JPH02305951A - Method and device for cooling after vacuum thermal spraying - Google Patents

Method and device for cooling after vacuum thermal spraying

Info

Publication number
JPH02305951A
JPH02305951A JP1126452A JP12645289A JPH02305951A JP H02305951 A JPH02305951 A JP H02305951A JP 1126452 A JP1126452 A JP 1126452A JP 12645289 A JP12645289 A JP 12645289A JP H02305951 A JPH02305951 A JP H02305951A
Authority
JP
Japan
Prior art keywords
cooling
work
cooling means
reduced pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126452A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kaneko
金子 友義
Hideo Hisada
久田 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1126452A priority Critical patent/JPH02305951A/en
Publication of JPH02305951A publication Critical patent/JPH02305951A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute cooling in an extremely short period of time and to improve productivity by successively cooling a work after a vacuum thermal spraying to cooling by using a water cooling means, inert gas cooling means and spray cooling means in a reduced pressure chamber. CONSTITUTION:The work 8 with which the thermal spraying is completed is brought into contact with the base of a water cooling box 2a of the water cooling means 2 while the work is rotated on a turn table 7 in the reduced pressure chamber. The water in the box 2a is replaced by a hose 11 and the cooling of the work is executed. A temp. measuring control panel 19 blows the inert gas from the nozzles 3a of the inert gas cooling means 3 in place of the water cooling means 2 and cools the work in a contactless state when the temp. of the work 8 measured by a radiation thermometer 18 attains a prescribed temp. The control panel 19 supplies a refrigerant 16 to the nozzles 3a of the spray cooling means 4 and cools the work 8 down to the prescribed temp. by the refrigerant 16 when the work 8 cools down to the prescribed temp. The cooling of the work 8 is thus executed by successively changing the cooling means according to the temp. thereof, by which the cooling of the work 8 is executed in an extremely short period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は減圧プラズマ溶射・電子ビーム溶接など減圧下
で行う加工プロセスに係り、特に減圧溶射後の冷却方法
とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to processing processes performed under reduced pressure, such as reduced pressure plasma spraying and electron beam welding, and particularly relates to a cooling method and apparatus for cooling after reduced pressure spraying.

(従来の技術) 例えば、プラズマ溶射を行う場合の工程は、まず溶射室
内でワークセットを行い、つぎに真空引きしてプラズマ
による予熱・表面ボニバード処理後、プラズマ溶射を行
うようになっている。そして溶射後は放冷したのち、真
空デパックしワークを取り出すことで溶射工程が完了す
るものである。
(Prior Art) For example, the process for plasma spraying is to first set up a workpiece in a thermal spraying chamber, then evacuate the chamber, perform plasma preheating and surface Bonibird treatment, and then perform plasma spraying. After thermal spraying, the workpiece is left to cool and then vacuum depacked to remove the workpiece, thereby completing the thermal spraying process.

そこで例えば、減圧プラズマ溶射30〜100’t b
 r rを行う場合、密着力の向上のため、400〜5
00℃の予熱およびプラズマ炎による表面洗浄を行った
のち溶射を行うが、溶射後直ちに大気中に出すと酸化が
生じて被膜の特性が充分発揮できなくなる。したがって
上記影響の出なくなるまでは減圧中で放冷後、ガスを封
入して冷却している。
Therefore, for example, low pressure plasma spraying of 30 to 100't b
When performing r r, 400 to 5
Thermal spraying is performed after preheating to 00°C and cleaning the surface with plasma flame, but if the film is exposed to the atmosphere immediately after spraying, oxidation will occur and the film will not be able to fully demonstrate its properties. Therefore, until the above-mentioned influence disappears, it is left to cool under reduced pressure and then cooled by sealing in gas.

(発明が解決しようとする課題) しかしながら減圧溶射プロセスを用い大型ロールのよう
な大容量のワークを溶射した場合、予熱および長時間に
亘る溶射熱によりワークの温度は600〜700℃にも
達する。そこで溶射後直ちに次工程に移りたいが被膜の
酸化などの不具合を避けるため、所定温度以下になるま
では大気中に出すことができない。
(Problems to be Solved by the Invention) However, when a large-capacity workpiece such as a large roll is thermally sprayed using a reduced-pressure thermal spraying process, the temperature of the workpiece reaches 600 to 700° C. due to preheating and long-term thermal spraying heat. Therefore, it is desirable to move on to the next process immediately after thermal spraying, but in order to avoid problems such as oxidation of the coating, it is not possible to expose it to the atmosphere until the temperature falls below a predetermined temperature.

したがって減圧下での冷却は輻射熱および治具などと通
した一部熱伝導熱によるものしが期待できず、冷却に非
常に長時間を要していた。
Therefore, cooling under reduced pressure cannot be expected to rely on radiant heat and partial heat conduction through jigs, etc., and cooling takes a very long time.

本発明はこれに鑑み減圧下において加熱されたワークの
温度を効率よく下げるようにした減圧溶射後の冷却方法
とその装置を提供して従来技術のもつ欠点の解消を図る
ことを目的としたものである。
In view of this, the present invention aims to eliminate the drawbacks of the prior art by providing a cooling method and device for cooling the workpiece after vacuum spraying, which efficiently lowers the temperature of a heated workpiece under reduced pressure. It is.

(課題を解決するための手段) 上記目的を達成するため本発明請求項1は減圧プラズマ
溶射、電子ビーム溶接等の真空または減圧下で行われる
加工プロセス終了後の冷却方法において、減圧室内で水
冷却手段による接触冷却と、ガス冷による直接冷却と、
噴霧冷却とをワークの温度に応じて選択して順次具なる
冷却を行うことを特徴とする請求項2は減圧プラズマ溶
射、電子ビーム溶接等の真空または減圧下で行われる加
工プロセス終了後の冷却装置において、減圧室内に水冷
却手段と、不活性ガス冷却手段と、噴霧冷却手段および
測定手段を備えたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, claim 1 of the present invention provides a cooling method after finishing a processing process such as reduced pressure plasma spraying or electron beam welding that is carried out under vacuum or reduced pressure. Contact cooling by cooling means, direct cooling by gas cooling,
Claim 2 is characterized in that the spray cooling is selected depending on the temperature of the workpiece to sequentially perform specific cooling. The apparatus is characterized in that a water cooling means, an inert gas cooling means, a spray cooling means, and a measuring means are provided in the reduced pressure chamber.

(作用) 上記請求項2の装置を用いることにより請求項1の作用
が行え、これにより冷却時間を従来に比し大幅に短縮す
ることができる。
(Function) By using the apparatus of claim 2, the effect of claim 1 can be achieved, and thereby the cooling time can be significantly shortened compared to the conventional method.

(実施例) 以下、本発明を第1図乃至第5図に示す実施例を参照し
て説明する。
(Example) The present invention will be described below with reference to the example shown in FIGS. 1 to 5.

本発明の請求項1にかかる減圧溶射後の冷却方法は、請
求項2の減圧溶射後の冷却装置を用いて行われるもので
ある。
The cooling method after vacuum spraying according to claim 1 of the present invention is carried out using the cooling device after vacuum spraying according to claim 2.

すなわち、該冷却装置は減圧室1内に水冷却手段2と、
不活性ガス冷却手段3と、噴霧冷却手段4および測定手
段5を備えたもので構成されている。
That is, the cooling device includes a water cooling means 2 in the decompression chamber 1,
It is comprised of an inert gas cooling means 3, a spray cooling means 4, and a measuring means 5.

減圧室1は真空ポンプ6などにより真空状態に減圧され
ており、その中に水冷ボックス2aなどからなる水冷却
手段2とノズル3aなどからなる不活性ガス冷却手段3
と噴霧冷却手段4および放射温度計などの測定手段5が
内蔵され、またこれらの下部には溶射ワーク8を載置し
た回転テーブル7が設けられている。
The decompression chamber 1 is depressurized to a vacuum state by a vacuum pump 6 or the like, and therein are a water cooling means 2 consisting of a water cooling box 2a etc. and an inert gas cooling means 3 consisting of a nozzle 3a etc.
A spray cooling means 4 and a measuring means 5 such as a radiation thermometer are built in, and a rotary table 7 on which a thermal spray work 8 is placed is provided below these.

前記水冷却手段2は前記減圧室1内の側壁面に設けた水
冷手段用ポジショナ9などを含み、これにより支持され
、このポジショナ9は減圧室1外に設けた水冷却用制w
zioの信号により作動して水冷ボックス2aを昇降動
させるものである。
The water cooling means 2 includes a water cooling means positioner 9 provided on the side wall surface inside the decompression chamber 1, and is supported by this, and this positioner 9 is supported by a water cooling means w provided outside the decompression chamber 1.
The water cooling box 2a is raised and lowered by being activated by a signal from the zio.

前記水冷却手段2の冷却ボックス2a内には減圧室1外
からホース11などにより冷却水を入れ、加熱され湯と
なった冷却本番減圧室1外に排出するようにしている。
Cooling water is introduced into the cooling box 2a of the water cooling means 2 from outside the decompression chamber 1 through a hose 11, and is discharged outside the cooling decompression chamber 1 as heated hot water.

そしてこの水冷ボックス2aの底面を溶射ワー28の上
面に接触させてワー28を冷却するようになっている。
The bottom surface of this water-cooled box 2a is brought into contact with the top surface of the thermal spraying wire 28 to cool the spraying wire 28.

この場合ワーク8の温度は水冷ボックス2a内に設けら
れた接触式温度計用センサ12により測定される。
In this case, the temperature of the workpiece 8 is measured by a contact thermometer sensor 12 provided in the water-cooled box 2a.

前記不活性ガス冷却手段3には、前記冷却手段2と同様
に減圧室1内の側壁面に設けたガス冷却用ポジショナ1
3を含むもので、これにより支持され、このポジショナ
13も減圧室1外に設けたガス冷却用制御磐14の信号
により作動して不活性ガス冷却手段3のノズル3aを昇
降動および左右動させるものである。そしてこのノズル
3aには減圧室1外からホース15などによりガスを供
給するようになっている。
The inert gas cooling means 3 includes a gas cooling positioner 1 provided on the side wall surface of the decompression chamber 1 in the same manner as the cooling means 2.
The positioner 13 is also operated by a signal from a gas cooling control block 14 provided outside the decompression chamber 1 to move the nozzle 3a of the inert gas cooling means 3 up and down and horizontally. It is something. Gas is supplied to this nozzle 3a from outside the decompression chamber 1 through a hose 15 or the like.

前記噴霧冷却手段4は前記ノズル3aと機器は共通とな
っているが、機能的には異なったもので、前記ノズル3
aに不活性ガスの外にさらに減圧室1外から水または他
の冷媒16を供給するようにしたものである。
The spray cooling means 4 has the same equipment as the nozzle 3a, but is functionally different.
In addition to the inert gas, water or other refrigerant 16 is supplied from outside the decompression chamber 1 to a.

したがってこの制御は第3図に示すように減圧室1の外
に設けた噴霧冷却用間91盤17からの信号により作動
して前記ガス冷却用ポジショナ13を昇降動させるもの
である。
Therefore, as shown in FIG. 3, this control is activated by a signal from a spray cooling chamber 91 board 17 provided outside the decompression chamber 1 to move the gas cooling positioner 13 up and down.

前記測定手段5は前記接触式温度計用センサ12と非接
触の放射温度計18な6どよりなり、これらは温度測定
MfXg盤19を介してそれぞれ前記水冷却用制El磐
10.ガス冷却用制al盤14および噴霧冷却用制御盤
17に接続されている。
The measuring means 5 consists of the contact thermometer sensor 12, the non-contact radiation thermometer 18, and the like, and these are connected to the water cooling control plate 10. It is connected to a gas cooling control panel 14 and a spray cooling control panel 17.

また温度測定制御盤19はプラズマ装置20と前記真空
ポンプ6の真空系制御と接続され、さらにワー28の回
転テーブル7を回転させる駆動源21とも接続されてい
る。
Further, the temperature measurement control panel 19 is connected to the vacuum system control of the plasma device 20 and the vacuum pump 6, and is further connected to a drive source 21 for rotating the rotary table 7 of the workpiece 28.

これにより溶射の完了したワー28に水冷却手段2の水
冷ボックス2aの底面をを接触させ、そのときのワーク
温度が測定手段5の一方の接触式温度計用センサ11に
より検出されると温度測定制御g119は第4図および
第5図において、T〉T、(実施例では700〜300
℃)の場合、水冷却用制御盤10へ信号を送り、水冷却
手段2を作動させて水冷ボックス2a内の水を入れ替え
し、その結果ワーク8の温度がTNT、(実施例では3
00℃より低下)となった場合、温度測定制御!!19
は水冷却手段2を解除しガス冷却用制御盤14に信号を
送り、ノズル3aに供給された不活性ガスを吹き付けて
ワーク8を非接触状態で冷却する。
As a result, the bottom surface of the water cooling box 2a of the water cooling means 2 is brought into contact with the workpiece 28 that has been thermally sprayed, and when the workpiece temperature at that time is detected by one of the contact type thermometer sensors 11 of the measuring means 5, the temperature is measured. In FIGS. 4 and 5, the control g119 is T>T, (700 to 300 in the embodiment
℃), a signal is sent to the water cooling control panel 10 to operate the water cooling means 2 to replace the water in the water cooling box 2a, and as a result, the temperature of the workpiece 8 is TNT, (3 in the embodiment).
00℃), temperature measurement control! ! 19
releases the water cooling means 2, sends a signal to the gas cooling control panel 14, and sprays the inert gas supplied to the nozzle 3a to cool the workpiece 8 in a non-contact manner.

そしてワーク8の温度を測定手段5の他方の放射温度計
18が検出して温度測定制御盤19に信号が送られ、そ
の結果T<72(実施例では200℃より低下)となっ
た場合、温度測定制御盤19は不活性ガス冷却手段3を
解除し、噴霧冷却用制御盤17に信号を送りノズル3a
に不活性ガスの外に水またはその他の冷媒16を供給し
て噴霧冷却手段4により冷却する。その結果ワーク8の
温度TくT3 (実施例では60℃以下)となった場合
は噴霧冷却用制御盤17により噴霧冷却手段4の作動を
ストップさせる。
When the temperature of the workpiece 8 is detected by the other radiation thermometer 18 of the measuring means 5 and a signal is sent to the temperature measurement control panel 19, and as a result T<72 (lower than 200°C in the example), The temperature measurement control panel 19 releases the inert gas cooling means 3 and sends a signal to the spray cooling control panel 17 to control the nozzle 3a.
In addition to the inert gas, water or other refrigerant 16 is supplied to the spray cooling means 4 for cooling. As a result, when the temperature of the workpiece 8 reaches T3 (60° C. or lower in the embodiment), the operation of the spray cooling means 4 is stopped by the spray cooling control panel 17.

このようにして加工プロセス後のワーク8の温度を常に
測定しながらワーク温度に応じた冷却を行うものである
In this way, the temperature of the workpiece 8 after the machining process is constantly measured and cooling is performed in accordance with the workpiece temperature.

なお、上記各冷却は駆動源21によりワーク8を回転さ
せながら行われる。
Note that each of the above-mentioned cooling operations is performed while the workpiece 8 is rotated by the drive source 21.

また、実施例ではプラズマ溶射の場合について説明した
が、電子ビームの場合についても同様の冷却を行うこと
ができる。
Further, in the embodiment, the case of plasma spraying has been described, but similar cooling can be performed also in the case of electron beam.

第5図は従来のプロセスと本発明のプセスの場合の冷却
処理時間の比較した実験データのグラフを示し、従来7
00℃から300℃まで下げるのに4時間、300℃か
ら150℃までさげるのに15分要したのに比べ、本発
明の場合は700℃から300℃まで下げるのに30分
、300℃から200℃まで下げるのに10分、200
℃から150℃まで下げるのに5分と云う結果が得られ
た。
FIG. 5 shows a graph of experimental data comparing the cooling processing time in the case of the conventional process and the process of the present invention.
It took 4 hours to lower the temperature from 00°C to 300°C and 15 minutes to lower the temperature from 300°C to 150°C, but in the case of the present invention, it took 30 minutes to lower the temperature from 700°C to 300°C, and 30 minutes to lower the temperature from 300°C to 200°C. 10 minutes to cool down to 200℃
The result was that it took 5 minutes to lower the temperature from ℃ to 150℃.

(発明の効果) 本発明は以上説明したように請求項2の冷却装置を用い
て請求項1に示した冷却方法によりワークを冷却するよ
うにしたから、従来の冷却方法に比較して極めて雉時間
に行うことができることになり、生産性の向上が図れる
(Effects of the Invention) As explained above, the present invention uses the cooling device of claim 2 to cool the workpiece by the cooling method of claim 1. This can be done on time, improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる減圧溶射後の冷却装置の概要を
示す断面図、第2図は本発明の冷却方法の作動順序の説
明図、第3図は本発明の各冷却手段と制御盤との関係を
示す系統図、第4図は本発明の冷却の作動径路のブロッ
ク図、第5図は従来の冷却時間と本発明の冷却方法を用
いた冷却時間の比較を示すグラフである。 1・・・減圧室、2・・・水冷却手段、2a・・・水冷
ボックス、3・・・不活性ガス冷却手段、3a・・・ノ
ズル、4・・・噴霧冷却手段、5・・・測定手段、6・
・・真空ポンプ、7・・・回転テーブル、8・・・ワー
ク、9・・・水冷却手段用ポジショナ、10・・・水冷
却用制御盤、12・・・接触式温度計用センサ、13・
・・ガス冷却用ポジショナ、14・・・ガス冷却用制御
盤、17・・・噴霧冷却用制御盤、18・・・放射温度
計、19・・・温度測定制御盤、20・・・プラズマ装
置制御盤、21・・・駆動源。 出願人   株式会社小松製作所 (b) (C) 第3図 第4図 □晴間 第5図
Fig. 1 is a sectional view showing an overview of the cooling device after reduced pressure thermal spraying according to the present invention, Fig. 2 is an explanatory diagram of the operating sequence of the cooling method of the present invention, and Fig. 3 is a diagram showing each cooling means and control panel of the present invention. FIG. 4 is a block diagram of the cooling operation path of the present invention, and FIG. 5 is a graph showing a comparison between the conventional cooling time and the cooling time using the cooling method of the present invention. DESCRIPTION OF SYMBOLS 1... Decompression chamber, 2... Water cooling means, 2a... Water cooling box, 3... Inert gas cooling means, 3a... Nozzle, 4... Spray cooling means, 5... Measuring means, 6.
...Vacuum pump, 7. Rotating table, 8. Workpiece, 9. Positioner for water cooling means, 10. Control panel for water cooling, 12. Sensor for contact type thermometer, 13.・
... Gas cooling positioner, 14... Gas cooling control panel, 17... Spray cooling control panel, 18... Radiation thermometer, 19... Temperature measurement control panel, 20... Plasma device Control panel, 21... Drive source. Applicant Komatsu Ltd. (b) (C) Figure 3 Figure 4 □ Haruma Figure 5

Claims (1)

【特許請求の範囲】 1)減圧プラズマ溶射、電子ビーム溶接等の真空または
減圧下で行われる加工プロセス終了後の冷却方法におい
て、減圧室内で水冷却手段による接触冷却と、ガス冷に
よる直接冷却と、噴霧冷却とをワークの温度に応じて選
択して順次異なる冷却を行うことを特徴とする減圧溶射
後の冷却方法。 2)減圧プラズマ溶射、電子ビーム溶接等の真空または
減圧下で行われる加工プロセス終了後の冷却装置におい
て、減圧室内に水冷却手段と、不活性ガス冷却手段と、
噴霧冷却手段および測定手段を備えたことを特徴とする
減圧溶射後の冷却装置。
[Claims] 1) A cooling method after the completion of a processing process performed in vacuum or under reduced pressure, such as reduced pressure plasma spraying or electron beam welding, which includes contact cooling using water cooling means in a reduced pressure chamber and direct cooling using gas cooling. A cooling method after reduced-pressure thermal spraying, characterized in that different types of cooling are sequentially performed by selecting , spray cooling, and spray cooling depending on the temperature of the workpiece. 2) In a cooling device after the completion of a processing process performed under vacuum or reduced pressure such as reduced pressure plasma spraying or electron beam welding, a water cooling means and an inert gas cooling means are provided in the reduced pressure chamber.
A cooling device after reduced pressure thermal spraying, characterized by comprising a spray cooling means and a measuring means.
JP1126452A 1989-05-19 1989-05-19 Method and device for cooling after vacuum thermal spraying Pending JPH02305951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126452A JPH02305951A (en) 1989-05-19 1989-05-19 Method and device for cooling after vacuum thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126452A JPH02305951A (en) 1989-05-19 1989-05-19 Method and device for cooling after vacuum thermal spraying

Publications (1)

Publication Number Publication Date
JPH02305951A true JPH02305951A (en) 1990-12-19

Family

ID=14935570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126452A Pending JPH02305951A (en) 1989-05-19 1989-05-19 Method and device for cooling after vacuum thermal spraying

Country Status (1)

Country Link
JP (1) JPH02305951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
WO2023171444A1 (en) * 2022-03-09 2023-09-14 日本発條株式会社 Thermal spraying device and thermal spraying control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
WO2023171444A1 (en) * 2022-03-09 2023-09-14 日本発條株式会社 Thermal spraying device and thermal spraying control method

Similar Documents

Publication Publication Date Title
JP3568958B2 (en) Equipment for processing wafers with plasma jet
US5240556A (en) Surface-heating apparatus and surface-treating method
KR100679269B1 (en) Semiconductor manufacturing device of multi-chamber type
US5216223A (en) Plasma treatment apparatus
JPS6362339B2 (en)
JPH02305951A (en) Method and device for cooling after vacuum thermal spraying
JP2001351892A (en) Method and device for mounting
EA008187B1 (en) Method of cleaning shadow masks in display production and device therefor
TWI597779B (en) Apparatus and methods for backside passivation
CN101570847B (en) Nitriding device
JP3184666B2 (en) Operating method of plasma device
US5231771A (en) Vacuum drying method for metallic workpieces
JPH07102372A (en) Vacuum treatment of material and device therefor
JP2021166238A (en) Cleaning method and heat treatment device
JPH0857753A (en) Diamond machining method and machining device
JPH0398683A (en) Method and apparatus for vacuum washing of processed article
JP2006186189A (en) Gas processing and manufacturing apparatus and method therefor
JP3346809B2 (en) Plasma bake oven
JPS6071077A (en) Washing method and washer
JPH0462389A (en) Vacuum heating apparatus
JPH08243915A (en) Chemical machine polishing device
JPH0512033B2 (en)
JPH04192328A (en) Plasma processing equipment
JP2017171956A (en) Cooling treatment facility and cooling treatment method
JP2023124377A (en) Detector and heat treatment device