JPH02303148A - Manufacture of aluminum nitride package - Google Patents

Manufacture of aluminum nitride package

Info

Publication number
JPH02303148A
JPH02303148A JP1125223A JP12522389A JPH02303148A JP H02303148 A JPH02303148 A JP H02303148A JP 1125223 A JP1125223 A JP 1125223A JP 12522389 A JP12522389 A JP 12522389A JP H02303148 A JPH02303148 A JP H02303148A
Authority
JP
Japan
Prior art keywords
aluminum nitride
laser
substrate
hole
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1125223A
Other languages
Japanese (ja)
Inventor
Yoshikazu Uchiumi
良和 内海
Masatomi Okumura
奥村 正富
Kiyoshi Saito
清 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1125223A priority Critical patent/JPH02303148A/en
Publication of JPH02303148A publication Critical patent/JPH02303148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture a package fitted with a lead pin without lowering a heat conductivity and at low costs by a method wherein a through hole is made in a sintered substrate by suing a CO2 laser end a pad used to attach the lead pin is formed. CONSTITUTION:A substrate 1 which has been sintered at a high temperature is irradiated with a beam 2 of a CO2 laser; a through hole is made. A beam waist of the CO2 laser is formed. When the beam is irradiated, argon gas is blown in order to blow a molten substance and a decomposed substrate. As a result, aluminum nitride at the inside of the through hole 3 is decomposed; metal aluminum is vapor-deposited and left; an electrical resistance is lowered. While the argon gas is being blown, a laser power is weakened and, in addition, a beam diameter is made thick; the substrate is irradiated; the aluminum nitride is decomposed; aluminum is left; a pad used to attach a lead pin is metallized. A part corresponding to a wiring circuit can be formed in the same manner when it is irradiated with the laser.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ICなどを実装する。高熱伝導性A/N 
を用いたリードビン付きパッケージヲ製造する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention implements an IC or the like. High thermal conductivity A/N
The present invention relates to a method for manufacturing a package with a lead bin using the present invention.

〔従来の技術〕[Conventional technology]

第3図は例えば「日経マイクロデバイシズ」1987年
5月号31頁に記載された窒化アルミニウムを用いたパ
ッケージの1例に示す断面構成図であり9図において、
(1)は窒化アルミニウムからなる基板であり、グリー
ンシートである。(3)はこの基板(llに形成された
スルホールで、その内側はメタライズされている。(4
)は配線回路であり、多層に配線されている場合もある
。(5)はり−ドビン取付は用のパッドで、(6)はパ
ッド(5)に取付けられたプリント基板挿入用のリード
ビンである。(7)はICであり、(8)はワイヤでI
C(7)と配線回路(4)を結合している。
FIG. 3 is a cross-sectional configuration diagram showing an example of a package using aluminum nitride described in "Nikkei Micro Devices", May 1987 issue, page 31, and in FIG. 9,
(1) is a substrate made of aluminum nitride, which is a green sheet. (3) is a through hole formed in this substrate (ll), the inside of which is metallized. (4
) is a wired circuit, and may be wired in multiple layers. (5) A pad for attaching a beam to a dobbin, and (6) a lead bin for inserting a printed circuit board attached to the pad (5). (7) is an IC, and (8) is a wire I
C (7) and the wiring circuit (4) are connected.

次に、第3図の窒化アルミニウムのパッケージを製造す
る方法について説明する。まず、窒化アルミニウム粉末
番で焼結助剤全添加し、さらに有機系の結合剤、可塑剤
2分散剤等を加えてスラリーを作成し、ドクターブレー
ド法によって、グリーンシートを作成する。このグリー
ンシートを必要な寸法に切断した後、スルーホール(3
)ヲあけ、導体ペースト’t−うめ込み、上表面に導体
ベーストで配線回路(4)を、下表面にリードビン(6
)を取り付けるためのパッド(5)全印刷する。この際
使用される導体ペーストは主としてW(タンゲステン金
属〕が使われる。回路の印刷されたグリーンシートは必
要に応じて多層に籾層され、導体とグリーンシートとは
同時焼成される。9化アルミニウムは通常1800〜1
850℃で窒素中で焼結すると、高熱伝導性となる。し
かし、W導体と窒化アルミニウムのグリーンシートとを
このような高温で同時焼結すると1表面の導体材の蒸発
や、内部の導体材とAIN に加えられた助剤によって
できるガラスとの反応により導体抵抗の上昇等の問題が
あった。
Next, a method for manufacturing the aluminum nitride package shown in FIG. 3 will be described. First, all sintering aids are added using aluminum nitride powder, an organic binder, a plasticizer, 2 dispersants, etc. are added to create a slurry, and a green sheet is created using a doctor blade method. After cutting this green sheet to the required size, cut through holes (3
), fill in the conductor paste, place the wiring circuit (4) on the top surface using the conductor base, and place the lead bin (6) on the bottom surface.
) to attach the pad (5). The conductor paste used in this case is mainly W (tungsten metal).The green sheet with the printed circuit is layered in multiple layers as necessary, and the conductor and green sheet are fired simultaneously.Aluminum 9ide is usually 1800-1
Sintering in nitrogen at 850°C results in high thermal conductivity. However, when a W conductor and an aluminum nitride green sheet are simultaneously sintered at such high temperatures, the conductor material on one surface evaporates, and the conductor material inside the AIN reacts with the glass formed by the auxiliary agent added to the AIN. There were problems such as increased resistance.

そのため、熱伝導性を犠牲にして、1700℃で焼結す
る方法が取られていた。また、このようKして焼結され
た基板にはリードビン(6)がろう付けされるが1通常
のAg  Cuろう材にはぬれ性が悪いため、  Ti
などの活性金属と呼ばれる金属元素を加えた特殊なAg
  Cuろう材により、ピンがろう付けされていた。
Therefore, a method of sintering at 1700° C. has been adopted at the expense of thermal conductivity. In addition, a lead bottle (6) is brazed to the substrate sintered in this way, but since the wettability of ordinary Ag-Cu brazing material is poor, Ti
Special Ag containing metallic elements called active metals such as
The pins were brazed with Cu brazing material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の窒化アルミニウムパッケージは以上のようにして
製造されていたので、W導体と同時焼成を行う場合、低
温で焼結する工夫を行なうので。
Conventional aluminum nitride packages were manufactured in the manner described above, so when co-firing with the W conductor, a method was taken to sinter at a low temperature.

本来200 w7’mKのような高熱伝導性の基板が低
熱伝導性にならざる全員ないといった問題点があった。
There was a problem in that a substrate that originally had high thermal conductivity such as 200w7'mK had to have low thermal conductivity.

また、リードビンをろう付ける際1通常の銀ろうではな
く特殊な銀ろうを用いなければなら々いといった問題点
があった。
Another problem was that a special silver solder had to be used instead of ordinary silver solder when soldering the lead bottle.

この発明は上記のような問題点を解消するためになされ
たもので、高熱伝導度を保持できるとともに2寸法精度
の高いピン付けを行なうことのできる窒化アルミニウム
パッケージを安価に製造する方法を提供すること全目的
とする。
This invention was made to solve the above-mentioned problems, and provides a method for inexpensively manufacturing an aluminum nitride package that can maintain high thermal conductivity and perform pin attachment with high two-dimensional accuracy. This is the entire purpose.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る窒化アルミニウムパッケージの製造方法
は、焼結済み基板に002レーザによりスルーホールを
形成し、またリードビン取り付は用のパッドを形成する
ようにしたものである。
In the method for manufacturing an aluminum nitride package according to the present invention, through holes are formed in a sintered substrate using a 002 laser, and pads for attaching lead bins are also formed.

〔作用〕[Effect]

この発明における窒化アルミニウムパッケージの製造方
法は、C02レーザ光線を照射して窒化アルミニウムを
分解し、スルーホールを形成すると同時に1分解して残
留するアルミニウムで内壁をメタライズし、また9分解
して残留するアルミニウムでパッドを形成するようにし
たものである。
The method for manufacturing an aluminum nitride package in this invention is to decompose aluminum nitride by irradiating it with a C02 laser beam, form a through hole, metallize the inner wall with the remaining aluminum after 1 decomposition, and metallize the inner wall with the aluminum remaining after 9 decompositions. The pads are made of aluminum.

〔実施例〕〔Example〕

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図は高温で焼結済みの基板(1)に、  002レ
ーザのビーム(2)を照射することにより、スルーホー
ルを形成する方法を示したもので、C02レーザのビー
ムワエスト(ビームの最小スポット径の位置〕で形成す
る。図において2θはビームの絞り込み角(又は開き角
〕、2ωOはビームの最小スポット径を示す。ビーム照
射によって、A/N 基板に。
Figure 1 shows a method for forming through holes by irradiating a 002 laser beam (2) onto a substrate (1) that has been sintered at high temperature. In the figure, 2θ is the convergence angle (or opening angle) of the beam, and 2ωO is the minimum spot diameter of the beam.By beam irradiation, the A/N substrate is formed.

はば直径2ω0 のスルーホール(3)をあけることが
できた。また、ビーム照射の際、溶融物ならびに分解物
を吹き飛ばすために、アルゴンガスを吹き付けた。この
結果、スルーホール(3)の内面は窒化アルミニウムが
分解し、金属アルミニウムが蒸着されて残り、電気抵抗
が低くなる。
I was able to make a through hole (3) with a diameter of 2ω0. Furthermore, during beam irradiation, argon gas was blown in order to blow away melted materials and decomposed materials. As a result, aluminum nitride decomposes on the inner surface of the through hole (3), and metal aluminum remains as vapor deposited, resulting in a low electrical resistance.

第2図は、スルーホール(3)の周囲にCO2レーザを
照射してパッド(5)のメタライズを形成する場合実線
(A)と、スルーホール(3)を形成する場合(実線B
〕とにおけるビーム特性を示したものでちゃ。
Figure 2 shows the solid line (A) when forming the metallization of the pad (5) by irradiating the area around the through hole (3) with a CO2 laser, and the solid line (B) when forming the through hole (3).
] It shows the beam characteristics at

横軸はビーム半径、縦軸はビームのパワーを示している
。この際、アルゴンガスを吹き付けながらレーザパワー
を弱くし、さらにビーム径を太くして基板に照射するこ
とによジ、窒化アルミニウムが分解してアルミニウムが
残り、リードビンを付けるためのパッド(5)のメタラ
イズが形成される。
The horizontal axis shows the beam radius, and the vertical axis shows the beam power. At this time, by weakening the laser power while blowing argon gas and increasing the beam diameter to irradiate the substrate, the aluminum nitride is decomposed and aluminum remains, and the pad (5) for attaching the lead bin is removed. Metallization is formed.

配線回路(4)に相当する部分も同様にレーザ照射によ
り形成できる。
The portion corresponding to the wiring circuit (4) can be similarly formed by laser irradiation.

次に、パッド(5)にリードビン(6)ヲ取り付けるが
Next, attach the lead bin (6) to the pad (5).

リードビンは例えばPa−Ni合金を使用する。リード
ビン(6)ヲ付ける際には、アルミニウム表面に酸化膜
が形成されると、酸洗い、あるい框フラックスの使用等
を行なわなければならないので、リードビンの取ジ付け
は、レーザによるパッドの形成直後すばやく行なわなけ
れはならない。なお。
For example, a Pa-Ni alloy is used for the lead bin. When attaching the lead bin (6), if an oxide film is formed on the aluminum surface, it will be necessary to pickle it or use frame flux, so when attaching the lead bin, a pad is formed using a laser. It must be done immediately afterwards. In addition.

この際のろう材はAg −Cu系のろう材ではアルミニ
ウムの融点(660℃つ以上に加熱しなければならない
ので、 A/−3i系のろう材を使う必要がある。この
際、リードビンと基板は間に薄板状のろう材をはさみ、
勅ないように固定してから、炉に入れて加熱する。この
際Mg入りろう材を使用する場合は真空炉で*  Bi
、 SbSを入れたろう材を使用する場合は不活性雰囲
気中で加熱する。
In this case, if the brazing filler metal is Ag-Cu, it must be heated above the melting point of aluminum (660℃), so it is necessary to use an A/-3i brazing filler metal. A thin plate of brazing material is sandwiched between the
After fixing it so that it does not scratch, place it in the furnace and heat it. At this time, when using Mg-containing brazing filler metal, use a vacuum furnace* Bi
, When using a brazing filler metal containing SbS, heat it in an inert atmosphere.

リードビンが取り付けられた後はスルーホール内および
回路の導電性を確保するため、Al メタライズ部分に
電気メツキ法で金属を付着させる。
After the lead bin is attached, metal is attached to the Al metallized portion by electroplating in order to ensure conductivity within the through hole and the circuit.

なお、上記実施例では配線回路もレーザ照射によって形
成したが、配線回路は通常のAg−Pd等のペーストを
焼付ける方法、あるいはメッキあるいはスパッターによ
ジ付着させ、エツチングにより形成してもスルーホール
の形成、リードビン付ff用パッド部の形成等をレーザ
で行なうことの有利な点は変わりはない。
In the above example, the wiring circuit was also formed by laser irradiation, but the wiring circuit could also be formed by baking a paste such as Ag-Pd, or by plating or sputtering and etching. There is no change in the advantages of using a laser to form the FF pad portion with lead bin and the like.

また、上記実施例では丁べてC○2レーザを用いたか、
窒化アルミニウムの分解温度(2200へ2300℃〕
以上に加熱できるレーザであれば、もつと波長の短いレ
ーザであっても上記実施例と同様の効果を奏する。
In addition, in the above embodiment, all C○2 lasers were used,
Decomposition temperature of aluminum nitride (2200 to 2300℃)
As long as the laser can be heated to the above-mentioned extent, even a laser with a short wavelength can produce the same effect as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば焼成済み基板にレーザ
ビームによりスルーホール及びパッドを形成し、ピン付
けを行なうので、熱伝導度を落すことなく安価にピンの
付いたパッケージが製造でき、また寸法精度の高いもの
が得られる効果がある。
As described above, according to the present invention, through-holes and pads are formed on a fired substrate using a laser beam and pins are attached, so a package with pins can be manufactured at low cost without reducing thermal conductivity. This has the effect of obtaining products with high dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるAlNパッケージの
製造方法を説明する説明図、第2図はこの発明の一実施
例に係わるレーザビームのパワーと直径の関係を示す特
性図、及び第3図は従来の窒化アルミニウムパッケージ
を示す断面構成図である。 図において、(1)は窒化アルミニウム基板、(2)は
レーザビーム、(3)はスルーホール、(4)は配線回
路。 (5)はパッド、(6)はリードビン、(7)は工(:
!、(8)はワイヤーである。 なお9図中、同一符号は同−又は相半部分を示す。
FIG. 1 is an explanatory diagram illustrating a method for manufacturing an AlN package according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between laser beam power and diameter according to an embodiment of the present invention, and FIG. The figure is a cross-sectional configuration diagram showing a conventional aluminum nitride package. In the figure, (1) is an aluminum nitride substrate, (2) is a laser beam, (3) is a through hole, and (4) is a wiring circuit. (5) is a pad, (6) is a lead bin, (7) is a tool (:
! , (8) are wires. Note that in FIG. 9, the same reference numerals indicate the same or half parts.

Claims (1)

【特許請求の範囲】[Claims]  焼結済みの窒化アルミニウム基板に、窒化アルミニウ
ムの分解温度を越える温度に加熱できるレーザ光線を、
アルゴンガスを吹き付けながら照射し、スルーホールを
形成する工程、該基板の表面でスルーホール周囲にアル
ゴンガスを吹き付けながら、レーザ光線を照射し、表面
の窒化アルミニウムのみ分解して、アルミニウムを残し
パッドを形成する工程、及びパッド部にろう付けにより
リードピンを取り付ける工程を施す窒化アルミニウムパ
ッケージの製造方法。
A laser beam that can heat a sintered aluminum nitride substrate to a temperature that exceeds the decomposition temperature of aluminum nitride,
The process of forming a through hole by irradiating it with argon gas while blowing it.A laser beam is irradiated while blowing argon gas around the through hole on the surface of the substrate, decomposing only the aluminum nitride on the surface, leaving the aluminum and forming the pad. A method for manufacturing an aluminum nitride package, which includes a step of forming a lead pin and a step of attaching a lead pin to a pad portion by brazing.
JP1125223A 1989-05-18 1989-05-18 Manufacture of aluminum nitride package Pending JPH02303148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125223A JPH02303148A (en) 1989-05-18 1989-05-18 Manufacture of aluminum nitride package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125223A JPH02303148A (en) 1989-05-18 1989-05-18 Manufacture of aluminum nitride package

Publications (1)

Publication Number Publication Date
JPH02303148A true JPH02303148A (en) 1990-12-17

Family

ID=14904888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125223A Pending JPH02303148A (en) 1989-05-18 1989-05-18 Manufacture of aluminum nitride package

Country Status (1)

Country Link
JP (1) JPH02303148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517626A (en) * 2013-04-04 2016-06-16 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト Method and apparatus for drilling through holes in a substrate and substrate thus manufactured

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517626A (en) * 2013-04-04 2016-06-16 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト Method and apparatus for drilling through holes in a substrate and substrate thus manufactured

Similar Documents

Publication Publication Date Title
US5111277A (en) Surface mount device with high thermal conductivity
US5188985A (en) Surface mount device with high thermal conductivity
GB2127337A (en) Brazing metals of different thermal conductivity
GB2032189A (en) All metal flat package for microcircuits
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JPH02303148A (en) Manufacture of aluminum nitride package
EP0366082A2 (en) Member for carrying semiconductor device
JPH09315876A (en) Aluminum-ceramic composite substrate and is production
JP2002043478A (en) Ceramic circuit board
JP2001068808A (en) Ceramic circuit board
Lodge et al. Prototype packages in aluminum nitride for high performance electronic systems
JP3158110B2 (en) Electronic device manufacturing method
JP2000077551A (en) Electronic device
JP3164802B1 (en) Electronic component storage package
JPH07211822A (en) Package for accommodating semiconductor element
JP3232045B2 (en) Electronic equipment
JPH02226749A (en) Heat sink for high-output circuit component
JP2001094223A (en) Ceramic circuit board
JPS62281359A (en) Manufacture of ceramic wiring substrate
JPH06188329A (en) Package for semiconductor device
JP3559457B2 (en) Brazing material
JP2002246491A (en) Package for electronic component and its manufacturing method
JPS59114845A (en) Semiconductor device using package improved in characteristics
JP2525232B2 (en) Ceramic package and method of manufacturing the same