JP2017171956A - Cooling treatment facility and cooling treatment method - Google Patents

Cooling treatment facility and cooling treatment method Download PDF

Info

Publication number
JP2017171956A
JP2017171956A JP2016056098A JP2016056098A JP2017171956A JP 2017171956 A JP2017171956 A JP 2017171956A JP 2016056098 A JP2016056098 A JP 2016056098A JP 2016056098 A JP2016056098 A JP 2016056098A JP 2017171956 A JP2017171956 A JP 2017171956A
Authority
JP
Japan
Prior art keywords
cooling
temperature
mold
highest temperature
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056098A
Other languages
Japanese (ja)
Other versions
JP6728827B2 (en
Inventor
聡 宇野
Satoshi Uno
聡 宇野
清水 崇行
Takayuki Shimizu
崇行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016056098A priority Critical patent/JP6728827B2/en
Publication of JP2017171956A publication Critical patent/JP2017171956A/en
Application granted granted Critical
Publication of JP6728827B2 publication Critical patent/JP6728827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling treatment facility, which may pertinently prevent problems, such as hardening failure and increment in distortion, due to unevenness in cooling speed upon hardening a treatment object, such as a mold.SOLUTION: There is provided a cooling treatment facility for cooling a heated mold 12, which comprises an infrared camera 24 detecting temperature distribution on a surface of the mold 12, a nozzle 22 ejecting cooling gas from an ejection port 22a to cool the surface of the mold 12, a movable arm 36 movably holding the nozzle 22, and a controlling part 30 performing operation control of a facility. Due to control by the controlling part 30, the nozzle 22 is moved near a highest temperature part on the surface of the mold 12 so that the highest temperature part is topically cooled.SELECTED DRAWING: Figure 1

Description

この発明は、金型等の被処理物を焼入れする際の冷却処理に用いる冷却処理設備及び冷却処理方法に関する。   The present invention relates to a cooling processing facility and a cooling processing method used for cooling processing when a workpiece such as a mold is quenched.

従来、焼入れ時の冷却手法の一つとして、加熱室で焼入れ温度まで加熱された金型を加熱室から出してそのまま油冷槽内に入れて焼入れする方法が知られている。
しかしながら、大型の金型において高温状態にある金型にこのような急速冷却を直接行うと、各部位の間で、例えば金型の角部と中央部とで大きな温度差が生じ、熱応力にて金型が大きく歪んだり割れたりしてしまう。
Conventionally, as one cooling method at the time of quenching, there is known a method in which a mold heated to a quenching temperature in a heating chamber is taken out of the heating chamber and directly placed in an oil cooling bath for quenching.
However, when such rapid cooling is performed directly on a mold that is in a high temperature state in a large mold, a large temperature difference occurs between each part, for example, at the corner and the center of the mold, resulting in thermal stress. The mold will be greatly distorted or cracked.

これに対し加熱室から出た高温状態の金型に、空気その他のガス雰囲気中での放冷や衝風冷却等のガス冷却による緩冷を行うと、歪みを少なくし割れ発生を防ぐことができる。
特に金型等に用いられる工具鋼については焼入硬化能が著しく高いため、放冷や衝風冷却等の緩冷により焼入れする方法を適用することが可能である。
On the other hand, if the mold in the high temperature state that comes out of the heating chamber is slowly cooled by gas cooling such as cooling in air or other gas atmosphere or blast cooling, it is possible to reduce distortion and prevent cracking. .
In particular, tool steels used for molds and the like have a remarkably high quenching and hardening ability, and therefore it is possible to apply a method of quenching by slow cooling such as cooling or blast cooling.

ただし被処理物が大物の金型等であった場合には、緩冷であっても被処理物の部位によって冷却速度にばらつきが生じ、最も冷却速度が遅い最高温度部位で十分な焼きが入らず所望の硬度が得られないといった問題が生じる場合がある。   However, if the object to be processed is a large mold, the cooling rate varies depending on the part of the object to be processed even if it is slowly cooled, and sufficient baking occurs at the highest temperature part where the cooling rate is the slowest. In some cases, the desired hardness cannot be obtained.

尚、下記特許文献1では、赤外線カメラで金型表面の温度分布を検知して、金型表面の最高温度部位を特定し、最高温度部位での検知温度に基づいて金型の冷却条件を制御するようになした点が開示されている。
しかしながらこの特許文献1に記載のものは、最高温度部位での検知温度に基づいて金型全体が衝風冷却されるため、最高温度部位と同時にそれ以外の部位も強制冷却される。このため、最高温度部位での焼入れ不良が改善されても、金型全体として冷却速度が速くなるため、今度は歪みが大きくなる問題が生じ易くなる。即ち焼入れ処理工程における焼入れ不良と歪みの増大、この両方の問題を同時に解決するためには更なる改善が必要であった。
In the following Patent Document 1, the temperature distribution on the mold surface is detected with an infrared camera, the highest temperature part on the mold surface is specified, and the cooling condition of the mold is controlled based on the detected temperature at the highest temperature part. The point made to do is disclosed.
However, since the whole mold is blast cooled based on the detected temperature at the maximum temperature part, the other part is forcibly cooled at the same time as the maximum temperature part. For this reason, even if the quenching failure at the highest temperature portion is improved, the cooling rate of the entire mold is increased, so that the problem of increased distortion is likely to occur. That is, in order to solve both problems of quenching failure and increase in distortion in the quenching process, further improvement is necessary.

特開2014−237886号公報JP 2014-237886 A

本発明は以上のような事情を背景とし、金型等の被処理物を焼入れする際の冷却速度のばらつきに起因する焼入れ不良及び歪みの増大の問題を良好に防止することが可能な冷却処理設備及び冷却処理方法を提供することを目的としてなされたものである。   The present invention is based on the above circumstances, and is a cooling process that can satisfactorily prevent problems of quenching failure and increased distortion caused by variations in cooling rate when quenching workpieces such as molds. The object is to provide equipment and a cooling method.

而して請求項1は冷却処理設備に関するのもので、加熱された被処理物を冷却処理する冷却処理設備であって、該被処理物の表面の温度分布を検知する温度検知手段と、吐出口から冷却用ガスを吐出させて該被処理物の表面を冷却する冷却手段と、該冷却手段を位置移動可能に保持する移動手段と、設備の動作制御を行う制御部と、を備え、該制御部の制御により、前記被処理物の表面における最高温度部位の近傍に前記冷却手段を移動させて、該最高温度部位を局所冷却することを特徴とする。   Thus, claim 1 relates to a cooling processing facility, which is a cooling processing facility for cooling a heated object to be processed, the temperature detecting means for detecting the temperature distribution of the surface of the object to be processed, and the discharge A cooling means for discharging the cooling gas from the outlet to cool the surface of the object to be processed, a moving means for holding the cooling means so as to be movable, and a controller for controlling the operation of the equipment, Under the control of the control unit, the cooling means is moved to the vicinity of the highest temperature portion on the surface of the object to be processed to locally cool the highest temperature portion.

請求項2のものは、請求項1において、前記移動手段は先端部が3次元方向に位置移動可能な可動アームを有し、前記冷却手段は該可動アームの該先端部に保持されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the moving means has a movable arm whose tip is movable in a three-dimensional direction, and the cooling means is held by the tip of the movable arm. It is characterized by.

請求項3のものは、請求項1,2の何れかにおいて、前記吐出口が前記被処理物の表面から500mm以内に位置する状態で、前記局所冷却が行われることを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, the local cooling is performed in a state where the discharge port is located within 500 mm from the surface of the workpiece.

請求項4のものは、請求項1〜3の何れかにおいて、前記被処理物の表面温度が800℃の時点で、熱伝達係数が80W/m・k以上の冷却能力を備えていることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, when the surface temperature of the object to be processed is 800 ° C., the heat transfer coefficient has a cooling capacity of 80 W / m · k or more. Features.

請求項5のものは、請求項1〜4の何れかにおいて、前記制御部は、前記温度検知手段による前記最高温度部位での検知温度が、予め予定している適正な予定表面温度となるように、これら検知温度と予定表面温度との差分に基づいて冷却条件を制御することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the control unit is configured such that the temperature detected by the temperature detection unit at the highest temperature portion is an appropriate planned surface temperature that is planned in advance. Further, the cooling condition is controlled based on the difference between the detected temperature and the planned surface temperature.

請求項6は、加熱された被処理物を冷却処理する方法であって、該被処理物を放冷するとともに、該被処理物の表面の温度分布を検知して、該被処理物表面の最高温度部位を特定し、該最高温度部位の近傍に冷却手段を移動させて、該冷却手段から吐出される冷却用ガスにより前記最高温度部位を局所冷却することを特徴とする。   Claim 6 is a method for cooling a heated object to be processed, wherein the object to be processed is allowed to cool, and the temperature distribution of the surface of the object to be processed is detected to detect the surface of the object to be processed. A maximum temperature region is specified, a cooling unit is moved to the vicinity of the maximum temperature region, and the maximum temperature region is locally cooled by a cooling gas discharged from the cooling unit.

請求項7のものは、請求項6において、前記被処理物が、意匠面とは反対側の面に平坦な背面を備えた金型であって、該背面に対して前記冷却手段を用いた局所冷却を行うこと
ことを特徴とする。
According to a seventh aspect of the present invention, in the sixth aspect, the object to be processed is a mold having a flat back surface on the surface opposite to the design surface, and the cooling means is used for the back surface. It is characterized by performing local cooling.

以上のように本発明の冷却処理設備は、加熱された被処理物の表面の温度分布を検知する温度検知手段と、吐出口から冷却用ガスを吐出させて被処理物の表面を冷却する冷却手段と、冷却手段を位置移動可能に保持する移動手段と、設備の動作制御を行う制御部と、を備え、制御部の制御により、被処理物の表面における最高温度部位の近傍に冷却手段を移動させて、最高温度部位を局所冷却するようになしたものである。
かかる本発明によれば、温度検知手段により得られた被処理物の表面の温度分布に基づいて特定された最高温度部位、即ち冷却速度が最も遅く焼入れ不良が生じ易い部位に対して冷却用ガスを吐出させることで、かかる最高温度部位での冷却速度を速め、冷却速度が遅いことによる焼入れ不良の発生を良好に防止することができる。
また本発明では、冷却手段を移動手段により冷却対象の最高温度部位の近傍にまで移動させて冷却を行なうため、冷却エリアは最高温度部位若しくはその周辺部に限定される。このため最高温度部位以外の部位が、本発明の冷却手段により強制的に局所冷却されてしまうことを有効に防止することができる。即ち過度の冷却により、本来適正な冷却速度であった部位で冷却速度が速められて、歪み量が増大してしまうのを有効に防止することができる。
As described above, the cooling processing facility of the present invention includes temperature detection means for detecting the temperature distribution of the surface of the heated object to be processed and cooling for discharging the cooling gas from the discharge port to cool the surface of the object to be processed. Means, a moving means for holding the cooling means movably in position, and a controller for controlling the operation of the equipment, and the control means controls the cooling means in the vicinity of the highest temperature portion on the surface of the workpiece. It is moved to locally cool the highest temperature region.
According to the present invention, the cooling gas is applied to the highest temperature portion specified based on the temperature distribution of the surface of the workpiece obtained by the temperature detecting means, that is, the portion where the cooling rate is the slowest and the quenching failure is likely to occur. By discharging the water, it is possible to increase the cooling rate at the highest temperature portion and to favorably prevent the occurrence of quenching failure due to the slow cooling rate.
In the present invention, since the cooling means is moved to the vicinity of the highest temperature portion to be cooled by the moving means to perform cooling, the cooling area is limited to the highest temperature portion or its peripheral portion. For this reason, parts other than the highest temperature part can be effectively prevented from being locally cooled by the cooling means of the present invention. That is, it is possible to effectively prevent the amount of distortion from being increased due to excessive cooling, where the cooling rate is increased at the originally proper cooling rate.

ここで最高温度部位を良好に局所冷却するためには、被処理物の表面から冷却用ガスが吐出される吐出口までの距離を500mm以内とすることが望ましく(請求項3)、また冷却能力は、被処理物の表面温度が800℃の時点で、熱伝達係数が80W/m・k以上であることが望ましい(請求項4)。   Here, in order to satisfactorily locally cool the maximum temperature portion, it is desirable that the distance from the surface of the object to be processed to the discharge port from which the cooling gas is discharged is 500 mm or less (Claim 3), and the cooling capacity It is desirable that the heat transfer coefficient is 80 W / m · k or more when the surface temperature of the workpiece is 800 ° C. (Claim 4).

ここで熱伝達係数とは、単位面積当り、単位時間当り且つ被処理物表面とその周りの雰囲気との温度差1℃当りに被処理物から雰囲気中に流れる熱移動量で、この熱伝達係数は被処理物に対する冷却の強弱の程度を表す。
具体的には、被処理物に向けて送る冷却用ガスのガス量やガス圧力,雰囲気温度,被処理物の形状その他被処理物に対する個々の冷却条件を総合したトータルの冷却の強弱の程度を表す。この熱伝達係数は、対象とする金型等の被処理物をセットし、冷却時の被処理物表面とその近傍雰囲気の温度変化を測定し、被処理物からどれだけ熱量が移動したかを知ることによって、予め実験的に求めておくことができる。
Here, the heat transfer coefficient is the amount of heat transfer that flows from the object to be processed into the atmosphere per unit area, per unit time, and at a temperature difference of 1 ° C. between the object surface and the surrounding atmosphere. Represents the level of cooling of the workpiece.
Specifically, the amount of cooling gas sent to the object to be processed, gas pressure, atmosphere temperature, shape of the object to be processed, and the degree of total cooling intensity, including the individual cooling conditions for the object to be processed. Represent. This heat transfer coefficient is determined by setting the object to be processed such as a target mold, measuring the temperature change of the surface of the object to be processed and its surrounding atmosphere during cooling, and how much heat has moved from the object to be processed. Knowing it can be determined experimentally in advance.

また本発明では、移動手段を、先端部が3次元方向に位置移動可能な可動アームを有するものとし、冷却手段をこの可動アームの先端部に保持されておくことができる(請求項2)。
上述のように本発明では冷却手段を被処理物の近傍にまで接近させる必要がある。しかしながら焼入れ温度まで加熱された被処理物は、1000℃又はそれ以上の高温となる場合もある。そこで請求項2に従って可動アームの先端部に冷却手段を保持された構成としておけば、極めて高温となる被処理物に接近する部位を、可動アームの先端部及びそこに取り付けられた冷却手段に限定することができ、十分な耐熱性を備えていない駆動機構等を被処理物から離した配置とすることができる。
In the present invention, the moving means has a movable arm whose tip can be moved in a three-dimensional direction, and the cooling means can be held at the tip of the movable arm.
As described above, in the present invention, it is necessary to bring the cooling means close to the vicinity of the workpiece. However, the workpiece heated to the quenching temperature may be as high as 1000 ° C. or higher. Therefore, if the cooling means is held at the distal end portion of the movable arm according to claim 2, the portion approaching the object to be processed that becomes extremely hot is limited to the distal end portion of the movable arm and the cooling means attached thereto. The driving mechanism or the like that does not have sufficient heat resistance can be disposed away from the object to be processed.

また本発明では、温度検知手段により最高温度部位の温度を正確に知ることができるため、最高温度部位の検知温度が予め予定している適正な予定表面温度となるように、これら検知温度と予定表面温度との差分に基づいて冷却条件を制御することができる(請求項5)。   Further, in the present invention, the temperature detection means can accurately know the temperature of the highest temperature part, so that the detection temperature of the highest temperature part and the expected temperature are set to be the predetermined expected surface temperature. The cooling condition can be controlled based on the difference from the surface temperature.

次に請求項6は冷却処理方法に関するもので、この冷却処理方法では、被処理物を放冷するとともに、被処理物の表面の温度分布を検知して、被処理物表面の最高温度部位を特定し、最高温度部位の近傍に冷却手段を移動させて、冷却手段から吐出される冷却用ガスにより最高温度部位を局所冷却する。
この冷却処理方法によれば、被処理物全体を放冷することで冷却処理時に生じる歪みを抑制することができる一方、被処理物の表面の最高温度部位については別途冷却用ガスを吹き付けることにより局所冷却されるので、冷却速度が遅いことによる焼入れ不良についても良好に防止することができる。
尚、本発明の冷却処理方法は、特に600℃以上の高温時での冷却処理方法として有効である。このため最高温度部位が600℃以下の所定温度となった時点で、油冷に切り換えて引き続き冷却処理を行うことも可能である。また本発明の冷却処理方法にて常温付近まで引き続き冷却処理を継続することも可能である。
Next, claim 6 relates to a cooling processing method. In this cooling processing method, the object to be processed is allowed to cool, and the temperature distribution on the surface of the object to be processed is detected to determine the maximum temperature portion on the surface of the object to be processed. The cooling means is moved to the vicinity of the highest temperature portion, and the highest temperature portion is locally cooled by the cooling gas discharged from the cooling means.
According to this cooling treatment method, the distortion generated during the cooling treatment can be suppressed by allowing the whole workpiece to cool, while the cooling gas is blown separately for the highest temperature portion of the surface of the workpiece. Since local cooling is performed, poor quenching due to a slow cooling rate can be well prevented.
The cooling treatment method of the present invention is particularly effective as a cooling treatment method at a high temperature of 600 ° C. or higher. Therefore, when the maximum temperature portion reaches a predetermined temperature of 600 ° C. or lower, it is possible to switch to oil cooling and continue the cooling process. It is also possible to continue the cooling process to near room temperature by the cooling process method of the present invention.

ところで一般に金型は、意匠面とは反対側の平坦な背面が、取付時や機械加工時の基準面となるため、特に背面における面内の歪み量を小さく抑えることが求められている。このため本発明の冷却処理方法を用いて金型の冷却処理を行なう場合には、金型の背面に対して局所冷却を行うことが好適である(請求項7)。   By the way, in general, since a flat back surface opposite to the design surface is a reference surface during mounting or machining, it is required to suppress the amount of distortion in the surface on the back surface in particular. For this reason, when performing the cooling process of the mold using the cooling process method of the present invention, it is preferable to perform local cooling on the back surface of the mold.

以上のような本発明によれば、金型等の被処理物を焼入れする際の、冷却速度のばらつきに起因する焼入れ不良及び歪みの増大の問題を良好に防止することが可能な冷却処理設備及び冷却処理方法を提供することができる。   According to the present invention as described above, the cooling processing equipment capable of satisfactorily preventing the problems of quenching failure and increased distortion caused by variations in the cooling rate when quenching the workpiece such as a mold. And a cooling processing method can be provided.

本発明の一実施形態の冷却処理設備の全体構成を示した図である。It is the figure which showed the whole structure of the cooling processing equipment of one Embodiment of this invention. 図1の可動アームの先端部を拡大して示した図である。It is the figure which expanded and showed the front-end | tip part of the movable arm of FIG. 図2の可動アームの先端部を回転させた場合の前後の状態を示した図である。It is the figure which showed the state before and behind at the time of rotating the front-end | tip part of the movable arm of FIG. 歪み測定に用いるレーザ光の色と、測定精度との関係を示した図である。It is the figure which showed the relationship between the color of the laser beam used for distortion measurement, and measurement accuracy. 同実施形態の冷却動作を説明するための図である。It is a figure for demonstrating the cooling operation of the embodiment. 冷却速度と、金型の焼入れ状態及び最大歪み量の関係を示した図である。It is the figure which showed the relationship between a cooling rate, the hardening state of a metal mold | die, and the maximum distortion amount. 冷却処理途中に行う歪み量測定の結果の一例を示した図である。It is the figure which showed an example of the result of the distortion amount measurement performed in the middle of cooling processing.

次に本発明の実施形態を図面に基づいて詳しく説明する。図1は、本実施形態の冷却処理設備10の全体構成を示した図である。図1において、12は被処理物としての金型で、図示を省略した加熱室にて焼入れ温度にまで加熱された後にクレーン等によってセット治具14上に載置される。20は後述する局所冷却用のノズル22が取り付けられたロボット、24は金型12の前方に位置し、金型12表面の温度分布を検知する温度検知手段としての赤外線カメラである。
またこの冷却処理設備10では、図1(A)中左側に圧縮エアを生成・貯留するための一連の装置であるコンプレッサ26、ドライヤ27、エアタンク28を有している。更にこの冷却処理設備10では、設備の動作制御を行う制御部30を有している。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating an overall configuration of a cooling processing facility 10 according to the present embodiment. In FIG. 1, reference numeral 12 denotes a mold as an object to be processed, which is heated to a quenching temperature in a heating chamber (not shown) and then placed on a set jig 14 by a crane or the like. Reference numeral 20 denotes a robot to which a nozzle 22 for local cooling described later is attached. Reference numeral 24 denotes an infrared camera which is positioned in front of the mold 12 and serves as a temperature detection means for detecting the temperature distribution on the surface of the mold 12.
Further, the cooling processing facility 10 has a compressor 26, a dryer 27, and an air tank 28 as a series of devices for generating and storing compressed air on the left side in FIG. Further, the cooling processing facility 10 includes a control unit 30 that controls the operation of the facility.

金型12は、工具鋼(SKD61)から成り、幅600mm×高さ600mm×厚み150mmで、凹凸を有する意匠面12aと、この意匠面12aとは反対側に位置する平坦な背面12bを備えており、本例では背面12bを前方(ロボット20及び赤外線カメラ24が配されている側)に向けた状態で、金型12がセット治具14上に載置されている。
尚、金型12に用いられる鋼種は特に限定されるものではなく、焼入れ性に優れた特殊鋼を適宜採用することが可能である。また金型のサイズについても特に限定されるものではないが、焼入れ時の冷却過程で温度差(冷却速度のばらつき)が生じ易い重量150kg以上のものにおいて、本発明は特に有効である。
The mold 12 is made of tool steel (SKD61), has a width 600 mm × height 600 mm × thickness 150 mm, and has a design surface 12 a having irregularities, and a flat back surface 12 b located on the opposite side of the design surface 12 a. In this example, the mold 12 is placed on the setting jig 14 with the back surface 12b facing forward (the side on which the robot 20 and the infrared camera 24 are disposed).
The steel type used for the mold 12 is not particularly limited, and special steel having excellent hardenability can be appropriately employed. Also, the size of the mold is not particularly limited, but the present invention is particularly effective when the weight is 150 kg or more, in which a temperature difference (variation in cooling rate) easily occurs during the cooling process during quenching.

赤外線カメラ24は、金型12の背面12b全体が検知範囲に含まれるようにその位置が設定されており、金型12の(詳しくは背面12bの)表面の温度分布を検知するとともに、金型12表面の最高温度部位を特定し、且つ、最高温度部位の温度を検知する。そして赤外線カメラ24による温度検知の結果は制御部30へと送られる。制御部30は、その検知結果に基づいて金型12に対する冷却条件を制御する。   The position of the infrared camera 24 is set so that the entire back surface 12b of the mold 12 is included in the detection range, and the temperature distribution of the surface of the mold 12 (specifically, the back surface 12b) is detected. 12 The highest temperature part of the surface is specified, and the temperature of the highest temperature part is detected. The result of temperature detection by the infrared camera 24 is sent to the control unit 30. The control unit 30 controls the cooling condition for the mold 12 based on the detection result.

ロボット20は、架台32上に固定された基部34と、そこから延びる可動アーム36を有している。可動アーム36は回転又は屈曲する複数の関節部を有し、可動アーム36の先端部38は図1中2点鎖線で示す可動範囲内を上下、左右、及び前後方向に、即ち3次元方向に移動可能とされている。そしてその先端部38には金型12を局所冷却するためのノズル22が取り付けられている。
尚、焼入れ温度にまで加熱された直後の金型12は非常に高温となる。本例では金型12からの放射熱の影響がロボット20全体に及ぶのを防止するため、金型12の正面からずれた位置にロボット20が設置されている。
The robot 20 has a base portion 34 fixed on the gantry 32 and a movable arm 36 extending therefrom. The movable arm 36 has a plurality of joint portions that rotate or bend, and the distal end portion 38 of the movable arm 36 moves vertically and horizontally, and in the front-rear direction, that is, in a three-dimensional direction, within a movable range indicated by a two-dot chain line in FIG. It can be moved. A nozzle 22 for locally cooling the mold 12 is attached to the tip portion 38.
The mold 12 immediately after being heated to the quenching temperature becomes very high. In this example, the robot 20 is installed at a position shifted from the front of the mold 12 in order to prevent the influence of the radiant heat from the mold 12 from reaching the entire robot 20.

図2は可動アーム36の先端部38を拡大して示した図である。同図で示すように先端部38は、関節軸Pを中心に可動アーム36の根元側に対し回転可能に連結されている。
そして先端部38の、関節軸Pとは反対側に位置する取付部材40には、箱状の熱遮蔽体42が取付ボルト44により取付固定されている。
FIG. 2 is an enlarged view of the distal end portion 38 of the movable arm 36. As shown in the figure, the distal end portion 38 is rotatably connected to the base side of the movable arm 36 around the joint axis P.
A box-shaped heat shield 42 is attached and fixed to the attachment member 40 on the opposite side of the joint portion P of the distal end portion 38 by attachment bolts 44.

熱遮蔽体42は、可動アーム36側の取付部材40に直接固定される被固定部42aと、この被固定部42aに直交する状態で固定されている平板状の基体42bと、基体42b上の一方の面を覆うように基体42bに固定された蓋体42cと、を備え、全体として上下、左右、及び前後の各方向に熱遮蔽用の壁が形成された箱形状を成している。熱遮蔽体42は、金型12から可動アーム36の先端部38に向かって放射される熱を遮蔽して、内部に収納されているセンサ等を保護する。   The heat shield 42 includes a fixed portion 42a that is directly fixed to the mounting member 40 on the movable arm 36 side, a flat substrate 42b that is fixed in a state orthogonal to the fixed portion 42a, and a surface on the substrate 42b. And a lid 42c fixed to the base 42b so as to cover one surface, and has a box shape in which heat shielding walls are formed in the vertical and horizontal directions and the front and rear directions as a whole. The heat shield 42 shields heat radiated from the mold 12 toward the distal end portion 38 of the movable arm 36 to protect a sensor and the like housed inside.

46は、金型12の表面の歪みを測定するために用いるレーザ式の変位検出センサで、熱遮蔽体42の内部に収納された状態で、断面T字状のブラケット47を介して基体42bの内面に固定されている。図2(A)及び(B)で示すように、センサ46は、関節軸Pから最も離間した(図中左側の)位置、即ち金型12の表面に対して最も接近可能な位置にある熱遮蔽体42の第1の壁面48の近傍に配設されている。第1の壁面48には開口51が形成され、そこに耐熱ガラス52が嵌め込まれており、センサ46の発光部46aから発せらせた検出用のレーザ光は開口51を通じて外部に向けて出射され、対象物である金型12表面にて反射した後、同じく開口51を通じて、受光部46bにて受光される。受光された反射光は受光部46b内の光位置検出素子上で結像され、その結像位置に基づいて、金型12表面までの高さ方向の変位量が計測される。
本例ではセンサ46、熱遮蔽体42及びこれらを移動可能に保持している可動アーム36により非接触式の歪測定装置11が構成されている。
Reference numeral 46 denotes a laser type displacement detection sensor used for measuring the distortion of the surface of the mold 12. The laser type displacement detection sensor 46 is housed in the heat shield 42 and is attached to the base 42 b via a bracket 47 having a T-shaped cross section. It is fixed to the inner surface. As shown in FIGS. 2 (A) and 2 (B), the sensor 46 is located at a position farthest from the joint axis P (on the left side in the drawing), that is, at a position closest to the surface of the mold 12. The shield 42 is disposed in the vicinity of the first wall surface 48. An opening 51 is formed in the first wall surface 48 and a heat-resistant glass 52 is fitted therein, and the detection laser light emitted from the light emitting portion 46 a of the sensor 46 is emitted to the outside through the opening 51. After being reflected from the surface of the mold 12 as the object, the light is received by the light receiving portion 46b through the opening 51. The received reflected light is imaged on the optical position detecting element in the light receiving portion 46b, and the amount of displacement in the height direction to the surface of the mold 12 is measured based on the imaging position.
In this example, the non-contact type strain measuring device 11 is configured by the sensor 46, the heat shield 42, and the movable arm 36 that holds these movably.

本例では、センサ46を用いて焼入れ温度まで加熱された高温状態の金型12の表面の変位量(歪み量)を測定するため、センサ46から出射されるレーザ光が赤色だと、金型12自体の赤熱の影響を受け易い。従って本例のセンサ46では、波長が350〜450nmの青色レーザ光を用いている。   In this example, in order to measure the displacement amount (distortion amount) of the surface of the mold 12 in a high temperature state heated to the quenching temperature using the sensor 46, if the laser light emitted from the sensor 46 is red, the mold 12 is susceptible to the red heat of itself. Accordingly, the sensor 46 of this example uses blue laser light having a wavelength of 350 to 450 nm.

図4は、レーザ式変位センサ46から出射されるレーザ光が赤色の場合(同図(B))及び青色(波長が350〜450nm)の場合(同図(C))での測定精度を示した図である。これら図4(B)及び(C)で示した測定結果は、図4(A)で示す300mm×300mm×300mmのブロック13の中心付近に10mm×10mm×高さ1mmの段差を作成し、このブロック13を800℃に加熱した状態でその段差を測定した結果である。詳しくはこの1mmの段差を10回測定し、10回の平均値及び平均値との差が一番大きい測定値を誤差棒としてプロットしたものである。測定はブロック13とセンサ46との測定距離を逐次変化させながら行っている。   FIG. 4 shows the measurement accuracy when the laser light emitted from the laser displacement sensor 46 is red (FIG. (B)) and blue (wavelength is 350 to 450 nm) (FIG. (C)). It is a figure. The measurement results shown in FIGS. 4B and 4C create a step of 10 mm × 10 mm × 1 mm in height near the center of the block 13 of 300 mm × 300 mm × 300 mm shown in FIG. It is the result of measuring the level | step difference in the state which heated the block 13 at 800 degreeC. Specifically, the step of 1 mm is measured 10 times, and the average value of 10 times and the measured value having the largest difference from the average value are plotted as error bars. The measurement is performed while sequentially changing the measurement distance between the block 13 and the sensor 46.

図4(B)で示すように赤色レーザの場合、ブロック13の赤熱の影響を受け、1mmの段差をまともに測定することができない。一方、青色レーザの場合は、図4(C)で示すように測定距離(ブロック13とセンサ46との距離)が近いほど正確に段差を測定できている。金型の歪み測定では、繰り返し精度0.2mm以内が必要とされるが、図4で示した結果によれば青色レーザであれば測定距離を500mm以下とすることで、繰り返し精度0.2mm以内、即ち段差1mmに対し、±0.1mmの誤差範囲以内で測定することが可能であることが分かる。   As shown in FIG. 4B, in the case of a red laser, a step of 1 mm cannot be measured accurately due to the influence of red heat of the block 13. On the other hand, in the case of the blue laser, as shown in FIG. 4C, the step can be measured more accurately as the measurement distance (the distance between the block 13 and the sensor 46) is shorter. In mold distortion measurement, a repeat accuracy of 0.2 mm or less is required, but according to the results shown in FIG. 4, if the measurement distance is 500 mm or less for a blue laser, the repeat accuracy is within 0.2 mm. That is, it can be seen that measurement can be performed within an error range of ± 0.1 mm for a step of 1 mm.

但し金型12は非常な高温であるため、測定距離(図3(A)のL)を500mm以下とすると熱遮蔽体42内部のセンサ46の温度が動作保証範囲を超える場合がある。このため本例では、図2で示すように熱遮蔽体42の被固定部42aに、熱遮蔽体42の内部に冷却用の圧縮エアを導入するための導入口54が設けられている。この導入口54を通じて、図示を省略する流量調節バルブを介してエアタンク28と連結された配管55の先端が、熱遮蔽体42の内部に挿入されており、本例では制御部30の制御に基づいて導入口54からエアタンク28内の圧縮エアが熱遮蔽体42の内部に供給される。尚、基体42bには排気口58が外部と連通する状態で形成されており、熱遮蔽体42の内部に導入された圧縮エアは排気口58を通じて外部に排出される。
このように本例では、圧縮エアが熱遮蔽体42の内部を流通する構成とすることで、センサ46が高温(具体的には50℃以上)になるのを防止している。尚、歪み測定の際にセンサ46と金型12との間に位置して遮熱を行う第1の壁面48に水冷機構部を設けることで、センサ46が高温になるのを防止することも可能である。
However, since the mold 12 is extremely high in temperature, if the measurement distance (L 1 in FIG. 3A) is 500 mm or less, the temperature of the sensor 46 inside the thermal shield 42 may exceed the guaranteed operating range. For this reason, in this example, as shown in FIG. 2, an inlet 54 for introducing compressed air for cooling into the heat shield 42 is provided in the fixed portion 42 a of the heat shield 42. Through this introduction port 54, the tip of a pipe 55 connected to the air tank 28 through a flow rate adjusting valve (not shown) is inserted into the heat shield 42, and in this example, based on the control of the control unit 30. Then, the compressed air in the air tank 28 is supplied from the introduction port 54 into the heat shield 42. The base 42 b is formed with an exhaust port 58 communicating with the outside, and the compressed air introduced into the heat shield 42 is discharged to the outside through the exhaust port 58.
As described above, in this example, the configuration in which the compressed air circulates inside the heat shield 42 prevents the sensor 46 from becoming high temperature (specifically, 50 ° C. or more). In addition, it is also possible to prevent the sensor 46 from becoming high temperature by providing a water cooling mechanism portion on the first wall surface 48 that is located between the sensor 46 and the mold 12 and shields heat during strain measurement. Is possible.

一方、金型12を局所冷却するためのノズル22は、図2(A)で示すように熱遮蔽体42の被固定部42aの内側にブラケット60を介して取付固定されており、その先端の吐出口22aは、熱遮蔽体42内のセンサ46が近接配置されている第1の壁面48とは異なる第2の壁面49から外方に向けて突出している。
このノズル22は、図示を省略する流量調節バルブを介してエアタンク28と連結されており、制御部30の制御に基づいてノズル22の吐出口22aからは、金型を局所冷却のための冷却用ガスとして、圧縮エアが吐出される。
On the other hand, as shown in FIG. 2 (A), the nozzle 22 for locally cooling the mold 12 is fixedly attached to the inside of the fixed portion 42a of the heat shield 42 via a bracket 60. The discharge port 22a protrudes outward from a second wall surface 49 that is different from the first wall surface 48 where the sensor 46 in the thermal shield 42 is disposed in proximity.
The nozzle 22 is connected to the air tank 28 via a flow rate adjusting valve (not shown). Based on the control of the control unit 30, the nozzle 22 is used for cooling the die for local cooling. Compressed air is discharged as gas.

以上のように本例では、熱遮蔽体42の第1の壁面48とは異なる第2の壁面49から、冷却用ガスが吐出されるようにノズル22の吐出口22aが設けられており、先端部38を関節軸P周りに回転させることで、歪み測定と局所冷却との切替を行なう。即ち、金型12の歪み測定を行う場合には図3(A)で示すように、熱遮蔽体42の第1の壁面48を金型12の表面に対向させる。また金型12の局所冷却を行う場合には図3(B)で示すように熱遮蔽体42の第2の壁面49を金型12の表面に対向させる。   As described above, in this example, the discharge port 22a of the nozzle 22 is provided so that the cooling gas is discharged from the second wall surface 49 different from the first wall surface 48 of the heat shield 42, and the tip By rotating the part 38 around the joint axis P, switching between strain measurement and local cooling is performed. That is, when measuring the distortion of the mold 12, the first wall surface 48 of the thermal shield 42 is opposed to the surface of the mold 12 as shown in FIG. When local cooling of the mold 12 is performed, the second wall surface 49 of the heat shield 42 is opposed to the surface of the mold 12 as shown in FIG.

以下に本実施形態の冷却処理設備10を用いて冷却処理を行った場合の動作を具体的に説明する。尚、この例では、SKD61から成り、幅600mm×高さ600mm×厚み150mmの金型12における最高温度部位、即ち最遅冷却部位での冷却速度が10℃/minとなるように冷却処理を行うものとする。
図1で示すように先ず、金型12は図示を省略した加熱室にて焼入れ温度にまで加熱された後にクレーン等によってセット治具14上に載置される。
そして金型12は大気中で放冷される。これとともに赤外線カメラ24が金型12表面の温度分布を検知する。そしてその温度分布の検知結果に基づいて金型12表面の最高温度部位が特定される。制御部30は最高温度部位の位置情報(X,Y座標)をロボット20に出力する。
The operation when the cooling process is performed using the cooling processing facility 10 of the present embodiment will be specifically described below. In this example, the cooling process is performed so that the cooling rate at the highest temperature portion, that is, the slowest cooling portion in the mold 12 made of SKD 61 and having a width of 600 mm × height of 600 mm × thickness of 150 mm is 10 ° C./min. Shall.
As shown in FIG. 1, first, the mold 12 is heated to a quenching temperature in a heating chamber (not shown) and then placed on a set jig 14 by a crane or the like.
The mold 12 is allowed to cool in the atmosphere. At the same time, the infrared camera 24 detects the temperature distribution on the surface of the mold 12. And the highest temperature site | part of the metal mold | die 12 surface is specified based on the detection result of the temperature distribution. The control unit 30 outputs position information (X, Y coordinates) of the highest temperature part to the robot 20.

ロボット20は、図3(B)で示すように、可動アーム36の先端部38に取り付けられたノズル22の吐出口22aを、特定された最高温度部位のポイントGに位置移動させる。そして最高温度部位のポイントGの上方Lの距離(ここでは300mm)から冷却用の圧縮エアを最高温度部位に向けて吹き付け、最高温度部位(若しくは最高温度部位及びその周辺部)を局所的に冷却する。 As shown in FIG. 3B, the robot 20 moves the discharge port 22a of the nozzle 22 attached to the distal end portion 38 of the movable arm 36 to the point G of the specified maximum temperature region. The maximum temperature site point distance above L 2 of G of (in this case 300 mm) blown toward the maximum temperature site compressed air for cooling from the maximum temperature site (or highest temperature portion and the peripheral portion) locally Cooling.

この例では、最高温度部位が600℃になるまでこの冷却動作を継続させる。図5の1点鎖線で示すように、制御部30は、冷却動作を開始してからの予定表面温度の推移、即ち冷却速度(本例では10℃/min)が予め設定されており、赤外線カメラ24の監視により随時特定される最高温度部位にノズル22の吐出口22aを位置移動させながら、その検知温度と予定表面温度との差分に基づいて、冷却条件を制御する。
詳しくは、最高温度部位の検知温度が図5に示した予定表面温度を上回っている場合には局部冷却用の圧縮エアの量を増加させ、検知温度が予定表面温度を下回っている場合には局部冷却用の圧縮エアの量を減少させる。このようにすることで冷却処理の対象となった背面12bにおける最高温度部位を、予定していた冷却速度若しくはこれに近似する冷却速度で冷却することができる。
尚、最高温度部位の検知温度が600℃を下回った以降についても予め設定された予定表面温度の推移と一致するように引き続き冷却処理を行うことも可能である。また場合によっては最高温度部位の検知温度が600℃以下の所定温度となった時点で、油冷に切り替えて引き続き冷却処理を行うことも可能である。
In this example, this cooling operation is continued until the maximum temperature portion reaches 600 ° C. As indicated by the one-dot chain line in FIG. 5, the control unit 30 is preset with a transition of the planned surface temperature after starting the cooling operation, that is, a cooling rate (10 ° C./min in this example). The cooling condition is controlled based on the difference between the detected temperature and the planned surface temperature while moving the discharge port 22a of the nozzle 22 to the highest temperature region specified at any time by monitoring the camera 24.
Specifically, if the detected temperature of the highest temperature part is higher than the planned surface temperature shown in FIG. 5, the amount of compressed air for local cooling is increased, and if the detected temperature is lower than the planned surface temperature, Reduce the amount of compressed air for local cooling. By doing in this way, the highest temperature site | part in the back surface 12b used as the object of a cooling process can be cooled with the cooling rate which was planned, or the cooling rate approximated to this.
Even after the detected temperature of the highest temperature region falls below 600 ° C., it is possible to continue the cooling process so as to coincide with the transition of the preset surface temperature set in advance. In some cases, when the detected temperature of the highest temperature portion reaches a predetermined temperature of 600 ° C. or lower, it is possible to switch to oil cooling and continue the cooling process.

図6は金型模擬試験片のブロック(SKD61、幅600mm×高さ600mm×厚み150mm)を用いて、1000℃〜500℃の間、図5で示すように一定の冷却速度となるように最高温度部位の局所冷却を行い、冷却処理完了後に模擬試験片の焼入れ状態及び最大歪みについて評価した結果を示した図である。尚、冷却ガスは大気を使用し、ノズル吐出口の高さLは金型表面から300mmとした。 FIG. 6 shows a maximum of a mold cooling test piece block (SKD61, width 600 mm × height 600 mm × thickness 150 mm) at a constant cooling rate between 1000 ° C. and 500 ° C. as shown in FIG. It is the figure which performed the local cooling of the temperature site | part and showed the result evaluated about the quenching state and maximum distortion of the simulation test piece after completion of cooling processing. The cooling gas using atmospheric, height L 2 of the discharge nozzles were from the mold surface and 300 mm.

ここで焼入れ状態については、冷却処理完了後に模擬試験片の表面の所定箇所における硬度を調査して所定硬度(HRC48以上)が得られているか否かで評価した。
最大歪みについては、冷却処理完了後に模擬試験片の表面の、周辺部2箇所及び中央部1箇所の所定位置について高さ方向の変位を測定し、周辺部両端を結んだ線を基準線とした場合の高さ方向の変位量を最大歪み量として評価した。
Here, the quenching state was evaluated by examining the hardness at a predetermined location on the surface of the simulated test piece after completion of the cooling treatment to determine whether a predetermined hardness (HRC 48 or higher) was obtained.
For the maximum strain, after completion of the cooling treatment, the displacement in the height direction was measured at a predetermined position at two peripheral portions and one central portion on the surface of the mock test piece, and a line connecting both ends of the peripheral portion was used as a reference line. The amount of displacement in the height direction was evaluated as the maximum strain amount.

同図によれば、冷却速度が9℃/min未満だと焼入れ不良が生じている。一方、冷却速度9℃/min以上であれば正常な焼入れが行われているが、冷却速度が速くなると最大歪み量が大きくなっている。この結果から金型模擬試験片における好適な冷却速度、即ち焼入れ不良が生じることなく、且つ、最大歪み量0.05mm以内となるような冷却速度は9〜15℃/minであることが分かる。本例では、このようにして得られた好適な冷却速度を基に、予め制御部30に予定表面温度の推移を設定して、最高温度部位の検知温度がかかる予定表面温度の推移と一致するように冷却条件の制御を行うことで、焼入れ不良及び歪みの発生を良好に防止することが可能である。   According to the figure, quenching failure occurs when the cooling rate is less than 9 ° C./min. On the other hand, normal quenching is performed when the cooling rate is 9 ° C./min or more, but the maximum strain increases as the cooling rate increases. From this result, it can be seen that a suitable cooling rate in the mold simulation test piece, that is, a cooling rate that does not cause quenching failure and is within a maximum strain of 0.05 mm is 9 to 15 ° C./min. In this example, based on the preferable cooling rate obtained in this way, the transition of the planned surface temperature is set in the control unit 30 in advance, and the detected temperature of the highest temperature part coincides with the transition of the planned surface temperature. By controlling the cooling conditions in this way, it is possible to satisfactorily prevent the occurrence of poor quenching and distortion.

また本実施形態の冷却処理設備では、冷却処理中に局所冷却を行なっている面の歪み度合いを確認することが可能である。
本例では、熱遮蔽体42の、変位検出用のレーザ光を出射させる第1の壁面48とは90°異なる第2の壁面49から局所冷却用の圧縮エアが吐出されるように、ノズル22の吐出口22aが設けられており、先端部38を関節軸P周りに90°回転させることで、局所冷却を行う状態と、歪み量を測定する状態と、を切替ることができる。
In the cooling processing facility of the present embodiment, it is possible to check the degree of distortion of the surface on which local cooling is performed during the cooling processing.
In this example, the nozzle 22 is configured such that compressed air for local cooling is discharged from a second wall surface 49 of the thermal shield 42 that is 90 ° different from the first wall surface 48 that emits laser light for detecting displacement. The discharge port 22a is provided, and by rotating the tip end portion 90 around the joint axis P by 90 °, it is possible to switch between a state in which local cooling is performed and a state in which the amount of distortion is measured.

図3(A)に示す熱遮蔽体42の第1の壁面48を、測定対象物である金型12の表面に対して対向させた状態で、変位を測定したいポイント(X、Y座標)まで順次センサ46を移動させ、金型12の表面上の指定された複数の測定ポイントについて変位を検出することで、表面の高さ方向の変位、即ち歪み量を測定することができる。図7は冷却処理途中の800℃の時点で、センサ46を金型12の背面12bに沿って水平方向に移動させ、直線上に位置する複数の測定ポイントについて変位を検出した結果を示した図である。   In a state where the first wall surface 48 of the heat shield 42 shown in FIG. 3A is opposed to the surface of the mold 12 that is the object to be measured, up to the point (X, Y coordinate) at which the displacement is to be measured. By sequentially moving the sensor 46 and detecting displacement at a plurality of designated measurement points on the surface of the mold 12, the displacement in the height direction of the surface, that is, the amount of distortion can be measured. FIG. 7 shows the result of detecting displacement at a plurality of measurement points located on a straight line by moving the sensor 46 in the horizontal direction along the back surface 12b of the mold 12 at the time of 800 ° C. during the cooling process. It is.

このように本例では、冷却処理中に、金型表面の温度分布情報に加えて、金型表面の歪みの状態を検出することができるため、歪みの状態に応じて冷却条件を変更することも可能である。尚、歪み量測定中は局所冷却が中断されることになるが、本例では局所冷却状態と歪み量測定状態とを短時間で切替ることができるので、冷却処理途中に歪み量測定を行うことで局所冷却が中断される時間帯を短くすることができる。   In this way, in this example, since the mold surface distortion state can be detected in addition to the temperature distribution information on the mold surface during the cooling process, the cooling condition can be changed according to the distortion state. Is also possible. Note that local cooling is interrupted during strain measurement, but in this example, the local cooling state and strain measurement state can be switched in a short time, so the strain measurement is performed during the cooling process. Thus, the time period during which local cooling is interrupted can be shortened.

以上のような本実施形態によれば、赤外線カメラ24により得られた金型12の背面12bの温度分布に基づいて特定された最高温度部位、即ち冷却速度が最も遅く焼入れ不良が生じ易い部位に対して冷却用の圧縮エアを吐出させることで、かかる最高温度部位での冷却速度を速め、冷却速度が遅いことによる焼入れ不良の発生を良好に防止することができる。
また本実施形態では、金型12を局所冷却するためのノズル22を、可動アーム36により冷却対象の最高温度部位の近傍にまで移動させて冷却を行なうため、冷却エリアは最高温度部位若しくはその周辺部に限定される。このため最高温度部位以外の部位が、本実施形態のノズル22からの圧縮エアにより強制的に冷却されてしまうことを有効に防止することができる。即ち過度の冷却により、本来適正な冷却速度であった部位で冷却速度が速められ、歪み量が増大してしまうのを有効に防止することができる。
According to the present embodiment as described above, the highest temperature portion specified based on the temperature distribution of the back surface 12b of the mold 12 obtained by the infrared camera 24, that is, the portion where the cooling rate is the slowest and the quenching failure is likely to occur. On the other hand, by discharging the compressed air for cooling, it is possible to increase the cooling rate at the highest temperature portion and to satisfactorily prevent the occurrence of quenching failure due to the slow cooling rate.
In this embodiment, since the nozzle 22 for locally cooling the mold 12 is moved to the vicinity of the highest temperature portion to be cooled by the movable arm 36 and is cooled, the cooling area is the highest temperature portion or its surroundings. Limited to parts. For this reason, it can prevent effectively that parts other than the highest temperature part are forcedly cooled by the compressed air from the nozzle 22 of this embodiment. That is, it is possible to effectively prevent the amount of distortion from being increased due to excessive cooling, where the cooling rate is increased at a portion that was originally an appropriate cooling rate.

ここで最高温度部位を良好に局所冷却するためには、金型12の表面から冷却用の圧縮エアが吐出される吐出口22aまでの距離Lを500mm以内とすることが望ましく、また冷却能力は、金型12の表面温度が800℃の時点で、熱伝達係数が80W/m・k以上であることが望ましい。 Here in order to satisfactorily localized cooling the maximum temperature site, it is desirable that the distance L 2 from the surface of the mold 12 to the discharge port 22a of compressed air for cooling is discharged within 500 mm, also the cooling capacity It is desirable that the heat transfer coefficient is 80 W / m · k or more when the surface temperature of the mold 12 is 800 ° C.

また本実施形態では、3次元方向に位置移動可能な可動アーム36の先端部38に局所冷却用のノズル22を保持されておくことで、極めて高温となる金型12に接近する部位を可動アーム36の先端部38及びそこに取り付けられたノズル22に限定することができ、局所冷却のために必要とされる構成のうち十分な耐熱性を備えていない駆動機構等を極力は金型12から離した配置とすることができる。   Further, in the present embodiment, the nozzle 22 for local cooling is held at the tip portion 38 of the movable arm 36 that can move in the three-dimensional direction, so that the portion approaching the mold 12 that becomes extremely hot can be moved to the movable arm. It is possible to limit to the tip portion 38 of the 36 and the nozzle 22 attached thereto, and the drive mechanism or the like that does not have sufficient heat resistance among the configurations required for local cooling is removed from the mold 12 as much as possible. Separated arrangements can be made.

また本実施形態では、赤外線カメラ24により最高温度部位の温度を正確に知ることができるため、最高温度部位の検知温度が予め予定している適正な予定表面温度となるように、これら検知温度と予定表面温度との差分に基づいて冷却条件を制御することができる。   Further, in this embodiment, since the temperature of the highest temperature part can be accurately known by the infrared camera 24, these detected temperatures and the detected temperature of the highest temperature part are set to the appropriate scheduled surface temperature scheduled in advance. The cooling condition can be controlled based on the difference from the planned surface temperature.

また本実施形態の冷却処理方法、即ち大気雰囲気中で金型12を放冷するとともに、金型12の表面の温度分布を検知して、金型12表面の最高温度部位を特定し、最高温度部位の近傍に局所冷却用のノズル22を移動させて、ノズル22から吐出される冷却用の圧縮エアにより最高温度部位を局所冷却する冷却処理方法によれば、金型12全体を放冷することで冷却処理時に生じる歪みを抑制することができる一方、金型12の表面の最高温度部位については別途圧縮エアを吹き付けることにより局所冷却されるので、冷却速度が遅いことによる焼入れ不良についても良好に防止することができる。
特に取付時や機械加工時の基準面となる金型12の背面12bに対して局所冷却を行うことが好適である。
Further, the cooling treatment method of the present embodiment, that is, the mold 12 is allowed to cool in the air atmosphere, the temperature distribution on the surface of the mold 12 is detected, the highest temperature portion on the surface of the mold 12 is specified, and the highest temperature According to the cooling processing method in which the local cooling nozzle 22 is moved to the vicinity of the part and the highest temperature part is locally cooled by the cooling compressed air discharged from the nozzle 22, the entire mold 12 is allowed to cool. Can suppress the distortion that occurs during the cooling process, but the highest temperature portion of the surface of the mold 12 is locally cooled by separately blowing compressed air, so that it is good for poor quenching due to the slow cooling rate. Can be prevented.
In particular, it is preferable to perform local cooling on the back surface 12b of the mold 12 serving as a reference surface during mounting or machining.

以上本発明の実施形態を詳述したがこれはあくまで一例示である。例えば被処理物としては金型以外のものを用いることも可能である。また赤外線カメラを被処理物の反対側にも設けて被処理物の両面において温度分布を検知可能な構成とすることも可能である。更には局所冷却用のノズルも被処理物の反対側に設けて、被処理物の両面において局所冷却可能な構成とすることも可能である等、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example. For example, an object other than a mold can be used as the object to be processed. It is also possible to provide an infrared camera on the opposite side of the object to be processed so that the temperature distribution can be detected on both sides of the object to be processed. Furthermore, it is possible to provide a local cooling nozzle on the opposite side of the object to be processed so that both sides of the object can be locally cooled. It is feasible in the form which added.

10 冷却処理設備
12 金型(被処理物)
20 ロボット
22 ノズル(冷却手段)
22a 吐出口
24 赤外線カメラ(温度検知手段)
30 制御部
36 可動アーム(移動手段)
38 先端部
42 熱遮蔽体
46 変位検出センサ
48 第1の壁面
49 第2の壁面
10 Cooling treatment equipment 12 Mold (object to be treated)
20 Robot 22 Nozzle (cooling means)
22a Discharge port 24 Infrared camera (temperature detection means)
30 Control part 36 Movable arm (movement means)
38 Front end portion 42 Thermal shield 46 Displacement detection sensor 48 First wall surface 49 Second wall surface

Claims (7)

加熱された被処理物を冷却処理する冷却処理設備であって、
該被処理物の表面の温度分布を検知する温度検知手段と、
吐出口から冷却用ガスを吐出させて該被処理物の表面を冷却する冷却手段と、
該冷却手段を位置移動可能に保持する移動手段と、
設備の動作制御を行う制御部と、を備え、
該制御部の制御により、前記被処理物の表面における最高温度部位の近傍に前記冷却手段を移動させて、該最高温度部位を局所冷却することを特徴とする冷却処理設備。
A cooling processing facility for cooling the heated workpiece,
Temperature detection means for detecting the temperature distribution on the surface of the workpiece;
Cooling means for discharging the cooling gas from the discharge port to cool the surface of the object to be processed;
Moving means for holding the cooling means movably in position;
A control unit for controlling the operation of the facility,
A cooling processing facility characterized in that, by the control of the control unit, the cooling means is moved to the vicinity of the highest temperature portion on the surface of the workpiece to locally cool the highest temperature portion.
請求項1において、前記移動手段は先端部が3次元方向に位置移動可能な可動アームを有し、前記冷却手段は該可動アームの該先端部に保持されていることを特徴とする冷却処理設備。   2. The cooling processing facility according to claim 1, wherein the moving means has a movable arm whose tip is movable in a three-dimensional direction, and the cooling means is held at the tip of the movable arm. . 請求項1,2の何れかにおいて、前記吐出口が前記被処理物の表面から500mm以内に位置する状態で、前記局所冷却が行われることを特徴とする冷却処理設備。   3. The cooling processing facility according to claim 1, wherein the local cooling is performed in a state where the discharge port is located within 500 mm from the surface of the object to be processed. 請求項1〜3の何れかにおいて、前記被処理物の表面温度が800℃の時点で、熱伝達係数が80W/m・k以上の冷却能力を備えていることを特徴とする冷却処理設備。   4. The cooling processing equipment according to claim 1, wherein when the surface temperature of the object to be processed is 800 ° C., the heat processing coefficient has a cooling capacity of 80 W / m · k or more. 請求項1〜4の何れかにおいて、前記制御部は、前記温度検知手段による前記最高温度部位での検知温度が、予め予定している適正な予定表面温度となるように、これら検知温度と予定表面温度との差分に基づいて冷却条件を制御することを特徴とする冷却処理設備。   5. The control unit according to claim 1, wherein the controller detects the detected temperature and the scheduled temperature so that the detected temperature at the highest temperature portion by the temperature detecting unit is an appropriate scheduled surface temperature scheduled in advance. A cooling processing facility that controls cooling conditions based on a difference from a surface temperature. 加熱された被処理物を冷却処理する方法であって、
該被処理物を放冷するとともに、該被処理物の表面の温度分布を検知して、該被処理物表面の最高温度部位を特定し、該最高温度部位の近傍に冷却手段を移動させて、該冷却手段から吐出される冷却用ガスにより前記最高温度部位を局所冷却することを特徴とする冷却処理方法。
A method of cooling a heated workpiece,
The object to be treated is allowed to cool, the temperature distribution on the surface of the object to be treated is detected, the highest temperature part on the surface of the object to be treated is specified, and the cooling means is moved to the vicinity of the highest temperature part. A cooling processing method comprising: locally cooling the highest temperature portion with a cooling gas discharged from the cooling means.
請求項6において、前記被処理物が、意匠面とは反対側の面に平坦な背面を備えた金型であって、該背面に対して前記冷却手段を用いた局所冷却を行うことを特徴とする冷却処理方法。   In Claim 6, The said to-be-processed object is a metal mold | die provided with the flat back surface on the surface on the opposite side to a design surface, Comprising: The local cooling using the said cooling means is performed with respect to this back surface. Cooling treatment method.
JP2016056098A 2016-03-18 2016-03-18 Cooling treatment facility and cooling treatment method Active JP6728827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056098A JP6728827B2 (en) 2016-03-18 2016-03-18 Cooling treatment facility and cooling treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056098A JP6728827B2 (en) 2016-03-18 2016-03-18 Cooling treatment facility and cooling treatment method

Publications (2)

Publication Number Publication Date
JP2017171956A true JP2017171956A (en) 2017-09-28
JP6728827B2 JP6728827B2 (en) 2020-07-22

Family

ID=59973749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056098A Active JP6728827B2 (en) 2016-03-18 2016-03-18 Cooling treatment facility and cooling treatment method

Country Status (1)

Country Link
JP (1) JP6728827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699522A (en) * 2019-11-23 2020-01-17 宁波蜗牛锻造有限公司 Cooling equipment structure for control arm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699522A (en) * 2019-11-23 2020-01-17 宁波蜗牛锻造有限公司 Cooling equipment structure for control arm

Also Published As

Publication number Publication date
JP6728827B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP5892198B2 (en) Mold cleaning system
US6969821B2 (en) Airfoil qualification system and method
EP3372370B1 (en) Mold cleaning system
JP6686588B2 (en) Non-contact strain measurement device and cooling treatment equipment
KR102284632B1 (en) Large scale metal forming
KR20080103269A (en) Manufacturing apparatus of curved surfaces of outer plate of hull
US20210002169A1 (en) Device comprising a furnace and method for the use thereof
US20180327872A1 (en) Device and method for providing a selective heat treatment on a metal sheet
JP2017171956A (en) Cooling treatment facility and cooling treatment method
JP6836162B2 (en) Cooling treatment method
US11267100B2 (en) Plasma assisted surface finishing apparatus and method
JP4765919B2 (en) Heat treatment apparatus and heat treatment method for aluminum alloy material
KR101790003B1 (en) Temperature detecting apparatus, casting apparatus and casting method of using it
JP7281395B2 (en) Pouring device
JP6338881B2 (en) Die casting mold and heat treatment method thereof
JPH01316416A (en) Heat treating method for partial surface by laser beam and apparatus thereof
JP2018009208A (en) Method for quenching annular workpiece
WO2021182349A1 (en) Molding system and molding method
WO2021182359A1 (en) Molding system and molding method
KR20220141781A (en) Molding system and molding method
JP2003239013A (en) Heat treatment method for aluminum alloy-made dome and cooling tool for heat treatment
WO2021192553A1 (en) Molding system
KR200164248Y1 (en) Hot working nozzle with cooling agent injector in accordance with temperature of steel strip
KR20140087577A (en) Welding device for controlling three-dimensional
CN112548345A (en) Method for removing iron scale on surface of hot strip steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150