号公
報に示されているように、熱線を通常の動作温度以上に
加熱して付着した塵埃を燃焼させる方式や、特開昭59
−190624号公報に示されるように、熱線の上流部
に障害物を置き、熱線に直接付着する塵埃粒子数の軽減
を図る方法が検討されている。
As a countermeasure, for example, as shown in Japanese Patent Laid-Open No. 54-76182, there is a method of heating a hot wire above the normal operating temperature to burn off the attached dust, and
As shown in Japanese Patent Publication No. 190624, a method of placing an obstacle upstream of the hot wire to reduce the number of dust particles directly attached to the hot wire has been studied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

熱線を通常の動作温度以上に加熱し付着した塵埃を燃焼
させる方式においては、加熱された熱線上で塵埃粒子に
含まれているケイ素化合物などが融解しガラス化して、
より強く熱線に付着することにより熱線の放射特性が変
化したり、また、熱線の上流部に障害物を置き、熱線に
直接付着する塵埃粒子数の軽減を図る方法では、熱線の
直前に障害物を置くため、その後流の中に熱線を置くこ
とになり、出力信号に雑音を乗せることになるなどの欠
点があり、熱線式空気流量計の経時変化の対策法として
は、あまり効果的でないという問題点があった。
In the method of heating a hot wire above the normal operating temperature and burning the attached dust, the silicon compounds contained in the dust particles melt and vitrify on the heated hot wire.
The radiation characteristics of the heat rays change due to stronger adhesion to the heat rays, and the method of placing obstacles upstream of the heat rays to reduce the number of dust particles directly adhering to the heat rays, Because of this, a hot wire is placed in its wake, which has the disadvantage of adding noise to the output signal, and is not very effective as a countermeasure against aging of hot wire air flowmeters. There was a problem.

本発明の目的は、上記欠点を改善し、空気流量計の経年
変化を補償し、高精度な空燃比制御のできる内燃機関を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine that can improve the above-mentioned drawbacks, compensate for aging of the air flow meter, and perform highly accurate air-fuel ratio control.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、内燃機関の吸入空気流量に対応する信号を
発生するセンサと、該信号を入力しあらかじめ定めた第
1の流量変換関数に基づき吸入空気流量を算出する第1
空気流量算出手段と、吸入空気流量を制御する空気流量
制御弁の開度を所定の開度に設定した状態で内燃機関の
回転数と吸入空気流量の関係を示す第2の流量変換関数
に基づき内燃機関の回転数より吸入空気流量を算出する
第2空気流量算出手段と、該第2空気流量算出手段によ
り算出した吸入空気流量に基づいて前記第1−の流量変
換関数を較正する較正手段と、を備えた内燃機関空気流
量計を内燃機関に搭載することによって達成される。
The above problem consists of a sensor that generates a signal corresponding to the intake air flow rate of an internal combustion engine, and a first sensor that inputs the signal and calculates the intake air flow rate based on a predetermined first flow rate conversion function.
Based on the air flow rate calculation means and a second flow rate conversion function that indicates the relationship between the rotational speed of the internal combustion engine and the intake air flow rate with the opening degree of the air flow control valve that controls the intake air flow rate set to a predetermined opening degree. a second air flow rate calculation means for calculating an intake air flow rate from the rotational speed of the internal combustion engine; and a calibration means for calibrating the first flow rate conversion function based on the intake air flow rate calculated by the second air flow rate calculation means. This is achieved by mounting an internal combustion engine air flow meter equipped with , on the internal combustion engine.

また、前記第2空気流量算出手段が、吸入空気流量を制
御する空気制御弁の開度を所定の開度に設定した状態で
外気温度、大気圧、内燃機関の回転数と吸入空気流量の
関係を示す第2の流量変換関数に基づき外気温度、大気
圧と内燃機関の回転数より吸入空気流量を算出する内燃
機関空気流量計としてもよく、また、前記空気流量制御
弁の開度を全開に設定する装置が、アイドリング時は前
記空気流量制御弁に設けられたスプリングの作用により
全開となり、該空気流量制御弁に滑車を介して接続され
たワイヤをアクセルペダルに接続してアクセルペダルを
操作して前記空気流量制御弁の開度を調整するように構
成された装置の前記ワイヤの中間を切断して形状記憶合
金で接続し、アイドリング時前記形状記憶合金を制御し
て前記空気流量制御弁を全開とするものである内燃機関
空気流量計としてもよい。
Further, the second air flow rate calculation means calculates the relationship between the outside temperature, atmospheric pressure, the rotational speed of the internal combustion engine, and the intake air flow rate with the opening degree of the air control valve that controls the intake air flow rate set to a predetermined opening degree. The internal combustion engine air flow meter may be used as an internal combustion engine air flow meter that calculates the intake air flow rate from outside temperature, atmospheric pressure, and the rotational speed of the internal combustion engine based on a second flow rate conversion function that indicates When the device to be set is idling, it is fully opened by the action of a spring provided on the air flow control valve, and a wire connected to the air flow control valve via a pulley is connected to the accelerator pedal to operate the accelerator pedal. The wire of the device configured to adjust the opening degree of the air flow control valve is cut in the middle and connected with a shape memory alloy, and the shape memory alloy is controlled to adjust the air flow control valve during idling. It may also be an internal combustion engine air flow meter that opens fully.

〔作用〕[Effect]

熱線式空気流量計のセンサ部からの出力信号を第1の流
量変換関数に基づき吸入空気量を算出する第1空気流量
算出手段と、予め開度を設定したスロットルバルブ開度
と内燃機関の回転数から第2の流量変換関数に基づき吸
入空気量を算出する第2空気流量算出手段と、該第2空
気流量算出手段により算出した吸入空気流量に基づき前
記第1の流量変換関数を較正する較正手段とを備えてい
るので、熱線式空気流量計が吸入空気に含まれている塵
埃などによって経時変化して許容値を越えた時より遂次
較正手段によって第1の流量変換関数を較正する。これ
によって、熱線式空気流量計自体の経時変化が生じても
正確な吸入空気流量を計測できる。
a first air flow rate calculation means that calculates an intake air amount based on a first flow rate conversion function based on an output signal from a sensor section of the hot wire air flow meter; and a throttle valve opening whose opening is set in advance and the rotation of the internal combustion engine. second air flow rate calculation means for calculating an intake air amount based on a second flow rate conversion function from a number; and calibration for calibrating the first flow rate conversion function based on the intake air flow rate calculated by the second air flow rate calculation means. The first flow rate conversion function is successively calibrated by the calibration means when the hot wire air flowmeter changes over time due to dust or the like contained in the intake air and exceeds a permissible value. As a result, the intake air flow rate can be accurately measured even if the hot wire air flow meter itself changes over time.

また、第1空気流派算出手段は、センサよりの吸入空気
流量に対応した信号を入力して第1の流量変換関数に基
づき吸入空気流量を算出し、第2空気流量算出手段は、
空気流量制御弁の開度を所定角度に設定した状態で内燃
機関の回転数を入力して第2の流+1に変換関数に基づ
く吸入空気流量を算出し、較正手段は、第2空気流量算
出手段の算出した吸入空気流量に基づいて第1空気流量
算出手段の第1の流量変換関数を較正することができる
。また、第2空気流量算出手段は、流量算出するパラメ
ータとして内燃機関の回転数に加え、外気温度、大気圧
を加えると算出精度が向上する。
Further, the first air flow rate calculation means inputs a signal corresponding to the intake air flow rate from the sensor and calculates the intake air flow rate based on the first flow rate conversion function, and the second air flow rate calculation means calculates the intake air flow rate based on the first flow rate conversion function.
The calibration means calculates the intake air flow rate based on the conversion function by inputting the rotation speed of the internal combustion engine while setting the opening degree of the air flow control valve to a predetermined angle, and calculates the intake air flow rate based on the conversion function to the second flow +1. The first flow rate conversion function of the first air flow rate calculation means can be calibrated based on the intake air flow rate calculated by the means. In addition, the second air flow rate calculating means improves calculation accuracy by adding outside temperature and atmospheric pressure in addition to the rotational speed of the internal combustion engine as parameters for calculating the flow rate.

また、空気流量制御弁の開度をアイドリング時全開にセ
ットするのに空気流量制御弁を開閉するワイヤの中間に
形状記憶合金を設けて、アイドリング時は通常全開とな
っている空気流量制御弁を形状記憶合金に制御電流を通
電することにより全開とする。
In addition, in order to set the opening degree of the air flow control valve to be fully open when idling, a shape memory alloy is installed in the middle of the wire that opens and closes the air flow control valve. It is fully opened by applying a control current to the shape memory alloy.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図〜第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、内燃機関の空気の吸入路を構成する部品、熱
線式空気流量計、さらには較正装置を示す。外部空気は
、吸気部1から流入し、流路2を通り、エンジンの吸入
室3に供給される。吸気部1とエンジンの吸入室3の間
には、吸入空気量を制御するスロットルバルブ4があり
、その上流に例えば特願昭63−148128号で示さ
れる熱線式空気流量計のセンサ部5が流路2内に突出し
て設置してあり、またスロットルバルブの下流には、例
えば特願昭63−3737号で示される燃料噴射弁7が
設けである。
FIG. 1 shows parts constituting an air intake path of an internal combustion engine, a hot wire air flow meter, and a calibration device. External air flows in from the intake section 1, passes through the flow path 2, and is supplied to the intake chamber 3 of the engine. Between the intake section 1 and the intake chamber 3 of the engine, there is a throttle valve 4 for controlling the amount of intake air, and upstream thereof is a sensor section 5 of a hot-wire air flow meter, for example, as shown in Japanese Patent Application No. 148128/1983. The fuel injection valve 7 is installed protruding into the flow path 2, and downstream of the throttle valve is a fuel injection valve 7 as shown in Japanese Patent Application No. 63-3737, for example.

通常、流路2内を流れる流量は、熱線式空気流量計のセ
ンサ部5からの出力信号が、メモリを有する変換器6を
通ることにより、流量信号として求められる。なお、変
換器6の内部には、出力信号から流量信号に変換する検
定曲線gは記憶されている。
Normally, the flow rate flowing through the flow path 2 is determined as a flow rate signal by passing an output signal from the sensor unit 5 of the hot wire air flowmeter through a converter 6 having a memory. Note that a verification curve g for converting an output signal into a flow rate signal is stored inside the converter 6.

次に較正装置8の作動形態を説明する。この装置8は、
熱線式空気流量計の経時変化が許容値を、越えた時より
、すなわち、走行距離が設定値を越え時あるいは、スロ
ットルバルブの開度θ0とエンジン回転数NJより求め
た流量とセンサ5で求めた流量の差が設定値を越えた時
より、アイドリング時もしくは走行時に自動的にあるい
は手動で作動させる。較正装置8が作動の状態になると
Next, the mode of operation of the calibration device 8 will be explained. This device 8 is
When the change over time of the hot wire air flow meter exceeds the allowable value, that is, when the traveling distance exceeds the set value, or the flow rate determined from the throttle valve opening θ0 and the engine rotation speed NJ is determined by the sensor 5. When the difference in flow rate exceeds the set value, the system is activated automatically or manually when idling or driving. Once the calibration device 8 is in operation.

まずスロットルバルブ4の開度が、バルブ開度設定器9
からの信号で00に設定される。次に00が固定のまま
で、燃料噴射量が燃料噴射量設定器10からの信号でG
i に設定される。これによりエンジンの回転数検出器
11の出力は一定回転数Nt となる。この回転数Ni
 と別に設けられた温度、圧力ランサ12より、外気温
度To、大気圧Paの信号を、変換装置13に入力する
と、上記設定状態に対応した流量MJ が求められる。
First, the opening degree of the throttle valve 4 is determined by the valve opening setting device 9.
It is set to 00 by the signal from . Next, while 00 remains fixed, the fuel injection amount is set to G based on the signal from the fuel injection amount setting device 10.
i is set. As a result, the output of the engine rotation speed detector 11 becomes a constant rotation speed Nt. This rotation speed Ni
When signals of outside air temperature To and atmospheric pressure Pa are input from a temperature and pressure lancer 12 provided separately from the converter 13, a flow rate MJ corresponding to the above setting state is determined.

ただし、変換装置13には、スロットルバルブ4の開度
がOoのときの、エンジン回転数Nおよび標準外気温度
Ts、標準大気圧Psと流kMの関係を表わすデータが
メモリに内蔵されている。このようにして求められた流
ftHvtiの信号が検定曲線較正回路14に送り、別
途得られている熱線式空気流量計のセンサ部5からの出
力信号(3a と合わせて、一対の較正のためのデータ
を作る。以上の手続きを燃料噴射MGJ を変えてn回
くり返し、流量信号MJ とセンサ出力信号87の関係
を求めることにより、検定曲線gの再較正が行われ、新
しい検定曲線が変換器6に送られ、較正装置8の作動が
完了する。
However, the conversion device 13 has built-in data in its memory that represents the relationship between the engine rotational speed N, the standard outside temperature Ts, the standard atmospheric pressure Ps, and the flow kM when the opening degree of the throttle valve 4 is Oo. The signal of the flow ftHvti obtained in this way is sent to the calibration curve calibration circuit 14, and together with the output signal (3a) from the sensor unit 5 of the hot-wire air flowmeter obtained separately, a pair of calibration signals are sent to the test curve calibration circuit 14. Create data. By repeating the above procedure n times while changing the fuel injection MGJ and finding the relationship between the flow rate signal MJ and the sensor output signal 87, the verification curve g is recalibrated, and a new verification curve is generated at the converter 6. and the operation of the calibration device 8 is completed.

次に第2図により流量変換および検定曲線の較正のフロ
ーを説明する。
Next, the flow rate conversion and verification curve calibration flow will be explained with reference to FIG.

第2図、第1図の変換装置13と検定曲線較正回路14
におけるマイクロコンピュータのソフトウェアを示すフ
ローチャートである。
Conversion device 13 and test curve calibration circuit 14 in FIGS. 2 and 1
3 is a flowchart showing the software of the microcomputer in FIG.

ステップ21で、あらかじめ入力された。標準温度Ts
、標準大気圧Psにおけるエンジン回転数N1とその時
の流量fa(J=1p 2+・・・M)の実験データか
ら、工、ンジン回転数と流量の関係を示すf=f (N
)を最小二乗法で算出する。ステップ22でJ=Oとし
、ステップ23で現在の流量計算に必要なデータを入力
する。ステップ24でエンジン回転数NJの時の標準状
態での流量MJ をMJ= f(NJ)より求め、さら
にステップ25で温度Toの時の流MNJ とM−の補
正により求める。そして、ステップ26でMJ とセン
サ出力信号e、を一組のデータとして記憶しておく。
It was previously entered in step 21. Standard temperature Ts
, from the experimental data of the engine rotation speed N1 at standard atmospheric pressure Ps and the flow rate fa (J=1p 2+...M) at that time, f=f (N
) is calculated using the least squares method. In step 22, J=O is set, and in step 23, data necessary for calculating the current flow rate is input. In step 24, the flow rate MJ in the standard state when the engine speed is NJ is determined from MJ=f(NJ), and further in step 25, it is determined by correcting the flow rate MNJ and M- at the temperature To. Then, in step 26, MJ and the sensor output signal e are stored as a set of data.

ステップ27により以上のステップ23から26までを
、エンジンの回転数のデータ数j maxまでくり返す
0次にこのデータ(MJ、 ea)(j = 1 +2
、・・・j wax)をもとにステップ28では、流i
Mとセンサ出力信号eの関係M、=g(e)を最小二乗
法で求める。これによりセンサ出力信号値と吸入空気量
の関係を示す新しい検定曲線が完成する。
In step 27, the above steps 23 to 26 are repeated until the number of engine rotational speed data j max. This data (MJ, ea) (j = 1 + 2
,...j wax), in step 28, the flow i
The relationship M,=g(e) between M and the sensor output signal e is determined by the least squares method. As a result, a new verification curve showing the relationship between the sensor output signal value and the intake air amount is completed.

この新しい検定曲線に基づいてセンサ出力信号eが吸入
空気流量を求め、この値に基づいて、燃料噴射装置の燃
料供給斌を制御する。これによって、精度の良い空燃比
制御を行なうことができる。なお、以上の検定は、短時
間で行なえるので、走行時に角度θ0になった時を判定
して検定を行なっても良いし、データベースとして、ス
ロットルバルブ角度θ0とエンジン回転数N、と流量M
1をマツプとしてメモリに記憶させておいて検定しても
良い。
Based on this new verification curve, the sensor output signal e determines the intake air flow rate, and based on this value, the fuel supply of the fuel injection device is controlled. This allows for highly accurate air-fuel ratio control. The above test can be performed in a short time, so the test may be performed by determining when the angle θ0 is reached during driving, or the database may be based on the throttle valve angle θ0, engine speed N, and flow rate M.
1 may be stored in memory as a map and tested.

なお、流量測定に要求される精度に応じて、大気圧Po
を一定とて、流量を求める際の式fからPoをはずすと
、較正装置は簡単になる。また式fは、エンジン生産時
に工場の中で求めてもよいし、内燃機関が完成し、運転
される初期段階でセンサ5の出力信号を使って求めるの
もよい。
Note that depending on the accuracy required for flow rate measurement, atmospheric pressure Po
The calibration device can be simplified by keeping Po constant and removing Po from the equation f used to determine the flow rate. Further, the formula f may be determined in the factory during engine production, or may be determined using the output signal of the sensor 5 at the initial stage when the internal combustion engine is completed and operated.

第3図は、スロットルバルブ開度を00(全開)に設定
するための装置を示す。通常スロットルバルブ4は、エ
ンジンがアイドリング時には、ワイヤ20に張力が働か
ないため、バネ21の力により全開の状態になっている
。しかし、較正袋@8が作動すると、ワイヤ20の一部
の構成する形状記憶合金22が通電により加熱され収縮
するため、ワイヤ20に張力が作用し、バネ21の力に
うち勝ってスロツルバルブを開き、ストッパ23で開度
を00 (全開)に固定する。なか24はアクセルペダ
ルである。
FIG. 3 shows a device for setting the throttle valve opening to 00 (fully open). Normally, the throttle valve 4 is kept fully open by the force of the spring 21 when the engine is idling, since no tension is applied to the wire 20. However, when the calibration bag @8 is activated, the shape memory alloy 22 that constitutes a part of the wire 20 is heated and contracted by electricity, so tension acts on the wire 20, which overcomes the force of the spring 21 and opens the throttle valve. , the opening degree is fixed at 00 (fully open) with the stopper 23. Inside 24 is an accelerator pedal.

第4図は、スロットルバルブの開度を電動モータで制御
するものである。31が電動モータ、32は減速ギアで
ある。この場合には、電動モータの回転角度を設定する
ことにより容易にスロットルバルブの開度を設定できる
In FIG. 4, the opening degree of the throttle valve is controlled by an electric motor. 31 is an electric motor, and 32 is a reduction gear. In this case, the opening degree of the throttle valve can be easily set by setting the rotation angle of the electric motor.

なお、熱線式空気流量計の較正方法としては、較正用の
熱線式流量計を別に備えるとか、熱線とは別にピトー管
式流量計を備えることも考えられるが、いずれも2重の
装置を備えることになる。
In addition, as a method for calibrating a hot wire air flow meter, it is possible to prepare a separate hot wire flowmeter for calibration or to provide a Pitot tube flowmeter separately from the hot wire, but in either case, a dual device is required. It turns out.

これに対して本発明は、エンジンまわりに本来装備され
た装置に多少の改良を加えただけで較正を可能とする点
において優れている。また熱線式空気流量計を用いるこ
とにより排ガス中の02を計測する02センサを不要と
することもできる。
On the other hand, the present invention is superior in that calibration can be performed by only making some improvements to the equipment originally installed around the engine. Further, by using a hot wire air flow meter, it is possible to eliminate the need for an 02 sensor that measures 02 in the exhaust gas.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アイドリング時空気流量制御弁の開度
を所定開度にして内燃機関の回転数から求めた吸入空気
流量を基準とし、同時に計測した吸入空気流量計の較正
を行うので、該吸入空気流量計の経年変化による精度劣
化を防止することができる。そのため、正確な空燃比制
御が行なえる。
According to the present invention, the intake air flow meter measured at the same time is calibrated based on the intake air flow rate determined from the rotational speed of the internal combustion engine by setting the opening degree of the air flow rate control valve at a predetermined opening degree during idling. It is possible to prevent accuracy deterioration due to aging of the intake air flow meter. Therefore, accurate air-fuel ratio control can be performed.

またパラメータとして内燃機関の回転数に外気温度、大
気圧を加えることにより較正の精度が向上する。またア
シドリング時空気流置針制御弁の開度を所定開度にする
のに形状記憶合金を用いることにより簡単な装置で開度
を所定開度に保持することできる。
Furthermore, by adding external temperature and atmospheric pressure to the rotational speed of the internal combustion engine as parameters, the accuracy of calibration is improved. Further, by using a shape memory alloy to maintain the opening degree of the air flow position needle control valve at a predetermined opening degree during acid ringing, the opening degree can be maintained at a predetermined opening degree with a simple device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、内燃機関の空気の吸
入路の構成図、燃料噴射装置および熱線式空気流量計と
較正装置のブロック図、第2図は流量変換および検定曲
線の較正のフロー図、第3図、第4図は第1図における
スロットルバルブ開度設定’装置を示す概観図である。 1・・・吸気部、2・・・流路、3・・・エンジンの吸
入室、4・・・スロットルバルブ、6・・・流量変換器
、7・・・燃料噴射弁、8・・・較正装置。 S 2 口
Fig. 1 shows an embodiment of the present invention, and Fig. 2 shows a block diagram of an air intake passage of an internal combustion engine, a block diagram of a fuel injection device, a hot wire air flow meter, and a calibration device, and Fig. 2 shows a flow rate conversion and verification curve. The calibration flowchart, FIGS. 3 and 4, are general views showing the throttle valve opening degree setting device in FIG. 1. DESCRIPTION OF SYMBOLS 1... Intake part, 2... Flow path, 3... Suction chamber of engine, 4... Throttle valve, 6... Flow rate converter, 7... Fuel injection valve, 8... Calibration device. S 2 mouths

Claims (1)

【特許請求の範囲】 1、内燃機関の吸入空気流量に対応した信号を発生する
センサと、該信号を吸入空気流量値に換算する流量変換
関数を内蔵した第1空気流量算出手段と、少なくとも吸
入空気流量を制御する空気流量制御弁の開度と内燃機関
の回転数とから吸入空気流量値を算出する第2空気流量
算出手段と、吸入空気の通過する通路に燃料を噴射する
燃流噴射装置とを備え、前記第2空気流量算出手段によ
つて算出した吸入空気流量値に基づいて前記流量変換関
数を較正し、前記第1空気流量算出手段によつて算出し
た吸入空気流量値に基づいて前記燃料噴射装置を制御し
て空燃比制御を行なうことを特徴とする内燃機関。 2、内燃機関の吸入空気流量に対応した信号を発生する
センサと、該信号を吸入空気流量値に換算する流量変換
関数を内蔵した第1空気流量算出手段と、少なくとも吸
入空気流量を制御する空気流量制御弁の開度と内燃機関
の回転数とから吸入空気流量値を算出する第2空気流量
算出手段とを備え、前記第2空気流量算出手段によつて
算出した吸入空気流量値に基づいて前記流量変換関数を
遂次較正することを特徴とする内燃機関空気流量計を搭
載した内燃機関。 3、内燃機関の吸入空気流量に対応した信号を発生する
センサと、該信号を入力しあらかじめ定めた第1の流量
変換関数に基づき吸入空気流量を算出する第1空気流量
算出手段と、吸入空気流量を制御する空気流量制御弁の
開度を所定の開度に設定した状態で内燃機関の回転数と
吸入空気流量の関係を示す第2の流量変換関数に基づき
内燃機関の回転数より吸入空気流量を算出する第2空気
流量算出手段と、該第2空気流量算出手段によつて算出
した吸入空気流量に基づき前記第1の流量変換関数を較
正する較正手段とを備えた内燃機関空気流量計。 4、前記第2空気流量算出手段が、吸入空気流量を制御
する空気制御弁の開度を所定の開度に設定した状態で外
気温度、大気圧、内燃機関の回転数と吸入空気流量の関
係を示す第2の流量変換関数に基づき外気温度、大気圧
と内燃機関の回転数より吸入空気流量を算出することを
特徴とする請求項3に記載の内燃機関空気流量計。 5、前記空気流量制御弁の開度を全開に設定する装置が
、アイドリング時は前記空気流量制御弁に設けられたス
プリングの作用により全閉となり、該空気流量制御弁に
滑車を介して接続されたワイヤをアクセルペダルに接続
してアクセルペダルを操作して前記空気流量制御弁の開
度を調整するように構成された装置の前記ワイヤの中間
を切断して形状記憶合金で接続し、アイドリング時前記
形状記憶合金を制御して前記空気流量制御弁を全開とす
るものであることを特徴とする請求項3に記載の内燃機
関空気流量計。 6、前記第1空気流量算出手段1によつて算出した吸入
空気流量値と前記第2空気流量算出手段によつて算出し
た吸入空気流量値との差異が許容値を越えたとき、前記
第1の流量変換関数を較正する請求項3に記載の内燃機
関空気流量計。
[Scope of Claims] 1. A first air flow rate calculation means that includes a sensor that generates a signal corresponding to the intake air flow rate of the internal combustion engine, a flow rate conversion function that converts the signal into an intake air flow rate value, and at least a second air flow rate calculation means that calculates an intake air flow rate value from the opening degree of an air flow control valve that controls the air flow rate and the rotational speed of the internal combustion engine; and a fuel injection device that injects fuel into a passage through which the intake air passes. calibrating the flow rate conversion function based on the intake air flow rate value calculated by the second air flow rate calculation means, and calibrating the flow rate conversion function based on the intake air flow rate value calculated by the first air flow rate calculation means. An internal combustion engine characterized in that air-fuel ratio control is performed by controlling the fuel injection device. 2. A sensor that generates a signal corresponding to the intake air flow rate of the internal combustion engine, a first air flow rate calculation means that includes a built-in flow rate conversion function that converts the signal into an intake air flow rate value, and an air sensor that controls at least the intake air flow rate. a second air flow rate calculation means for calculating an intake air flow rate value from the opening degree of the flow rate control valve and the rotational speed of the internal combustion engine, and based on the intake air flow rate value calculated by the second air flow rate calculation means. An internal combustion engine equipped with an internal combustion engine air flow meter, characterized in that the flow rate conversion function is successively calibrated. 3. A sensor that generates a signal corresponding to the intake air flow rate of the internal combustion engine; a first air flow rate calculation means that inputs the signal and calculates the intake air flow rate based on a predetermined first flow rate conversion function; Based on the second flow rate conversion function that indicates the relationship between the rotation speed of the internal combustion engine and the intake air flow rate with the opening degree of the air flow rate control valve that controls the flow rate set to a predetermined opening degree, the intake air is calculated based on the rotation speed of the internal combustion engine. An internal combustion engine air flow meter comprising: a second air flow rate calculation means for calculating a flow rate; and a calibration means for calibrating the first flow rate conversion function based on the intake air flow rate calculated by the second air flow rate calculation means. . 4. The second air flow rate calculation means calculates the relationship between the outside temperature, atmospheric pressure, the rotational speed of the internal combustion engine, and the intake air flow rate with the opening degree of the air control valve that controls the intake air flow rate set to a predetermined opening degree. 4. The internal combustion engine air flow meter according to claim 3, wherein the intake air flow rate is calculated from outside air temperature, atmospheric pressure, and the rotational speed of the internal combustion engine based on the second flow rate conversion function. 5. A device for setting the opening degree of the air flow control valve to full open is connected to the air flow control valve via a pulley and is fully closed by the action of a spring provided on the air flow control valve when idling. A device configured to connect a wire to an accelerator pedal and adjust the opening degree of the air flow control valve by operating the accelerator pedal, cut the middle of the wire and connect it with a shape memory alloy, and The internal combustion engine air flow meter according to claim 3, wherein the air flow control valve is fully opened by controlling the shape memory alloy. 6. When the difference between the intake air flow rate value calculated by the first air flow rate calculation means 1 and the intake air flow rate value calculated by the second air flow rate calculation means exceeds a permissible value, the first 4. The internal combustion engine air flow meter of claim 3, wherein the internal combustion engine air flow meter calibrates a flow rate conversion function.
JP1097320A 1988-04-28 1989-04-19 Internal combustion engine Pending JPH0230945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097320A JPH0230945A (en) 1988-04-28 1989-04-19 Internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-106592 1988-04-28
JP10659288 1988-04-28
JP1097320A JPH0230945A (en) 1988-04-28 1989-04-19 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0230945A true JPH0230945A (en) 1990-02-01

Family

ID=26438514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097320A Pending JPH0230945A (en) 1988-04-28 1989-04-19 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0230945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003297T5 (en) 2007-01-31 2010-03-18 Mitsubishi Electric Corp. Wire rope flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003297T5 (en) 2007-01-31 2010-03-18 Mitsubishi Electric Corp. Wire rope flaw detector

Similar Documents

Publication Publication Date Title
KR930000347B1 (en) Internal combustion engine
JPS6236522B2 (en)
US20060096305A1 (en) Fluid flowmeter and engine control system using the same
KR100384082B1 (en) Method and apparatus for forming signal relating to temperature of air sucked by internal combustion engine
JP2682349B2 (en) Air flow meter and air flow detection method
US4688425A (en) Direct-heated flow measuring apparatus having film resistor
JPH0426048B2 (en)
JPH0230945A (en) Internal combustion engine
JPH08304136A (en) Heating-resistor type air flowmeter
JP3787509B2 (en) Heat resistance type air flow measuring device
US20050000281A1 (en) Flow sensor having improved operational performance
KR100215146B1 (en) A flow measuring method of fluid
JPS59190623A (en) Heat type air flowmeter
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JPH0356409B2 (en)
JP2857393B2 (en) Air flow detector
JPS61239119A (en) Air flow rate detector
JP2508126B2 (en) Thermal flow meter
JP3064086B2 (en) Air flow meter and engine control system using the same
JPH0143883B2 (en)
JPH0810675Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPS60100720A (en) Hot wire type flow meter
JP2515018Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPS586415A (en) Thermal flow meter
JP4914226B2 (en) Gas flow meter