JPH02309167A - Cooler for electric apparatus - Google Patents

Cooler for electric apparatus

Info

Publication number
JPH02309167A
JPH02309167A JP13001189A JP13001189A JPH02309167A JP H02309167 A JPH02309167 A JP H02309167A JP 13001189 A JP13001189 A JP 13001189A JP 13001189 A JP13001189 A JP 13001189A JP H02309167 A JPH02309167 A JP H02309167A
Authority
JP
Japan
Prior art keywords
cooling water
load
electrical equipment
pump
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13001189A
Other languages
Japanese (ja)
Inventor
Toshiichi Kuroiwa
黒岩 登志一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13001189A priority Critical patent/JPH02309167A/en
Publication of JPH02309167A publication Critical patent/JPH02309167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate overcooling even when the load of an electric apparatus is lowered and to obtain a necessary cooling water flow rate by providing a pump controller for setting the flow rate of necessary minimum limit to a pump based on a detection signal to be output from a load detector, and regulating the introducing amount of cooling water to each electric apparatus in response to the ratio of necessary cooling water amounts of the apparatuses. CONSTITUTION:A load detector 17 is provided in a variable load electric apparatus 16, and a detection signal 101 output from the detector 17 is input to a pole changer 18 as a pump controller. The changer 18 sets the flow rate of necessary minimum limit to a pump 12 based on the signal 101. Control valve controllers 29, 30 receive the signals 102 from the changers 18 to obtain the ratio of the necessary cooling water quantities of the apparatuses 15, 16, calculates the cooling water introducing amounts to the apparatuses 15, l6 in response to the ratio, and outputs control signals 104, 104 to control valves 21, 22. Thus, the cooling water flow rates are efficiently determined in response to the variation in the load of the apparatus to be operated with variable load and the cooling water can be sufficiently supplied.

Description

【発明の詳細な説明】 〔発明の目的) (産業上の利用分野) 本発明は、負荷パターンの異なる複数台の電気機器を冷
却する電気機器の冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cooling device for electrical equipment that cools a plurality of electrical equipment having different load patterns.

(従来の技術) 従来、電気機器の冷却装置として、例えば第6図に未す
ように、冷却器1およびポンプ2を有する閉ループ状の
冷却水循環系統3内に、一定負荷で運転される定負荷電
気機器4と、変動負荷で運転される変動負荷電気機器5
とが並列配置されたものがある。なお、6,7は手動用
@a調面弁である。
(Prior Art) Conventionally, as a cooling device for electrical equipment, for example, as shown in FIG. Electrical equipment 4 and variable load electrical equipment 5 operated with variable load
There are some that are arranged in parallel. Note that 6 and 7 are manual @a level adjusting valves.

そして、各電気機器4,5を運転することにより発生す
る熱は冷却媒体である冷却水に放出され、加熱された冷
却水は冷却器1において空冷または水冷等の手段で放出
される。従来では、この冷却水の1ffiが各電気Il
器4.5の最大負荷に応じて略−義的に定められている
Heat generated by operating each of the electrical devices 4 and 5 is released into cooling water as a cooling medium, and the heated cooling water is released in the cooler 1 by means such as air cooling or water cooling. Conventionally, 1ffi of this cooling water is used for each electric Il.
It is roughly defined according to the maximum load of the device 4.5.

(発明が解決しようとする課題) ところが、両電気機器4,5の最大負荷時に十分冷却が
可能となるように冷却水流通を設定しているため、変動
負荷電気機器5の負荷が低−下した場合、同電気機器5
は、過冷却となる。冷却においては電気機器の負荷に見
合う冷却水流量を確保すればよいため、低°負荷時には
、必要冷却水流山よりも過大に通水していることとなり
、この冷却水流量の余剰分は無駄なものとなる。
(Problem to be Solved by the Invention) However, since the cooling water flow is set so that sufficient cooling is possible when both electric devices 4 and 5 are at maximum load, the load on the variable load electric device 5 decreases. If so, the same electrical equipment 5
is supercooled. For cooling, it is only necessary to ensure a cooling water flow rate that matches the load of electrical equipment, so during low load times, an excessive amount of water is flowing than the required cooling water flow rate, and this excess cooling water flow rate is wasted. Become something.

本発明はこのような事情に鑑みてなされたもので、電気
機器の負荷が低下した場合においても過冷却とならず、
しかも必要冷却水流山を十分に確保することができる電
気機器の冷却装置を提供するものである。
The present invention was made in view of these circumstances, and even when the load on electrical equipment decreases, it does not become overcooled.
Furthermore, the present invention provides a cooling device for electrical equipment that can secure a sufficient amount of required cooling water flow.

〔発明の構成〕[Structure of the invention]

(0!題を解決するための手段) 本発明は、冷却器およびポンプを有する閉ループ状の冷
却水循環系統内に、少なくとも1つが変動負荷運転され
る複数の電気機器を並列に配置した電気機器の冷却8M
において、変動負荷運転される電気機器に対応して負荷
検出器を設けるとともに、この負荷検出器から出力され
る検出信号に基づいて前記ポンプに必要最小限度の流j
を設定するポンプ制御装置を設け、かつ前記検出信号に
基づいて各電気lli!器間の必要冷却水量の比率を求
め、その比率に応じて前記各電気機器への冷却水流入m
を調部する流量調節手段を設けたことを特徴とする。
(Means for Solving Problem 0!) The present invention provides an electric device in which a plurality of electric devices, at least one of which is operated under a variable load, are arranged in parallel in a closed-loop cooling water circulation system having a cooler and a pump. cooling 8M
A load detector is provided corresponding to the electrical equipment that is operated under variable load, and the pump is supplied with the minimum necessary flow based on the detection signal output from the load detector.
and a pump control device for setting each electric lli! based on the detection signal. Determine the ratio of the required amount of cooling water between the appliances, and adjust the amount of cooling water flowing into each electrical equipment according to that ratio.
The present invention is characterized in that it is provided with a flow rate adjusting means for adjusting the flow rate.

(作 用) 本発明によれば、変動負荷電気機器の負荷が低下した場
合、ポンプの運転の制御によって全体の冷却水流lが低
減される。一方、流量調節手段によって変動負荷電気機
器の負荷変動時における必要冷却水流m差は確保される
(Function) According to the present invention, when the load of the variable load electrical equipment decreases, the overall cooling water flow l is reduced by controlling the operation of the pump. On the other hand, the required cooling water flow m difference when the load of the variable load electrical equipment changes is ensured by the flow rate adjustment means.

(実施例) 以下、本発明の一実施例を第1図〜第3図を参照して説
明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3.

この実施例では、冷却器11およびポンプ12を有する
閉ループ状の冷却水循環系統内12aに並列な1対の分
岐管路13.14が設けられ、一方の分岐管路13に定
負荷電気機器15が配置され、他方の分岐管路14に変
動負荷電気機器16が配置されている。なお、ポンプ1
2のモータは極数変換型とされ、低極数運転時にポンプ
流量が多くなり、高極数運転時にポンプ流山が少なくな
るものである。
In this embodiment, a pair of parallel branch pipes 13 and 14 are provided in a closed loop cooling water circulation system 12a having a cooler 11 and a pump 12, and one branch pipe 13 is connected to a constant load electric device 15. A variable load electric device 16 is arranged in the other branch pipe line 14. In addition, pump 1
The motor No. 2 is of a pole number conversion type, and the pump flow rate increases when operating with a low number of poles, and the pump flow rate decreases when operating with a high number of poles.

変動負荷電気機器1dには負荷検出器17が設けられ、
この負荷検出器17から出力される検出信号101がポ
ンプ制御装置としての極致変換器]8に入力されるよう
になっている。この極致変換器18は、検出信号101
に基づいて、ポンプ12に必要最小限度の流量を設定す
る。
The variable load electrical equipment 1d is provided with a load detector 17,
A detection signal 101 output from the load detector 17 is input to a peak converter 8 as a pump control device. This peak converter 18 has a detection signal 101
Based on this, the minimum necessary flow rate is set for the pump 12.

また、各分岐管路13.14には、各電気機器15.1
6の上流側に位置して流量調節手段19゜20がそれぞ
れ設けられている。各流量調節手段19.20は、互い
に直列配置された各1対の自動操作用の制御弁21.2
2および手動操作用の手動弁23.24からなっている
。なお、多弁21.22.23.24をバイパスするバ
イパス配管25.26が設けられ、この各バイパス配管
25.26にも手動弁27.28がそれぞれ設けられて
いる。
In addition, each branch pipe 13.14 includes each electrical equipment 15.1.
Flow rate adjusting means 19 and 20 are provided upstream of the pumps 6 and 6, respectively. Each flow regulating means 19.20 includes a pair of automatically operated control valves 21.2 arranged in series with each other.
2 and manual valves 23 and 24 for manual operation. Note that bypass piping 25.26 that bypasses the multiple valves 21, 22, 23, and 24 is provided, and each bypass piping 25.26 is also provided with a manual valve 27.28, respectively.

各制御弁21.22は制御弁コントローラ29゜30に
よって制御されるようになっている。即ち、各制御弁コ
ントローラ29.30は、極数変換器18からの出力信
号102を受けて各電気機器15.16間の必要冷却゛
水量の比率を求め、その比率に応じて各電気機器15.
16への冷却水流入船を演尊し、各制御弁21.22に
制御信号103.104を出力するものである。
Each control valve 21,22 is adapted to be controlled by a control valve controller 29,30. That is, each control valve controller 29, 30 receives the output signal 102 from the pole number converter 18, determines the ratio of the amount of cooling water required between each electrical device 15, 16, and adjusts each electrical device 15 according to the ratio. ..
16, and outputs control signals 103 and 104 to each control valve 21 and 22.

次に作用を説明する。Next, the effect will be explained.

定負荷電気機器15は常に一定負荷で運転され。Constant load electrical equipment 15 is always operated with a constant load.

また変動負荷電気機器16は変動負荷にて運転される。Further, the variable load electrical equipment 16 is operated with a variable load.

変動負荷電気機器16の負荷は負荷検出器17によって
検出され、負荷が低い」1合には、極致変換器18に負
荷検出器17から検出信号101が入力され、ポンプ1
2は歯極省力運転となる。
The load of the variable load electrical equipment 16 is detected by the load detector 17, and if the load is low, the detection signal 101 is input from the load detector 17 to the peak converter 18, and the pump 1
2 is tooth pole labor-saving operation.

ポンプ12が歯極省力運転に入ると同時に、制御弁コン
トローラ29.30からの制御信j=3103゜104
が制御弁21.22に入力され、定負荷電気別器15側
の制御弁21は開方向に、また変動負荷電気機器16側
の制御弁22は閉方向に駆動される。これにより、各電
気機515.16に流れる冷却水の流路抵抗が変化する
。また、変動負荷電気機器16の負荷が高い場合にはポ
ンプ12が低極定格運転状態になると同時に各制御弁2
1゜22が逆方向に開閉制御される。これにより、各電
気機器15.16に流れる冷却水の流路抵抗が変化し、
定負荷電気機器15に対しては定格冷却水量堡が確保さ
れ、変動負荷電気機器16に対しては高負荷時必要冷却
水流量が確保される。
At the same time as the pump 12 enters the tooth pole labor-saving operation, the control signal j = 3103°104 from the control valve controller 29.30.
is input to the control valves 21 and 22, and the control valve 21 on the constant load electrical separator 15 side is driven in the opening direction, and the control valve 22 on the variable load electrical equipment 16 side is driven in the closing direction. As a result, the flow path resistance of the cooling water flowing through each electric machine 515.16 changes. In addition, when the load of the variable load electrical equipment 16 is high, the pump 12 enters the low-pole rated operating state and at the same time each control valve 2
1°22 is controlled to open and close in the opposite direction. As a result, the flow path resistance of the cooling water flowing to each electrical device 15, 16 changes,
A rated cooling water flow rate is ensured for the constant load electrical equipment 15, and a necessary cooling water flow rate during high load is ensured for the variable load electrical equipment 16.

第2図および第3図は流路抵抗の調整についてのamと
なる流量特性を示している。即ち、第2図はポンプ12
における冷却水母と揚程との関係を示している。ポンプ
12の入口部(第1図のa点)での圧力損失を曲線Aと
すると、この曲線Aと低極運転時特性曲線および歯極運
転片持性曲線との交点工、■が見出される。この各交点
工、■がそれぞれ各運転時の定格点となるから、これに
対応する冷却水層となるように、ポンプ運転が制御され
るものである。
FIGS. 2 and 3 show the flow rate characteristics of am for adjusting the flow path resistance. That is, FIG. 2 shows the pump 12
The figure shows the relationship between the cooling water base and the head. Assuming that the pressure loss at the inlet of the pump 12 (point a in Fig. 1) is curve A, the intersection of curve A with the low pole operation characteristic curve and the tooth pole operation cantilever characteristic curve is found. . Since each of these intersection points (2) is the rated point during each operation, the pump operation is controlled so that the cooling water layer corresponds to this point.

一方、第3図は、第1図の分岐配管25.26下流側統
合部の各位置(b点および0点)における冷却水母と流
路抵抗との関係を示している。第3図において、曲線B
は低槽運転時のb点の圧力損失曲線であり、曲線B′は
歯極運転時のb点の圧力損失曲線であり、曲線Cは0点
の圧力損失曲線である。
On the other hand, FIG. 3 shows the relationship between the cooling water base and the flow path resistance at each position (point b and point 0) of the downstream integrated portion of the branch pipes 25 and 26 in FIG. In Figure 3, curve B
is the pressure loss curve at point b during low tank operation, curve B' is the pressure loss curve at point b during tooth pole operation, and curve C is the pressure loss curve at point 0.

前記の如く、ポンプ12は歯極運転時と低槽運転時では
揚程、冷却水圏共に顕著に異なる。そのため、ポンプ1
2の低極運転定格点工で各電気機器15.16の流量を
設定すると、歯極運転定格点■で運転した場合、各電気
機器15.16は共に同一比率で冷却水Oが変化するた
め、定負荷電気機2S15に流れる冷却水量は冷却に必
要な水量を確保出来なくなり、一方、変動負荷電気機器
16に流れる冷却水圏は必要以上に流れることとなる。
As described above, the pump 12 has a significantly different pump head and cooling hydrosphere between the tooth pole operation and the low tank operation. Therefore, pump 1
If the flow rate of each electrical equipment 15.16 is set at the low pole operation rated point in step 2, the cooling water O will change at the same rate for each electrical equipment 15.16 when operated at the toothed pole operation rated point ■. The amount of cooling water flowing to the constant load electric machine 2S15 cannot secure the amount of water necessary for cooling, and on the other hand, the amount of cooling water flowing to the variable load electric machine 16 will flow more than necessary.

このため、歯極運転定格点■で運転する場合は定負荷電
気機器15に流れる冷却水の流路抵抗を減じ、変動負荷
電気典型16に流れる冷却水の流路抵抗を増し、定負荷
電気機器15の冷却水層を一定に制御する必要がある。
Therefore, when operating at the tooth pole operation rated point (■), the flow resistance of the cooling water flowing to the constant load electrical equipment 15 is reduced, the flow resistance of the cooling water flowing to the variable load electrical equipment 16 is increased, and the constant load electrical equipment It is necessary to control the 15 cooling water layers to be constant.

そこで、各電気機器15.16の冷却水流入側に制御弁
21.22と手動弁23.24.27゜28で構成する
流の調節手段19.20を設け、手動弁23.24,2
7.28の絞りにより各電気機器15.16に流れる冷
却水の流路抵抗を調整するものである。
Therefore, a flow regulating means 19.20 consisting of a control valve 21.22 and a manual valve 23.24.
The flow path resistance of the cooling water flowing to each electrical device 15 and 16 is adjusted by the throttle of 7.28.

流路抵抗曲線Bおよび流路抵抗曲線B′についでは、定
負荷電気機器15の冷却水量は常に一定であるから、こ
の定格負荷電気機型15が設けられている分岐配管13
の抵抗は不変である。しかし、変動負荷電気機器16と
共用する部分の流路抵抗は低槽運転時と歯極運転時の流
a差に相当する抵抗弁B  −82だけ異なる抵抗曲線
となる。
Regarding the flow path resistance curve B and the flow path resistance curve B', since the amount of cooling water of the constant load electrical equipment 15 is always constant, the branch piping 13 where the rated load electrical equipment type 15 is installed
The resistance of is constant. However, the flow path resistance of the portion shared with the variable load electrical equipment 16 has a resistance curve that differs by the resistance valve B-82, which corresponds to the difference in flow a between the low tank operation and the tooth pole operation.

一方、ポンプ12の低極運戦時定格揚程における全体冷
却水量は■の線上となり、定負荷電気機器15に流れる
冷却水量はVの線上となる。各電気機器15.16に流
れる冷却水層の制御をしなかったとすれば、各電気機器
15.16に流れる冷却水の流路抵抗は各々BとCとの
抵抗曲線上を推移するため、定負荷電気機器15に流れ
る冷却水jは定格冷却水量VからXに相当する分だけ冷
却水層が多く流れ、変動負荷電気機器16に流れる冷却
水冷は定格冷却水ff1lI[からXIに相当する分だ
け少ケく流れる。このため、定負荷電気機器15側は流
路抵抗を■だけ加えることにより、抵抗曲線Bを、X■
を通る曲線に変えて定格冷却水量■を確保する。また、
変動負荷電気ti器16は流量抵抗をIχだけ減らすこ
とにより、抵抗曲線Cを、工を通る曲線に変え、定格冷
却水量を■とす机 同様に、ポンプ12の歯極運転時定格揚程における全体
冷却水量は■の線上となり、定負荷電気様器15を流れ
る冷却水mはVの線上となる。各゛電気機器15,16
に流れる冷却水上の制御をしなかったとすれば、各電気
機器15.16に流れる冷却水の流路抵抗は各々B′ 
とCの抵抗曲線上を推移する。そして、定負荷電気機器
15に流れる冷n1水砧は流路抵抗が定格点X■より大
きいため、定格冷却水mVよりも少なくなる。また、変
動負荷電気機器16に流れる冷却水通は流路抵抗が定格
点■よりも小さいため、定格水ITVより多めに流れる
。これを相殺することにより、各電気別器15,16の
定格の冷ん〕水けをTKi保する。また、定負荷電気機
器15に流れる冷却水の流路抵抗を■だけ少なくし、蛯
動負荷電気殿器16に流れる冷却水の流路抵抗を■だけ
多くする操作を行う。このような冷却水つ調整の原理を
制御弁21゜22および手動弁の23.24,27.2
8の作用とともに説明すると以下のとおりである。
On the other hand, the total amount of cooling water at the low operating rated head of the pump 12 is on the line (■), and the amount of cooling water flowing to the constant load electrical equipment 15 is on the line (V). If the cooling water layer flowing to each electrical device 15.16 is not controlled, the flow path resistance of the cooling water flowing to each electrical device 15.16 will change on the resistance curves of B and C, so it will be constant. The cooling water j flowing to the load electric equipment 15 has a large layer of cooling water corresponding to the rated cooling water amount V to It flows a little. Therefore, on the constant load electric equipment 15 side, by adding the flow path resistance by ■, the resistance curve B is changed to
Change the curve to pass through to ensure the rated cooling water volume ■. Also,
By reducing the flow resistance by Iχ, the variable load electric Ti device 16 changes the resistance curve C to a curve passing through the gap, and the rated cooling water amount is The amount of cooling water is on the line (■), and the amount of cooling water m flowing through the constant load electric generator 15 is on the line (V). Each electrical equipment 15, 16
If there is no control over the cooling water flowing to the electrical equipment 15 and 16, the flow path resistance of the cooling water flowing to each electrical device 15 and 16 will be B'.
and changes on the resistance curve of C. Since the flow path resistance of the cold n1 water flowing into the constant load electrical equipment 15 is greater than the rated point X■, it becomes less than the rated cooling water mV. Further, since the flow path resistance of the cooling water flowing to the variable load electrical equipment 16 is smaller than the rated point (2), the amount of cooling water flowing through the variable load electrical equipment 16 is smaller than the rated water ITV. By offsetting this, the rated cooling water level of each electric separate unit 15, 16 is maintained at TKi. In addition, an operation is performed to reduce the flow path resistance of the cooling water flowing to the constant load electrical equipment 15 by (■) and to increase the flow path resistance of the cooling water flowing to the dynamic load electrical equipment 16 by (2). The principle of such cooling water adjustment is explained by the control valves 21, 22 and manual valves 23, 24, 27, 2.
The explanation along with the action of No. 8 is as follows.

即ち、変動負荷電気機器16の低負荷時には、その上流
側のバイパス管26の手動弁28を絞る。
That is, when the load of the variable load electrical equipment 16 is low, the manual valve 28 of the bypass pipe 26 on the upstream side thereof is throttled.

これにより、同電気機器16に流れる冷却水の流路抵抗
に■に相当する抵抗を与える。変動負荷電気機器16の
高負荷時には手動弁27を絞ることにより定負荷電気機
器15に流れる冷却水の流路抵抗に■に相当する抵抗を
加える。さらに、変動負荷電気m器16の低負荷時にお
いて定負荷電気[15に流れる冷却水の流路抵抗■に相
当する抵抗を減するよう手動弁23を調節することによ
り、定負荷電気様器15の定格冷却水流量と変動負荷電
気機器16との低負荷時必要冷却水流岱を確保する。ま
た、変動負荷電気m器16の高負荷時においては、この
変動負荷電気機器16に流れる冷却水の流路抵抗IXに
相当する抵抗を滅するよう手動弁24を:JA面するこ
とにより、定負荷電気機器15の定格冷却水流量と変動
負荷゛電気機器16との高負荷時必要冷却水流層を確保
するよう調節する。
As a result, the resistance corresponding to (2) is given to the flow path resistance of the cooling water flowing through the electrical equipment 16. When the variable load electrical equipment 16 is under high load, the manual valve 27 is throttled to add a resistance equivalent to (2) to the flow path resistance of the cooling water flowing to the constant load electrical equipment 15. Furthermore, by adjusting the manual valve 23 so as to reduce the resistance corresponding to the flow path resistance of the cooling water flowing into the constant load electricity [15] when the variable load electricity generator 16 is under low load, the constant load electricity generator 15 The rated cooling water flow rate of the variable load electrical equipment 16 and the required cooling water flow rate at low loads of the variable load electrical equipment 16 are ensured. In addition, when the variable load electrical equipment 16 is under high load, the manual valve 24 is placed on the constant load The rated cooling water flow rate of the electric equipment 15 and the variable load (electrical equipment 16) are adjusted so as to ensure the necessary cooling water flow layer during high loads.

なお、第4図に示ずように、冷却水流層の調コ用の手動
弁を省略し、制御弁21,22によって中間開度設定を
行うようにしてもよい。例えば変動負荷電気機器16の
高負荷速乾時には、ポンプ12を低槽運転とし、定負荷
電気搬器15側の制御弁21を中間間とする一方、変動
負荷電気別器16側の制御弁16側の制ta弁22を全
開とすることにより、定負荷゛電気機器15側に流れる
冷H]水の流路抵抗を増し、変動負荷電気機器16側に
流れる冷却水の流路抵抗を減することにより、各電気機
器15.16の必要論W水流旦を確保する。
Note that, as shown in FIG. 4, the manual valve for controlling the cooling water flow layer may be omitted, and the intermediate opening degree may be set using the control valves 21 and 22. For example, during high-load quick drying of the variable load electric equipment 16, the pump 12 is set to low tank operation, the control valve 21 on the constant load electric carrier 15 side is set to the intermediate position, and the control valve 16 side on the variable load electric separate unit 16 side is set to the intermediate position. By fully opening the control valve 22, the flow path resistance of constant load (cold H) water flowing to the electrical equipment 15 side is increased, and the flow path resistance of cooling water flowing to the variable load electrical equipment 16 side is reduced. This will ensure the necessary flow of water for each electrical device 15.16.

また、変動負荷゛電気機器16の低負荷時にはポンプ1
2を高橿′運転とし、制御弁21を全開と覆る一方、制
御弁22を中間間とすることにより、定負荷電気151
5側に流れれる冷却水の流路抵抗を減じ、変動負荷電気
m器16に流れる冷却水の流路抵抗を増すことにより、
各電気機器15.16の必要冷却水量を確保し、これに
より、変動負荷電気機器16の低負荷時において省力運
転を行なうことも可能である。
In addition, when the load of the electric equipment 16 is low, the pump 1
2 is set to high-speed operation, and the control valve 21 is fully open, while the control valve 22 is set to the intermediate position, the constant load electricity 151
By reducing the flow path resistance of the cooling water flowing to the 5 side and increasing the flow path resistance of the cooling water flowing to the variable load electric m unit 16,
It is also possible to ensure the required amount of cooling water for each electrical device 15, 16, thereby performing labor-saving operation when the variable load electrical device 16 is under low load.

また、第5図に示すように、定負荷電気機器15側に流
量検出器31およびその出力信号に基づく制御弁コント
ローラ32を設け、制御弁21の弁開度を制御すること
により、定負荷電気8!器15に流れる冷却水流層を常
に一定とし、また、変!lI負荷電気機器16通過後の
冷却水温度を検出する温度検出器33を設け、常に温度
検出器33での検出温度が変動負荷電気機器16の定格
冷却水温度となるようにポンプ12を制御してもよい。
Further, as shown in FIG. 5, a flow rate detector 31 and a control valve controller 32 based on the output signal thereof are provided on the constant load electric equipment 15 side, and by controlling the valve opening degree of the control valve 21, the constant load electric 8! The cooling water flow layer flowing into the vessel 15 is always constant, and also changes! A temperature detector 33 is provided to detect the temperature of the cooling water after passing through the load electrical equipment 16, and the pump 12 is controlled so that the temperature detected by the temperature detector 33 always becomes the rated cooling water temperature of the variable load electrical equipment 16. It's okay.

この場合、極数変換に代え、インバータ19.34を用
い、その出力周波数を可変してポンプ12の回転数可変
能力制御を行うようにしてもよい。
In this case, instead of changing the number of poles, the inverter 19.34 may be used and its output frequency may be varied to control the rotational speed variable ability of the pump 12.

このような構成によると、定負荷電気機器15に流れる
冷却水流2が一定に制徨uでき、かつ変動負荷′1気1
薫16に流れる冷却水流層は負荷の変動に対応する必要
晟低冷」水流ml、:確保することができる。これによ
り、変動負荷電気機器16の負荷勤範囲全域に亘って冷
却水流はを直線的に制御IITjることができる。
According to such a configuration, the cooling water flow 2 flowing to the constant load electrical equipment 15 can be controlled at a constant rate, and the fluctuating load '1'
The cooling water flow layer flowing through the pipe 16 can ensure the necessary low cooling water flow ml to accommodate load fluctuations. Thereby, the cooling water flow can be linearly controlled over the entire load duty range of the variable load electrical equipment 16.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る電気握器の冷却装置によれ
ば、変動負荷運転される電気機器の負荷変動に対応して
、冷却水流層を効率よく、しかも十分に確保して供給で
き、経済効率が大幅に向上できる等の効果が奏される。
As described above, according to the cooling device for an electric hand grip according to the present invention, a cooling water flow layer can be efficiently and sufficiently secured in response to load fluctuations of electrical equipment operated under variable load. Effects such as a significant improvement in economic efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電気機器の冷却装置の一実施例を
示す系統図、第2図はポンプ回転数の変換性能を示す特
性図、第3図は各電気′a器に流れる冷却水の流路抵抗
と冷却水流層との関係を示す特性図、第4図および第5
図はそれぞれ本発明の他の実施例を示ず系統図、第6図
は従来例を示す系統図である。 11・・・冷却器、12・・・ポンプ、15・・・定常
負荷電気機器、16・・・変動負荷電気機器、18・・
・極数変換器、17・・・負荷検出器、19,20・・
・流m調節手段、21.22・・・流通制御弁。 代理人弁理士  則  近  憲  缶周      
   第  子  丸       健どソ 第1図 力即戊量 第2図 玲郡水量 第3図 第5図
Fig. 1 is a system diagram showing an embodiment of the cooling device for electrical equipment according to the present invention, Fig. 2 is a characteristic diagram showing the conversion performance of the pump rotation speed, and Fig. 3 is the cooling water flowing to each electric appliance. Characteristic diagrams showing the relationship between flow path resistance and cooling water flow layer, Figures 4 and 5.
Each figure is a system diagram that does not show other embodiments of the present invention, and FIG. 6 is a system diagram that shows a conventional example. 11... Cooler, 12... Pump, 15... Steady load electrical equipment, 16... Variable load electrical equipment, 18...
・Pole number converter, 17...Load detector, 19, 20...
・Flow m adjustment means, 21.22...Flow control valve. Representative Patent Attorney Nori Chika Ken Shu
No. 1 Kendoso Figure 1 Immediate water consumption Figure 2 Rei-gun water volume Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 冷却器およびポンプを有する閉ループ状の冷却水循環系
統内に、少なくとも1つが変動負荷運転される複数の電
気機器を並列に配置した電気機器の冷却装置において、
変動負荷運転される電気機器に対応して負荷検出器を設
けるとともに、この負荷検出器から出力される検出信号
に基づいて前記ポンプに必要最小限度の流量を設定する
ポンプ制御装置を設け、かつ前記検出信号に基づいて各
電気機器間の必要冷却水量の比率を求め、その比率に応
じて前記各電気機器への冷却水流入量を調節する流量調
節手段を設けたことを特徴とする電気機器の冷却装置。
In a cooling device for electrical equipment, in which a plurality of electrical equipment, at least one of which is operated under a variable load, are arranged in parallel in a closed-loop cooling water circulation system having a cooler and a pump,
A load detector is provided corresponding to the electrical equipment operated under a variable load, and a pump control device is provided for setting the minimum necessary flow rate for the pump based on a detection signal output from the load detector, and The electrical equipment is characterized in that it is provided with a flow rate adjustment means that determines the ratio of the required amount of cooling water between each electrical equipment based on the detection signal and adjusts the amount of cooling water flowing into each of the electrical equipment according to the ratio. Cooling system.
JP13001189A 1989-05-25 1989-05-25 Cooler for electric apparatus Pending JPH02309167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13001189A JPH02309167A (en) 1989-05-25 1989-05-25 Cooler for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13001189A JPH02309167A (en) 1989-05-25 1989-05-25 Cooler for electric apparatus

Publications (1)

Publication Number Publication Date
JPH02309167A true JPH02309167A (en) 1990-12-25

Family

ID=15023945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13001189A Pending JPH02309167A (en) 1989-05-25 1989-05-25 Cooler for electric apparatus

Country Status (1)

Country Link
JP (1) JPH02309167A (en)

Similar Documents

Publication Publication Date Title
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
TW201027006A (en) Method for operating a heat recovery steam generator
JPH11352284A (en) Reactor system pressure control method through core power control
JPS6158644B2 (en)
KR900001954A (en) How to reduce the valve loop to increase the efficiency of the steam turbine
JP2747543B2 (en) Method of operating a steam turbine device at low load level
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
JPH02309167A (en) Cooler for electric apparatus
FI90474B (en) A control method for controlling the temperature of a reactor used in the polymerization of olefins
US20080239777A1 (en) Apparatus for Converting an Electrical Current and Method for Reducing the Load-Change Stress of Power Semiconductor Units in the High-Voltage Energy Distribution and Transmission Sector
JP2674263B2 (en) Control method for reheat steam turbine
JP2003240344A (en) Heat pump hot water supply system
JPH05264072A (en) Device for heating or cooling
JP3679858B2 (en) Compressor control device
JPS5811341A (en) Air-conditioning apparatus
JP4003630B2 (en) Reactor recirculation flow controller
JPH08135411A (en) Control device of exhaust heat using power plant
JP3697285B2 (en) Water supply pump controller
JP4398167B2 (en) Power generation equipment using pump reverse turbine
JPS62243995A (en) Parallel operation control device for compressor
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPS6112195B2 (en)
JPS61269094A (en) Controller for output from nuclear reactor
JPS63271062A (en) Temperature control system for gas hot water heater
JPH02298607A (en) Bypass control device for geothermal steam turbine