JPH02305482A - Semiconductor photoelectric conversion device - Google Patents

Semiconductor photoelectric conversion device

Info

Publication number
JPH02305482A
JPH02305482A JP1126882A JP12688289A JPH02305482A JP H02305482 A JPH02305482 A JP H02305482A JP 1126882 A JP1126882 A JP 1126882A JP 12688289 A JP12688289 A JP 12688289A JP H02305482 A JPH02305482 A JP H02305482A
Authority
JP
Japan
Prior art keywords
semiconductor
light emitting
semiconductor substrate
emitting region
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126882A
Other languages
Japanese (ja)
Inventor
Shunji Murano
俊次 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1126882A priority Critical patent/JPH02305482A/en
Publication of JPH02305482A publication Critical patent/JPH02305482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a photoelectric conversion device with an optical output of high density and quality by a method wherein an electrode formed on the surface of a semiconductor substrate where a semiconductor part is formed is formed into such a shape that it is large enough to cover the semiconductor part and provided with a through-hole of predetermined size. CONSTITUTION:When a current is applied between electrodes formed on both the sides of a one-way conductivity type semiconductor substrate, and light is emitted adjacent to the junction between the electrodes and a semiconductor part in the light emitting region of the semiconductor substrate. In this case, an electrode 17 formed on the surface of the semiconductor substrate where the semiconductor part is formed is formed large enough to cover the semiconductor part and provided with a through-hole 17d of predetermined size. Therefore, the emitted light is outputted only through the through-hole 17d, so that the same effect as a case in which a light emitting region is made narrow can be obtained. By this setup, when a semiconductor part is formed through a diffusion technique, a mask used for diffusion is not required to be unnecessarily improved in processing accuracy and a light emitting region of high density and quality can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえば発光ダイオード(LED)などの半
導体光電変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor photoelectric conversion devices such as light emitting diodes (LEDs).

従来の技術 近年印字装置として電子写真技術を用いた、いわゆる光
プリンタノが開発されている。この光プリンタは電子写
真装置における感光体ドラム上に光の照射による静電潜
像を形成するにあたって、感光体ドラムの軸線方向に多
数のLED (発光ダイオード)が配列された複数のL
EDアレイを含むプリンタヘッドを用いている。
2. Description of the Related Art In recent years, so-called optical printers using electrophotographic technology have been developed as printing devices. This optical printer uses a plurality of LEDs (light emitting diodes) arranged in the axial direction of the photosensitive drum to form an electrostatic latent image on the photosensitive drum in an electrophotographic device.
A printer head containing an ED array is used.

第11図に典型的な従来例のLEDlの構成の断面図を
示す、第12図はLEDIの出力特性を示すグラフであ
る。LEDIはたとえばn形半導体基板2の一方表面に
p形半導体領域3を形成し、さらにn形半導体基板2の
両表面に電極4,5を形成し、これらの電極4.5間に
矢符A1方向に通電することにより発光出力が得られる
。発光出力を行う発光領域6の幅W1は、前記しEDア
レイがたとえば300DPI (ドツト/インチ)のと
き、約50μmである。
FIG. 11 shows a cross-sectional view of the configuration of a typical conventional LED I, and FIG. 12 is a graph showing the output characteristics of the LED I. In LEDI, for example, a p-type semiconductor region 3 is formed on one surface of an n-type semiconductor substrate 2, electrodes 4 and 5 are formed on both surfaces of the n-type semiconductor substrate 2, and an arrow mark A1 is formed between these electrodes 4 and 5. Light emitting output can be obtained by applying current in the direction. The width W1 of the light emitting region 6 that outputs light is approximately 50 μm when the ED array is, for example, 300 DPI (dots/inch).

しEDIにおいて電極5,4間に流れる電流値を増大す
ると、光出力は第12図に示されるラインI 1,12
.13のように次第に増大する。
When the value of the current flowing between the electrodes 5 and 4 is increased in EDI, the optical output increases to line I 1, 12 shown in FIG.
.. It gradually increases like 13.

発明が解決しようとする課題 このようなLEDIにおいて、前記発光幅W1とLED
アレイを用いる光プリンタの記録紙上での印画線幅との
関係は、本件発明者の実験によれば、第13図のライン
14.15に示されるように約数倍に拡大してしまうこ
とが検出された。近年、コンピュータやワードプロセッ
サなどに用いられる印字装置または印画装置は出力の高
密度化が)a求されており、したがって前記印画線幅を
短縮することが希望される。
Problem to be Solved by the Invention In such an LEDI, the light emission width W1 and the LED
According to experiments by the inventor of the present invention, the relationship between the printing line width on the recording paper of an optical printer using an array and the printing line width can be expanded several times as shown by line 14.15 in Fig. 13. was detected. In recent years, printing devices or printing devices used in computers, word processors, etc. are required to have higher output densities, and it is therefore desired to shorten the printing line width.

しかしながら従来の光プリンタではとくにLEDlの構
造に関して、前記印画線幅を短縮する技術は採用されて
いない、すなわち、LEDIにおける第11図の幅W1
を小さくしようとすると、発光領域6を狭小化する必要
があるが、n形半導体基板2にp形半導体領域3を拡散
技術にて形成するにあたり、拡散に用いられるマスクを
前記n形半導体基板2上に遷択的に形成するにあたり、
極めて高精度の位置会せ技術が必要となり、実際には形
成が困難となっていた。
However, in conventional optical printers, the technology for shortening the print line width is not adopted, especially regarding the structure of LEDl. In other words, the width W1 in FIG.
In order to reduce the light emitting region 6, it is necessary to narrow the light emitting region 6. However, when forming the p-type semiconductor region 3 on the n-type semiconductor substrate 2 by diffusion technology, the mask used for diffusion is In forming the upper part selectively,
This requires extremely high-precision positioning technology, making it difficult to form in practice.

本発明の目的は、上述の技術的課題を解消し、高密度で
高品位の光出力を得ることができる半導体光電変換装置
を提供することである。
An object of the present invention is to solve the above-mentioned technical problems and provide a semiconductor photoelectric conversion device that can obtain high-density and high-quality optical output.

課題を解決するための手段 請求項第1項の発明は、一方導電形式の半導体基板の予
め定める発光領域に他方導電形式の半導体部分を形成し
、該半導体基板の両表面に電極を形成し、電極間に通電
して発光出力を得る半導体光電変換装置において、 半導体基板の前記半導体部分が形成される表面に形成さ
れる電極は、前記半導体部分を被覆する大きさを有し、
かつ予め定める大きさの透孔を有する形状に運ばれるこ
とを特徴とする半導体充電変換装置である。
Means for Solving the Problems The invention as set forth in claim 1 forms a semiconductor portion of one conductive type in a predetermined light emitting region of a semiconductor substrate of one conductive type, and forms electrodes on both surfaces of the semiconductor substrate, In a semiconductor photoelectric conversion device that obtains light emission output by passing current between electrodes, the electrode formed on the surface of the semiconductor substrate on which the semiconductor portion is formed has a size that covers the semiconductor portion,
The semiconductor charging/converting device is characterized in that it is carried in a shape having a through hole of a predetermined size.

請求項第2項の発明は、前記半導体基板における半導体
部分はそれらの接き面の半導体基板表面からの深さが複
数のレベルを有する形状に形成されていることを特徴と
する半導体光電変換装置である。
The invention according to claim 2 is a semiconductor photoelectric conversion device, characterized in that the semiconductor portions of the semiconductor substrate are formed in a shape in which the depths of their contact surfaces from the surface of the semiconductor substrate have a plurality of levels. It is.

ft用 請求項第1項の発明に従えば、一方導電形式の半導体基
板の両表面に形成された電極間に通電し、半導体基板の
発光領域における半導体部分との接合面近傍で光が発生
される。このとき半導体基板の前記半導体部分が形成さ
れる表面に形成されている電極は半導体部分を被覆する
大きさを有し、かつ予め定める大きさの透孔を有する形
状に形成されている。これにより発生された光は前記透
孔からのみ出力され、発光領域を狭小に形成した場合と
同様な結果が得られる。
According to the invention of claim 1 for ft, electricity is passed between the electrodes formed on both surfaces of a one-sided conductive type semiconductor substrate, and light is generated near the junction surface with the semiconductor portion in the light emitting region of the semiconductor substrate. Ru. At this time, the electrode formed on the surface of the semiconductor substrate on which the semiconductor portion is formed has a size that covers the semiconductor portion, and is formed in a shape having a through hole of a predetermined size. The light thus generated is output only from the through hole, and the same result as when the light emitting region is formed narrowly can be obtained.

これにより半導体部分を拡散技術にて形成するにあたり
、拡散において用いられるマスクの加工精度をむやみに
向上することなく、高密度かつ高品位の発光領域を得る
ことができる 請求項第2項の発明に従えば、半導体基板における半導
体部分はそれらの接合面の半導体基板表面からの深さが
複数のレベルを有する形状に形成される。半導体光電変
換装置の光出力レベルは通電量が同一である場合、前記
接合面の深さが比較的小さいほど発光光量が増大するこ
とが発見されており、したがって上記構成により光電変
換効率を向上することができる。
According to the invention of claim 2, it is possible to obtain a high-density and high-quality light-emitting region without unnecessarily improving the processing accuracy of the mask used for diffusion when forming a semiconductor part by diffusion technology. Accordingly, the semiconductor portions of the semiconductor substrate are formed in such a shape that the depths of their bonding surfaces from the surface of the semiconductor substrate have a plurality of levels. It has been discovered that the light output level of a semiconductor photoelectric conversion device increases as the depth of the bonding surface becomes relatively smaller when the amount of current applied is the same.Therefore, the above configuration improves the photoelectric conversion efficiency. be able to.

実施例 第1図は本発明の一実施例の半導体光電変換装置である
LEDIIの平面図であり、第2図および第3図は、第
1図の切断面線n−n、m−mから見た断面図であり、
第4図はLEI)11が用いられる光プリンタヘッド1
2の平面図である。これらの図面を参照して本実施例に
ついて説明する。
Embodiment FIG. 1 is a plan view of LED II, which is a semiconductor photoelectric conversion device according to an embodiment of the present invention, and FIGS. It is a cross-sectional view,
Figure 4 shows an optical printer head 1 in which LEI) 11 is used.
2 is a plan view of FIG. This embodiment will be described with reference to these drawings.

本実施例に従う光プリンタヘッド12は、電子写真技術
を用いるいわゆる光プリンタに用いられ、電子写真装置
における感光体ドラムに光照射により静電潜像を形成す
るにあたり、感光体ドラムの軸線方向に一直線上に配列
された多数のLED 11を含む。
The optical printer head 12 according to this embodiment is used in a so-called optical printer using electrophotographic technology, and is aligned in the axial direction of the photoreceptor drum when forming an electrostatic latent image on the photoreceptor drum by light irradiation in an electrophotographic apparatus. It includes a number of LEDs 11 arranged in a line.

光プリンタヘッド12の電気絶縁性材料から成る基板1
3の表面には共通リード線14が形成される。共通リー
ド線14の上にはLED 11が形成されて、たとえば
そのカソードが接合され、LEDllに電力を印加して
発光させるための一方の電極として作用する。
Substrate 1 made of electrically insulating material of optical printer head 12
A common lead wire 14 is formed on the surface of 3. The LED 11 is formed on the common lead 14, and its cathode is connected, for example, to act as one electrode for applying power to the LED 11 to cause it to emit light.

発光ダイオード11の配列方向に平行に駆動用の集積回
路15が前記基板13上に設けられる。
A driving integrated circuit 15 is provided on the substrate 13 in parallel to the direction in which the light emitting diodes 11 are arranged.

接続リード線16は基板13上に形成され、発光ダイオ
ード11の個別電極17および前記a積回路15の出力
端子15εtにそれぞれボンディングワイヤ18を介し
て接続される。集積回路15の入力端子15bはボンデ
ィングワイヤ1つによって基板13上の個別駆動リード
線20に接続される。個別駆動リード線20は可撓性回
路配線基板21に設けられた多数の印刷配線22に接続
される。
The connection lead wires 16 are formed on the substrate 13 and are connected to the individual electrodes 17 of the light emitting diodes 11 and the output terminals 15εt of the a-product circuit 15 via bonding wires 18, respectively. Input terminal 15b of integrated circuit 15 is connected to individual drive leads 20 on substrate 13 by a single bonding wire. The individual drive lead wires 20 are connected to a large number of printed wirings 22 provided on a flexible circuit wiring board 21.

再び第1121〜第3I2I’i:9照して、LED 
11はGaAs (ガリウムーヒ素)から成るn形の第
1半導体層25上に、ASH3(アルシン)とPH。
1121st to 3rd I2I'i:9 again, LED
Reference numeral 11 shows ASH3 (arsine) and PH on an n-type first semiconductor layer 25 made of GaAs (gallium-arsenide).

(ホスフィン)とGa(ガリウム)とを適量に含むガス
を接触させてその表面にGaAsP (ガリウムーヒ素
−リン)から成るn形の第2半導体層26を成長させ、
次にこの第2半導体層26の表面に5izNi(チツ化
シリコン)またはS i O2(酸化シリコン)から成
る拡散用のマスク層27を形成する。このマスク層27
には拡散を行うための開口28が、たとえばフォトエツ
チングの技術によって形成される。
A gas containing appropriate amounts of (phosphine) and Ga (gallium) is brought into contact to grow an n-type second semiconductor layer 26 made of GaAsP (gallium-arsenic-phosphorus) on the surface thereof.
Next, a diffusion mask layer 27 made of 5izNi (silicon nitride) or SiO2 (silicon oxide) is formed on the surface of this second semiconductor layer 26. This mask layer 27
An opening 28 for diffusion is formed by, for example, a photoetching technique.

この後、前記開口28にZ[1(亜鉛)のガスを接触さ
せ、第2半導体126の予め定める領域にZ r+を拡
散させて半導体部分であるn形の半導体層29を形成す
る。このp形半導体層29と第2半導体層26とによっ
てpntl&が構成され、」法LIXL2の発光領域3
0が形成される。
Thereafter, Z[1 (zinc) gas is brought into contact with the opening 28 to diffuse Zr+ into a predetermined region of the second semiconductor 126 to form an n-type semiconductor layer 29 as a semiconductor portion. The p-type semiconductor layer 29 and the second semiconductor layer 26 constitute a pntl&, and the light emitting region 3 of the LIXL2
0 is formed.

発光領域30を被覆して第1図に示されるような個別電
極17が形成される。個別電8ii17はボンディング
ワイヤ18との接続に用いられる接続部17aと接続部
17aに一体に形成される略矩形状の枝部17b、17
cとを含み、これらの間には透孔17dが形成される。
Individual electrodes 17 as shown in FIG. 1 are formed overlying the light emitting region 30. The individual wire 8ii17 has a connecting portion 17a used for connection with the bonding wire 18 and substantially rectangular branch portions 17b, 17 integrally formed with the connecting portion 17a.
c, and a through hole 17d is formed between them.

前記透孔17dの第1図左右方向の幅D1は本実施例の
光プリンタへラド12を用いて電子写真技術において記
録紙上に印字を行う場合の所望する印字線幅の1/4〜
115程度の値に選ばれる。
The width D1 of the through hole 17d in the left-right direction in FIG. 1 is 1/4 to 1/4 of the desired print line width when printing on recording paper in electrophotography using the optical printer 12 of this embodiment.
A value of about 115 is selected.

また前記発光領域30上に個別電極17を形成する際に
、個別電極17をたとえばフォトエツチングなどの技術
で形成するにあたり、マスク合せ精度などに起因して、
第1図左右方向および上下方向にそれぞれ±δ(δ=5
〜10μm)の位置決め誤差が生じることが知られてい
る。したがって前記技部17b、17cの第1図左右方
向の幅D2.D3は以下のようにして選ばれる0個別電
極17が発光領域30上に適正に配置された場合の発光
領域30の技部17b、17cに被覆される部分の第1
図左右方向の長さL3.L4に対して、前記位置ずれが
第5図(1)で示すように発生し、たとえば枝部17c
の透孔17dに臨む縁部と発光fjR域30の縁部とが
ほぼ一致した場合に、たとえば枝部17bの前記幅D2
が、 D2=L3+δ        ・・・(1)のように
選ばれれば、発光領域30が技部17bからはみ出しし
てしまう事態を防ぐことができる。
Furthermore, when forming the individual electrodes 17 on the light emitting region 30, due to mask alignment accuracy etc. when forming the individual electrodes 17 using a technique such as photoetching,
Figure 1 ±δ (δ=5
It is known that a positioning error of ~10 μm) occurs. Therefore, the width D2 of the technical parts 17b and 17c in the left-right direction in FIG. D3 is selected as follows: 0 The first part of the part covered by the technical parts 17b and 17c of the light emitting region 30 when the individual electrode 17 is properly arranged on the light emitting region 30.
Length L3 in the left-right direction of the figure. With respect to L4, the positional shift occurs as shown in FIG. 5(1), and for example, the branch 17c
For example, when the edge facing the through hole 17d and the edge of the light emitting fjR region 30 almost match, for example, the width D2 of the branch 17b
However, if D2=L3+δ (1) is selected, it is possible to prevent the light emitting region 30 from protruding from the technical part 17b.

同様に枝部17cの幅D3も、 D3=L4+δ        ・・・(2)のように
選ばれるとよい。
Similarly, the width D3 of the branch portion 17c may be selected as follows: D3=L4+δ (2).

一方、枝部17b、17cの第1図上下方向の長さL5
を同様な理由により、 L5=12+2xδ      ・・(3)のように選
ぶ、すなわち個別電極17が第5図(2)に示すように
第1図上下方向の偏差1δの位置ずれを発生した場合で
も、透孔17d中に幅D1で長さL2の発光領域を実現
できる。
On the other hand, the length L5 of the branch parts 17b and 17c in the vertical direction in FIG.
For the same reason, L5=12+2xδ...(3) is selected, that is, even if the individual electrode 17 has a positional deviation of 1δ in the vertical direction in Figure 1, as shown in Figure 5 (2). , a light emitting area having a width D1 and a length L2 can be realized in the through hole 17d.

このような構造と形状の個別電極17を採用することに
より、半導体層29を第2半導体層26に拡散技術にて
形成するにあたって、むやみに高精度の位置決め技術を
採用する必要が解消され、かつ選べる発光領域幅は前記
期待する印字線幅の17/4〜115の範囲に選ぶこと
ができる。これにより高密度の印字が可能となる。
By employing the individual electrodes 17 having such a structure and shape, when forming the semiconductor layer 29 on the second semiconductor layer 26 by a diffusion technique, it is not necessary to use an unnecessarily high-precision positioning technique, and The selectable light emitting region width can be selected within the range of 17/4 to 115 of the expected print line width. This enables high-density printing.

第6図は、本発明の他の実施例のLED31の平面図で
あり、第7図は第6図の切断面線■−■から見た断面図
およびLED31の特性を示す図である。これらの図面
を併せて参照して、LED31について説明する。本実
施例は前述の実施例に類似し、対応する部分には同一の
参照符を付す。
FIG. 6 is a plan view of an LED 31 according to another embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along the section line ``---'' in FIG. 6 and a diagram showing the characteristics of the LED 31. The LED 31 will be described with reference to these drawings. This embodiment is similar to the previous embodiment, and corresponding parts are given the same reference numerals.

本実施例の注目すべき点は、マスク層27に複数の開口
28a、28b、28c、28dを形成したことである
。すなわち第7図(1)に示されるようにマスク層27
の帯状部27aで被覆された第2半導体層26の部分は
接ぎ面が浅く、開口28a〜28dに対応する部分では
、接ぎ面が深く形成される。
The noteworthy point of this embodiment is that a plurality of openings 28a, 28b, 28c, and 28d were formed in the mask layer 27. That is, as shown in FIG. 7(1), the mask layer 27
The portion of the second semiconductor layer 26 covered with the strip 27a has a shallow contact surface, and the portions corresponding to the openings 28a to 28d have deep contact surfaces.

このようなLED31における個別電極17から注入さ
れる駆動電流は第7図(1)の矢符A2で示され、第7
図(1)の左右方向に沿う電流密度は第7図(2)に示
される。このような電流密度分布によって得られる発光
強度分布は、第7図(3)に示される。すなわち前記マ
スク層27の帯状部27aに対応する部分における発光
強度にはそれぞれピークPL、P2.P3が表れ、マス
ク層17の開口28a、28dに臨む部分でもビークP
4.P5が表れる。
The driving current injected from the individual electrode 17 in such an LED 31 is indicated by the arrow A2 in FIG.
The current density along the left-right direction of FIG. 7(1) is shown in FIG. 7(2). The emission intensity distribution obtained by such a current density distribution is shown in FIG. 7(3). That is, the emission intensity in the portion of the mask layer 27 corresponding to the band-shaped portion 27a has peaks PL, P2. P3 appears, and a peak P3 also appears in the portions of the mask layer 17 facing the openings 28a and 28d.
4. P5 appears.

すなわちp形の半導体層2つとn形の第2半導体層26
とのp rl接き面において発生した光は、半導体層2
つにおいて一部が吸収され残りの光が外部に放射される
。したがって光を吸収する半導体層29の層厚が変化す
ると、この変化に相関して発光強度も変化することにな
る。
That is, two p-type semiconductor layers and an n-type second semiconductor layer 26
The light generated at the prl interface with the semiconductor layer 2
One part of the light is absorbed and the remaining light is emitted to the outside. Therefore, when the thickness of the semiconductor layer 29 that absorbs light changes, the emission intensity also changes in correlation with this change.

第8図は本実施例のLED31の構成例を模式的に示す
断面図であり、第9図および第10111はこの特性を
説明する図である。個別電極17の発光領域32に臨む
遊端部を第8図の電極位置P1゜P2の2種類を設定し
て実験したところ、第9図および第10図に示されるよ
うな結果が得られた。
FIG. 8 is a cross-sectional view schematically showing a configuration example of the LED 31 of this embodiment, and FIGS. 9 and 10111 are diagrams illustrating its characteristics. Experiments were conducted by setting the free end portion of the individual electrode 17 facing the light emitting region 32 at two types of electrode positions P1 and P2 as shown in FIG. 8, and the results shown in FIGS. 9 and 10 were obtained. .

すなわち電極位置P1の場きの発光領域32と個別電極
27との関係は第9図(1)に示され、電極位置P2の
場合には第10図(1)に示される。
That is, the relationship between the light emitting region 32 and the individual electrodes 27 at electrode position P1 is shown in FIG. 9 (1), and in the case of electrode position P2, it is shown in FIG. 10 (1).

これらの場合の発光光量はそれぞれ第9図(2〉および
第10図(2)に示される。すなわち個別 ゛電極17
の遊端部が半導体層2つと第2半導体層26との接ぎ面
の比較的第2半導体層26の表面に近い個所に近接して
いるほど、より大きな発光光量が得られている。本実施
例ではこの現象に鑑み、前記開口28 Eh〜28dに
おいて露出している半導体層29上に技部27b、27
cを配置するようにしたので、前述の原理により発光光
量がさらに増大されている。
The amount of emitted light in these cases is shown in FIG. 9 (2) and FIG. 10 (2), respectively.
The closer the free end portion is to the interface between the two semiconductor layers and the second semiconductor layer 26, which is relatively close to the surface of the second semiconductor layer 26, the greater the amount of emitted light is obtained. In this embodiment, in consideration of this phenomenon, technical parts 27b and 27 are formed on the semiconductor layer 29 exposed in the openings 28Eh to 28d.
c is arranged, the amount of emitted light is further increased based on the above-mentioned principle.

発明の効果 以上のように請求項第1項の発明に従えば、半導体基板
の前記半導体部分が形成される表面に形成されている電
極は半導体部分を被覆する大きさを有し、かつ予め定め
る大きさの透孔を有する形状に選れている。これにより
発生された光は前記透孔からのみ出力され、発光領域を
侠小化した渇きと同様な結果が得られる。これにより半
導体部分を拡散技術にて形成するにあたり、拡散におい
て用いられるマスクの加工精度をむやみに向上すること
なく、侠小化された発光領域を得ることができる 請求項第2項の発明に従えば、半導体基板における半導
体部分はそれらの接合面の半導体基板表面からの深さが
複数のレベルを有する形状に選ばれる。半導体光電変換
装置の光出力レベルは通電量が同一である場合、前記接
き面の深さが比較的小さいほど発光光量が増大すること
が発見されており、したがって上記構成により光電変換
効率を向上することができる。
Effects of the Invention As described above, according to the invention of claim 1, the electrode formed on the surface of the semiconductor substrate on which the semiconductor portion is formed has a size that covers the semiconductor portion, and has a predetermined size. The shape is chosen to have a through hole of the same size. The light thus generated is output only from the through hole, and a result similar to that obtained by reducing the light emitting area can be obtained. According to the invention of claim 2, it is thereby possible to obtain a smaller light emitting region when forming a semiconductor portion by diffusion technology without unnecessarily improving the processing accuracy of a mask used for diffusion. For example, the semiconductor portions of the semiconductor substrate are selected to have a shape in which the depth of their bonding surfaces from the surface of the semiconductor substrate has a plurality of levels. It has been discovered that when the amount of current applied is the same, the light output level of a semiconductor photoelectric conversion device increases as the depth of the contact surface becomes relatively smaller.Therefore, the above configuration improves the photoelectric conversion efficiency. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のLED 11の平面図、第
2図は第1I21の切断面線■−■から見た断面図、第
3図は第1図の切断面線■−■から見た断面図、第4図
は光プリンタへノド12の平面図、第5図は本実施例の
動fヤを説明する平面図、第6図は本発明の他の実施例
のしED31の平面図、第7(21はLED31の特性
を説明する図、第8図は本実施例の原理を説明する断面
図、第9図および第10図は本実施例の効果を説明する
図、第11図は本実施例の対比例を説明する図、第12
図は典型的な従来例のLEDlの断面図、第13図はL
EDIの発光光量の特性を説明する図である。 11・・・LED、12・・・光プリンタヘッド、13
・・・基板、14・・・共通リード線、17・・・個別
電極、17 a ・−・接続部、171)、17c=・
枝部、17d・・透孔、25・・第1半導体層、26・
・第2半導体層、27・・・マスク層、28・・・開口
、2つ・・・半導体層、30・・・発光領域、31・・
・LIED代理人  弁理士 西教 圭一部 図面の浄:(内容に変更−り 第 1 図 に □」 第 2図 <14 第3図 第 5 図 第 6FA 第7図 躇]瞳 距敏 第9図     第10図 距離                reM=;11
 図 、/ ? 第12図 第13図 」 入カニ本ルヘし 手続補正書(方式) 1、事件の表示 特願平1−126882 2、発明の名称 半導体光電変換装置 3、補正をする者 事件とのrFlj係  出願人 住所 名称 (663)京セラ株式会社 代表者 4、代理人 住 所 大阪市西区西本町1丁目13番38号 新興産
ビル国装置EXO525−5985rNTAPT  J
国際FAX (06)538−0247(代表)6、補
正の対象 図面 7、補正の内容 図面の浄書 (内容に変更なし)。 以  上
FIG. 1 is a plan view of an LED 11 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the section line 1I21 - ■, and FIG. 3 is a section along the section line ■--■ in FIG. 1. 4 is a plan view of the gutter 12 to the optical printer, FIG. 5 is a plan view explaining the movement of this embodiment, and FIG. 6 is a sectional view of the ED 31 of another embodiment of the present invention. 7 (21 is a diagram explaining the characteristics of the LED 31, FIG. 8 is a sectional view explaining the principle of this embodiment, FIGS. 9 and 10 are diagrams explaining the effect of this embodiment, FIG. 11 is a diagram explaining a comparative example of this embodiment, and FIG.
The figure is a cross-sectional view of a typical conventional LED L, and Figure 13 is a sectional view of a typical conventional LED L.
FIG. 3 is a diagram illustrating characteristics of the amount of light emitted by EDI. 11...LED, 12...Optical printer head, 13
...Substrate, 14...Common lead wire, 17...Individual electrode, 17a...Connection part, 171), 17c=...
Branch portion, 17d... Through hole, 25... First semiconductor layer, 26...
- Second semiconductor layer, 27... mask layer, 28... opening, two... semiconductor layer, 30... light emitting region, 31...
・LIED agent Patent attorney Kei Saikyo Part of the drawings: (Changes to the contents - □ in Figure 1) Figure 2<14 Figure 3 Figure 5 Figure 6FA Figure 7] Hitomi Totoshi Figure 9 Figure 10 Distance reM=;11
figure,/ ? Figure 12, Figure 13” Written amendment to the procedure for making the amendment (method) 1. Indication of the case Patent application Hei 1-126882 2. Name of the invention Semiconductor photoelectric conversion device 3. rFlj application with the person making the amendment Person Address Name (663) Kyocera Corporation Representative 4, Agent Address 1-13-38 Nishihonmachi, Nishi-ku, Osaka Shinkobu Building Country Equipment EXO525-5985rNTAPT J
International FAX (06) 538-0247 (representative) 6, drawings to be amended 7, content of amendments: engraving of the drawings (no change in content). that's all

Claims (2)

【特許請求の範囲】[Claims] (1)一方導電形式の半導体基板の予め定める発光領域
に他方導電形式の半導体部分を形成し、該半導体基板の
両表面に電極を形成し、電極間に通電して発光出力を得
る半導体光電変換装置において半導体基板の前記半導体
部分が形成される表面に形成される電極は、前記半導体
部分を被覆する大きさを有し、かつ予め定める大きさの
透孔を有する形状に選ばれることを特徴とする半導体光
電変換装置。
(1) Semiconductor photoelectric conversion in which a semiconductor portion of one conductivity type is formed in a predetermined light emitting region of a semiconductor substrate of one conductivity type, electrodes are formed on both surfaces of the semiconductor substrate, and electricity is passed between the electrodes to obtain light emission output. In the device, the electrode formed on the surface of the semiconductor substrate on which the semiconductor portion is formed is selected to have a size that covers the semiconductor portion and a shape having a through hole of a predetermined size. Semiconductor photoelectric conversion device.
(2)前記半導体基板における半導体部分はそれらの接
合面の半導体基板表面からの深さが複数のレベルを有す
る形状に形成されている特許請求の範囲第1項記載の半
導体光電変換装置。
(2) The semiconductor photoelectric conversion device according to claim 1, wherein the semiconductor portion of the semiconductor substrate is formed in such a shape that the depth of their bonding surfaces from the surface of the semiconductor substrate has a plurality of levels.
JP1126882A 1989-05-20 1989-05-20 Semiconductor photoelectric conversion device Pending JPH02305482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126882A JPH02305482A (en) 1989-05-20 1989-05-20 Semiconductor photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126882A JPH02305482A (en) 1989-05-20 1989-05-20 Semiconductor photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH02305482A true JPH02305482A (en) 1990-12-19

Family

ID=14946180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126882A Pending JPH02305482A (en) 1989-05-20 1989-05-20 Semiconductor photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH02305482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250820A (en) * 1991-01-30 1993-10-05 Rohm Co., Ltd. Light emitting diode having uniform light distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250820A (en) * 1991-01-30 1993-10-05 Rohm Co., Ltd. Light emitting diode having uniform light distribution
US5420444A (en) * 1991-01-30 1995-05-30 Rohm Co., Ltd. Light emitting diode and light emitting diode array having uniform light distribution

Similar Documents

Publication Publication Date Title
CN100556067C (en) Semiconductor device and optical print head and image processing system
US4633280A (en) Unit of light emitting diode arrays
US4933601A (en) Light emitting diode array chip and method of fabricating same
US6180960B1 (en) Surface light-emitting element and self-scanning type light-emitting device
US6756186B2 (en) Producing self-aligned and self-exposed photoresist patterns on light emitting devices
KR910006706B1 (en) Manufacturing method of light emitted diode array head
JP4908041B2 (en) Light emitting diode array, LED head, and image recording apparatus
US10331057B2 (en) Light emitting element device including light emitting thyristor and optical print head including the light emitting element device
JP4967538B2 (en) Surface light emitting device, image reading device and image writing device using surface light emitting device, and method for manufacturing surface light emitting device
JP2006179862A (en) Light emitting diode array package structure and method thereof
JPH02305482A (en) Semiconductor photoelectric conversion device
US5038186A (en) Light emitting diode array
JP4020838B2 (en) Light emitting element array and optical print head
JP4511273B2 (en) Optical printer head, manufacturing method thereof, and optical printer
JPH0568869B2 (en)
CA2015462C (en) Light emitting diode array
JP3315196B2 (en) LED print head
JP2005153335A (en) Optical printer head
KR910003277B1 (en) Manufacturing method of light-emitting diode array
US20180033908A1 (en) Semiconductor device, light emission element array, optical print head, and method of producing semiconductor device
JP2011155537A (en) Electric wiring substrate and optical print head
JP2001277585A (en) Light emitting element array chip and optical printer head using the same
JP3384479B2 (en) Integrated light emitting device for contact type optical printer
JPH07314772A (en) Manufacture of led head
Park et al. Hwang et al.(43) Pub. Date: Jan. 18, 2007