JPH02302922A - Magnetic detecting element and magnetic storage device using the same - Google Patents

Magnetic detecting element and magnetic storage device using the same

Info

Publication number
JPH02302922A
JPH02302922A JP12305589A JP12305589A JPH02302922A JP H02302922 A JPH02302922 A JP H02302922A JP 12305589 A JP12305589 A JP 12305589A JP 12305589 A JP12305589 A JP 12305589A JP H02302922 A JPH02302922 A JP H02302922A
Authority
JP
Japan
Prior art keywords
magnetic
recording
detection element
shape
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12305589A
Other languages
Japanese (ja)
Inventor
Masaaki Futamoto
二本 正昭
Yoshifumi Matsuda
松田 好文
Koji Takano
公史 高野
Yoshinori Miyamura
宮村 芳徳
Fumio Kugiya
文雄 釘屋
Mikio Suzuki
幹夫 鈴木
Kyo Akagi
協 赤城
Takeshi Nakao
武司 仲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12305589A priority Critical patent/JPH02302922A/en
Publication of JPH02302922A publication Critical patent/JPH02302922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the sensitivity of a magnetic detection extremely high, and moreover, to record and reproduce information with common use of the same magnetic detecting element by providing an electric converting element to detect a force received with a magnetic substance having a head part in a specific shape being approximately corresponding to the shape of a recording bit, to convert it to an electric signal and to output it. CONSTITUTION:The magnetic detecting element is composed of a magnetic substance 1 and a piezoelectric element 2 to be the electric converting element for detecting the power to work to it, it is surrounded by a very thin shielding film 3, and they are housed in a cell 4. When the magnetic substance 1 is put into a leaking magnetic flux 7 on the surface of a magnetic bit 6 of a magnetic recording medium, the force is received, the force is converted to a voltage by the piezoelectric element 2, and it is detected as an output. In such a case, in order to detect the signal of the recording bit 6 with good efficiency, the shape of the magnetic substance 1 is approximately matched to the shape of the recording bit 6. Thus, the magnetic detecting element with high performance can be obtained, and it can be used for recording as well as for reproducing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は情報記録用の磁気検出素子およびそれを用いた
磁気記憶装置に係り、特に情報の記録再生、とりわけ再
生感度に優れた磁気検出素子およびそれを用いた磁気記
憶装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic sensing element for information recording and a magnetic storage device using the same, and in particular to a magnetic sensing element that has excellent recording and reproducing information, and particularly has excellent reproducing sensitivity. and a magnetic storage device using the same.

〔従来の技術〕[Conventional technology]

磁気ディスク装置において、磁気記録媒体への情報の記
録再生は、磁気ヘッドを用いて行われている。一般に、
記録再生用の磁気ヘッドとして、例えば電磁誘導型のリ
ングヘッドが広く用いられている。また、コンピュータ
等の記録装置として用いられているリジッド型磁気ディ
スク装置においては、高速で回転する円板上の磁気記録
媒体の表面上に、極微かの空間を保って浮上する磁気ヘ
ッドに誘導電流を流して、磁気ヘッド先端部に発生する
磁場によって磁気記録媒体への記録が行われる。そして
、磁気記録密度が向上し、記録ビットの寸法が微細化す
るにつれ、記録効率と再生効率の良い磁気ヘッドが必要
となってきている。従来は、記録と再生を同一のリング
ヘッドで行っていたが、記録と再生の素子を分離して、
それぞれの機能の効率向上を目的とした記録再生分離型
磁気ヘッドも検討されている(特開昭51−11491
7号公報)。この記録再生分離型の磁気ヘッドにおいで
は、特に高感度の再生機能を持つ素子が望まれており、
磁気抵抗効果を使った磁気検出素子(特公昭53−17
404号公報)、あるいは磁気感応トランジスタを用い
た磁気検出素子(特開昭57−177573号公報)な
どが提案されている。しかし、このような素子を用いて
も磁気の検出感度が、例えば100Mb/in2以上の
高密度磁気記録への応用においては、いまだ十分とは言
い難く、さらにリングヘッドのように、記録用にも兼用
して原理的に用いられないといった問題があり、理想的
な磁気ヘッドとして、記録と再生とが同一の素子で兼用
でき、しかも高感度であることが望まれている。
In a magnetic disk device, recording and reproducing information on a magnetic recording medium is performed using a magnetic head. in general,
For example, an electromagnetic induction ring head is widely used as a magnetic head for recording and reproducing. In addition, in rigid magnetic disk drives used as recording devices in computers, etc., an induced current is generated in a magnetic head that floats with a very small space above the surface of a magnetic recording medium on a disk that rotates at high speed. Recording is performed on the magnetic recording medium by the magnetic field generated at the tip of the magnetic head. As magnetic recording density increases and the size of recording bits becomes finer, magnetic heads with high recording and reproducing efficiency are required. Previously, recording and playback were performed using the same ring head, but by separating the recording and playback elements,
Separate recording/reproducing magnetic heads are also being considered for the purpose of improving the efficiency of each function (Japanese Patent Laid-Open No. 11491/1983).
Publication No. 7). In this separate recording/reproduction type magnetic head, an element with particularly high sensitivity reproduction function is desired.
Magnetic detection element using magnetoresistance effect (Special Publication No. 53-17
404) or a magnetic detection element using a magnetically sensitive transistor (Japanese Unexamined Patent Publication No. 177573/1983). However, even when such an element is used, the magnetic detection sensitivity is still not sufficient for applications such as high-density magnetic recording of 100 Mb/in2 or more, and furthermore, it is difficult to say that the magnetic detection sensitivity is sufficient for applications such as high-density magnetic recording such as ring heads. There is a problem that they cannot be used for dual purposes in principle, so it is desired that an ideal magnetic head would be able to use the same element for both recording and reproduction, and be highly sensitive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したごとく、従来技術における磁気検出素子は、高
密度磁気記録(例えば、100Mb/in2以上)への
適用という点においては、まだ十分に満足できるもので
はなく、また情報の記録と再生とが同一の素子で兼用で
き、かつ高感度の磁気検出素子はいまだ実現されていな
かった。
As mentioned above, the magnetic sensing elements in the prior art are still not fully satisfactory in terms of application to high-density magnetic recording (for example, 100 Mb/in2 or more), and the recording and reproduction of information is not the same. A highly sensitive magnetic detection element that can be used in combination with other elements has not yet been realized.

そこで、本発明者らは、情報の記録と再生とが同−の素
子で行える高感度の磁気検出素子の実現について、鋭意
研究を重ねた結果、磁性体の磁区構造の2次元分布を高
分解能で観察する装置として磁気力顕微鏡が最近開発さ
れたことを知見し、この基本原理をもとに、磁気検出素
子としての構成条件を検討し、これを現在用いられてい
る磁気ヘッドに置き換え、構造が簡単で容易に使用でき
る高感度の磁気記憶装置を見い出した。すなわち、磁気
力顕微鏡の測定原理は、例えば、ジャーナルオブ バキ
ューム サイエンス アンド テクノロジー、エーロ 
(2) 、  (1988年)第279頁から第282
頁(Journal of Vacuum 5cien
ce andTechnology、 A−6(2) 
 (1988) pp279〜282)に報告されてい
るごとく、磁性体からなる針状チップを測定試料に近付
け、非接触状態で試料表面を2次元的に走査し、針状チ
ップ先端部に働く磁力の強弱を画像として表示するもの
である。本発明は、この磁気力顕微鏡の原理を応用した
ものであり、基本的には、磁場中に置かれた磁性体が受
ける力を検出して、これを電気信号に変換して出力させ
るものである。
Therefore, as a result of extensive research into the realization of a highly sensitive magnetic detection element that can record and reproduce information using the same element, the present inventors have determined that the two-dimensional distribution of the magnetic domain structure of a magnetic material can be determined with high resolution. Based on this basic principle, we studied the configuration conditions for a magnetic detection element, replaced it with the currently used magnetic head, and improved the structure. has discovered a highly sensitive magnetic storage device that is simple and easy to use. That is, the measurement principle of magnetic force microscopy is described in, for example, the Journal of Vacuum Science and Technology, Aero
(2), (1988) pp. 279-282
Page (Journal of Vacuum
ce and Technology, A-6(2)
(1988) pp. 279-282), a needle-like tip made of a magnetic material is brought close to the measurement sample, and the sample surface is scanned two-dimensionally in a non-contact state to measure the magnetic force acting on the tip of the needle-like tip. It displays the strength and weakness as an image. The present invention applies the principle of this magnetic force microscope, and basically detects the force exerted on a magnetic body placed in a magnetic field, converts it into an electrical signal, and outputs it. be.

本発明の目的は、上記従来技術における問題点を解消す
ると共に、磁気力顕微鏡の基本原理を応用することによ
り、磁気検出の感度が極めて高く、しかも情報の記録お
よび再生が同一の磁気検出素子で兼用できる新しいタイ
プの磁気検出素子およびそれを用いた磁気記憶装置を提
供することにある。
It is an object of the present invention to solve the above-mentioned problems in the prior art, and to achieve extremely high magnetic detection sensitivity by applying the basic principle of a magnetic force microscope, and to record and reproduce information using the same magnetic detection element. An object of the present invention is to provide a new type of magnetic detection element that can be used for both purposes and a magnetic storage device using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的は、磁気を検出する磁性体の先端部が
、磁気記録媒体に対向し、該磁気記録媒体に記録された
磁区である記録ビットより漏洩する磁場中で力を受け、
かつ上記記録ビットの形状にほぼ対応した特定形状の先
端部を有する磁性体と、上記磁性体が受ける力を検出し
電気信号に変換し出力する電気変換素子を設けることに
より、達成される。
The object of the present invention is to provide a method in which the tip of a magnetic body that detects magnetism faces a magnetic recording medium and receives a force in a magnetic field leaking from a recording bit, which is a magnetic domain recorded on the magnetic recording medium.
This is achieved by providing a magnetic body having a tip portion having a specific shape that substantially corresponds to the shape of the recording bit, and an electrical conversion element that detects the force applied to the magnetic body, converts it into an electric signal, and outputs it.

本発明の磁気検出素子において、磁気記録媒体に対向し
て配置される磁性体の先端部の形状は、その幅が記録ビ
ットの長さよりも小さく、奥行きがトラック幅にほぼ等
しい、直方体状、台形柱状、三角柱状、クサビ形状のう
ちのいずれかの形状にすることが好ましい。
In the magnetic sensing element of the present invention, the shape of the tip of the magnetic body disposed facing the magnetic recording medium is a rectangular parallelepiped or trapezoid whose width is smaller than the length of the recording bit and whose depth is approximately equal to the track width. Preferably, the shape is one of a columnar shape, a triangular prism shape, and a wedge shape.

本発明の磁気検出素子に用いられる磁性体は、軟質磁性
材料あるいは永久磁石材料などの硬質磁性材料を、磁気
検出の目的に応じて選択して使用することができる。ま
た、磁性体に接合して、磁性体が受ける力を検出し電気
信号に変換して出力する電気変換素子としては、例えば
圧電素子などを好適に用いることができる。この場合、
上記の力は電圧に変換されて出力される。
As the magnetic body used in the magnetic detection element of the present invention, a soft magnetic material or a hard magnetic material such as a permanent magnet material can be selected and used depending on the purpose of magnetic detection. In addition, as an electrical conversion element that is bonded to a magnetic material, detects the force applied to the magnetic material, converts it into an electrical signal, and outputs it, a piezoelectric element or the like can be suitably used, for example. in this case,
The above force is converted into voltage and output.

本発明の磁気検出素子において、磁気力以外の空気流あ
るいは異物などの衝突により受ける力を防止するために
、磁性体の先端部から極小距離前れた位置に極薄の遮蔽
膜を設けて上記磁性体を気密に包囲して外気から遮断す
る隔室を形成し、該隔室の内部を、空気よりも密度の小
さいガスを用いて充填置換するか、もしくは大気圧より
も低い減圧状態に保持する構造とすることが望ましい。
In the magnetic sensing element of the present invention, in order to prevent forces other than magnetic force due to air flow or collision with foreign objects, an extremely thin shielding film is provided at a position a minimum distance in front of the tip of the magnetic material as described above. Form a compartment that airtightly surrounds a magnetic material to isolate it from the outside air, and either fill and replace the interior of the compartment with a gas that has a lower density than air, or maintain it at a reduced pressure lower than atmospheric pressure. It is desirable to have a structure that allows

さらに、本発明の磁気検出素子において、磁気=8− 記録媒体の目標とする記録ビットからの漏洩磁束を効率
よく検出する手段として、隣接する記録ビットから発散
される漏洩磁束が磁性体に及ばないようにするための磁
気シールド材を、上記磁性体を挾んで上記媒体の移動方
向の前後、もしくは上記媒体の移動方向の前後および左
右の位置に設置した構造とすることが好ましい。
Furthermore, in the magnetic detection element of the present invention, as a means for efficiently detecting leakage magnetic flux from a target recording bit of a recording medium, it is possible to prevent leakage magnetic flux emanating from adjacent recording bits from reaching the magnetic material. It is preferable to have a structure in which magnetic shielding materials for this purpose are placed between the magnetic bodies and placed at the front and back of the moving direction of the medium, or at the front and back and right and left positions of the medium moving direction.

また、本発明の磁気検出素子は、その使用目的に応じて
、磁性体を主磁極として用い、磁気記録媒体を挾んで上
記主磁極の反射側に補助磁極を設けた構造とするか、あ
るいは磁性体を主磁極となし、該主磁極と同じ側に補助
磁極を槓成し、上記主磁極である磁性体に接合されてい
る圧電素子の側面に、直接もしくは電気絶縁材料からな
る絶縁体を介して上記補助磁極を接合した構造の磁気ヘ
ッドとなし、高密度の磁気記憶装置として好適に用いる
ことができる。
Further, depending on the purpose of use, the magnetic sensing element of the present invention may have a structure in which a magnetic material is used as the main magnetic pole and an auxiliary magnetic pole is provided on the reflective side of the main magnetic pole with a magnetic recording medium sandwiched therebetween; The body serves as a main magnetic pole, and an auxiliary magnetic pole is formed on the same side as the main magnetic pole, and the piezoelectric element is attached directly or through an insulator made of an electrically insulating material to the side surface of the piezoelectric element that is joined to the magnetic body that is the main magnetic pole. A magnetic head having a structure in which the above-mentioned auxiliary magnetic pole is joined can be formed and suitably used as a high-density magnetic storage device.

さらに本発明の磁気検出素子において、磁性体に少なく
とも2個の電気変換素子(例えば圧電素子)を接合し、
かつ上記磁性体の両端をN、S極となるように磁化して
おき、上記複数の電気変換素子によって検出される信号
を加減乗除し、演算処理を行った後の増幅信号を出方す
る手段を設けることにより、より高感度の磁気検出を行
うことができる。
Furthermore, in the magnetic detection element of the present invention, at least two electrical conversion elements (for example, piezoelectric elements) are bonded to the magnetic material,
and means for magnetizing both ends of the magnetic body to have N and S poles, adding, subtracting, multiplying and dividing the signals detected by the plurality of electrical conversion elements, and outputting an amplified signal after performing arithmetic processing. By providing this, magnetic detection can be performed with higher sensitivity.

そして、本発明の高感度の磁気検出素子を用いて磁気記
録再生用の磁気ヘッドを構成し、磁気記録媒体の記録な
らびに再生を行う手段を設けることにより、超高密度記
録を達成する磁気記憶装置を実現することができる。
A magnetic storage device that achieves ultra-high density recording by configuring a magnetic head for magnetic recording and reproducing using the highly sensitive magnetic detection element of the present invention and providing means for recording and reproducing a magnetic recording medium. can be realized.

〔作  用〕[For production]

磁気検出の方法として、本発明においては磁場中に配置
された磁性体が受ける力を、例えば圧電素子によって検
出し、これを電圧に変換し出力する方法を用いる。そし
て、この磁性体は、磁気検出素子が記録媒体に対して相
対運動する際の空気流による力を受けないように隔室に
収納する構造が望ましい。ここで1図面を引用して、本
発明の磁気検出素子の動作原理を説明する。第1図は、
本発明の磁気記憶装置の構成の一例を示すものであって
、本発明の磁気検出素子の動作原理を示す説明図である
。図において、磁気検出素子(磁気ヘッド)は、磁性体
1と、これに働く力を検出するための圧電素子2から構
成されており、磁性体1の下端部から極小距離離れた位
置に設けた極薄の遮蔽膜3で囲まれ、これらは隔室4内
に収納されている。磁気記録媒体の磁気ビット6の表面
の漏洩磁束7中に、磁性体1が入ると力を受ける。
As a magnetic detection method, the present invention uses a method in which the force exerted on a magnetic body placed in a magnetic field is detected by, for example, a piezoelectric element, and the detected force is converted into a voltage and output. It is desirable that this magnetic body is housed in a compartment so that it is not subjected to force due to air flow when the magnetic detection element moves relative to the recording medium. Here, the principle of operation of the magnetic detection element of the present invention will be explained with reference to one drawing. Figure 1 shows
1 is an explanatory diagram showing an example of the configuration of a magnetic storage device of the present invention, and illustrating the operating principle of a magnetic detection element of the present invention. FIG. In the figure, the magnetic detection element (magnetic head) is composed of a magnetic body 1 and a piezoelectric element 2 for detecting the force acting on the magnetic body 1, and is installed at a position a minimum distance from the lower end of the magnetic body 1. Surrounded by an extremely thin shielding membrane 3, these are housed in a compartment 4. When the magnetic body 1 enters the leakage magnetic flux 7 on the surface of the magnetic bit 6 of the magnetic recording medium, it receives a force.

この力を、圧電素子2で電圧に変換することにより出力
として検出される。第2図は、磁性体1に働く力が磁気
記録媒体と磁気検出素子の相対運動によって、どう変化
するかを示したものであり、横軸は時間もしくは相対運
動の距離を示す。磁性体1が軟質磁性材料である場合に
は、記録ビット6の磁化の向きによらず、磁束密度の強
弱にだけ依存して力を受けるため、第2図の(A)に示
す力の変化が観測される。磁性体1として硬磁性で磁化
した永久磁石などの硬質磁性材料を用い、磁化の方向を
磁気記録媒体の表面に対して垂直となるようにした場合
には、記録ビット6の磁化の向きによって磁性体1は吸
引力と反発力を受けるため、第2図(B)に示す力の変
化が観測される。
This force is converted into voltage by the piezoelectric element 2 and detected as an output. FIG. 2 shows how the force acting on the magnetic body 1 changes depending on the relative movement between the magnetic recording medium and the magnetic detection element, and the horizontal axis shows time or the distance of the relative movement. When the magnetic body 1 is a soft magnetic material, the force is applied depending only on the strength of the magnetic flux density, regardless of the direction of magnetization of the recording bit 6, so the change in force shown in FIG. 2 (A) occurs. is observed. If a hard magnetic material such as a permanent magnet magnetized with hard magnetism is used as the magnetic body 1, and the direction of magnetization is perpendicular to the surface of the magnetic recording medium, the magnetic property will change depending on the direction of magnetization of the recording bit 6. Since the body 1 receives an attractive force and a repulsive force, the change in force shown in FIG. 2(B) is observed.

力の変化は、圧電素子2によって電圧に変換することが
できるので、磁気ディスク装置の再生信号処理に用いる
ことができる。
Since the change in force can be converted into voltage by the piezoelectric element 2, it can be used for reproduction signal processing of a magnetic disk device.

第1図に示した磁気検出素子において、効率良く記録ビ
ット6の信号を検出するために、磁性体1の形状は記録
ビット6の形状にほぼ合せておく必要がある。磁気記録
においては、記録ビット6の形状は、通常長方形であり
、これに適した形状として磁気記録媒体に面する側が、
第3図に示すような直方体状(a)、台形柱状(b)、
三角柱状(c)もしくは先端部が丸まったクサビ形状(
d)などが望ましい。先端部の寸法は、記録ビット6の
寸法に合せて変える必要があり、例えば直方体状(a)
の場合で説明すると、幅0は記録ビット6長よりも小さ
く、奥行きWはトラック幅とほぼ等しくすることが望ま
しい。
In the magnetic detection element shown in FIG. 1, the shape of the magnetic body 1 must be approximately matched to the shape of the recording bit 6 in order to efficiently detect the signal of the recording bit 6. In magnetic recording, the shape of the recording bit 6 is usually rectangular, and a shape suitable for this is such that the side facing the magnetic recording medium is
Rectangular parallelepiped shape (a), trapezoidal columnar shape (b) as shown in Fig. 3,
Triangular prism shape (c) or wedge shape with rounded tip (
d) etc. are desirable. The dimensions of the tip need to be changed according to the dimensions of the recording bit 6, for example, the shape of a rectangular parallelepiped (a).
To explain this case, it is desirable that the width 0 is smaller than the length of 6 recording bits, and the depth W is approximately equal to the track width.

記録ビット6からの漏洩磁束によって力を受ける磁性体
1に、磁気力以外の力が働くのを極力防ぐように構成す
るか、もしくは、上記の力が働いても磁気力とは、ある
程度区別できるように工夫することが必要である。磁気
力以外の磁性体1に働く可能性のある力は、空気流が磁
性体1に衝突することによって生じる力、あるいは、磁
気検出素子が磁気記録媒体上を走行中に異物などに衝突
した際に生ずる衝撃力などがある。空気流による力は、
第1図に示すごとく、少なくとも磁性体1を外気から遮
断する隔室4内に収納することにより防止できる。また
、隔室4内の空気の振動が問題となる場合は、密度が空
気よりも小さいHeやH2を充填しても良い。隔室4内
を真空に保持すれば、さらに望ましい。後者の衝撃力を
防ぐことは容易でないので、例えば磁気検出素子の一部
に小型の加速度センサなどを付けておき、衝撃力の測定
を行って信号処理の段階で磁気力を区別できるような配
慮をすることが望ましい。
The magnetic body 1, which receives the force due to leakage magnetic flux from the recording bit 6, is configured to prevent any force other than magnetic force from acting as much as possible, or even if the above force acts, it can be distinguished from magnetic force to some extent. It is necessary to devise ways to do so. Forces other than magnetic force that may act on the magnetic body 1 include the force generated when airflow collides with the magnetic body 1, or when a magnetic detection element collides with a foreign object while traveling on a magnetic recording medium. These include the impact force generated by The force due to air flow is
As shown in FIG. 1, this can be prevented by housing at least the magnetic material 1 in a compartment 4 that is shielded from the outside air. Furthermore, if vibration of the air in the compartment 4 becomes a problem, He or H2, which has a lower density than air, may be filled. It is even more desirable if the interior of the compartment 4 is maintained in a vacuum. Since it is not easy to prevent the latter type of impact force, consideration should be given to, for example, attaching a small acceleration sensor to part of the magnetic detection element to measure the impact force and distinguish between magnetic forces at the signal processing stage. It is desirable to do so.

そして、第1図に示した、磁気検出素子を構成する磁性
体1の直下の磁気記録媒体の記録ビット6から漏洩する
磁束を効率良く検出するためには、隣の記録ビットから
漏洩する磁束が磁性体1に及ばないようにするのが有効
である。この目的のためには、例えば第4図に示すよう
に磁性体1の両側に磁気シールド材9を設け、検出目標
としている記録ビット以外から発散されている磁束を吸
収すれば良い。
In order to efficiently detect the magnetic flux leaking from the recording bit 6 of the magnetic recording medium directly below the magnetic body 1 constituting the magnetic detection element shown in FIG. It is effective to prevent it from reaching the magnetic body 1. For this purpose, for example, as shown in FIG. 4, magnetic shielding materials 9 may be provided on both sides of the magnetic body 1 to absorb magnetic flux emitted from sources other than the recording bit targeted for detection.

また、磁束検出に用いる磁性体1を磁気記録用の磁極と
して応用することが可能である。この場合、磁性体1に
は通常のリングヘッドの磁極に用いられているパーマロ
イなどの軟質磁性材料を使用する。磁気記録用として使
用する場合の磁気検出素子と磁気記録媒体の構成を第5
図および第6図に示す。第5図は、磁性体1を主磁極と
して用い、磁気記録媒体を挾んで反対側に設けた補助磁
極10で励磁して磁気記録を行う場合を示す。第6図は
補助磁極10を磁性体1と同じ側に設置し、一体化した
磁気検出素子を構成した場合の一例を示す。また、第6
図においては、磁路を構成するために圧電素子2の側面
に直接もしくは電気絶縁材料からなる絶縁体13を介し
て磁性材料が設けられているが、磁性体1が記録ビット
6の漏洩磁界中で力を受けたとき、圧電素子2の変形量
が、その側面に設けられている磁性材料の弾性変形範囲
内にあれば、磁性材料の破断等の問題は生じない。
Furthermore, it is possible to apply the magnetic body 1 used for magnetic flux detection as a magnetic pole for magnetic recording. In this case, the magnetic body 1 is made of a soft magnetic material such as permalloy, which is used for the magnetic poles of ordinary ring heads. The configuration of the magnetic detection element and magnetic recording medium when used for magnetic recording is described in the fifth section.
As shown in FIG. FIG. 5 shows a case where magnetic recording is performed by using the magnetic body 1 as the main pole and exciting it with the auxiliary pole 10 provided on the opposite side of the magnetic recording medium. FIG. 6 shows an example in which the auxiliary magnetic pole 10 is installed on the same side as the magnetic body 1 to form an integrated magnetic detection element. Also, the 6th
In the figure, a magnetic material is provided on the side surface of the piezoelectric element 2 directly or via an insulator 13 made of an electrically insulating material to form a magnetic path. If the amount of deformation of the piezoelectric element 2 is within the range of elastic deformation of the magnetic material provided on the side surface, problems such as breakage of the magnetic material will not occur.

本発明の磁気検出素子の磁気記録装置への応用構成の他
の一例として、第7図に示すごとく、磁性体1に2個の
圧電素子2を接合して、両圧電素子2で検出する信号を
加減乗除し、演算処理した後の増幅信号を利用すること
もできる。磁性体1として硬質磁性材料を用いて、第7
図に示すように、両端がN、S極になるように磁化して
おき、横方向(N−8方向)を記録ビット6のトラック
方向に合わせればN、S極部には互いに逆向きの力が作
用する。この場合、それぞれの圧電素子2で検出される
電圧の差をとることによって、より大きな信号として観
測することができる。また、磁気検出素子が記録媒体の
トラック直上から左右いずれかにずれると圧電素子2間
の出力のバランスの崩れとして検出でき、磁気検出素子
のトラッキングのための信号として使用することもでき
る。
As another example of the configuration in which the magnetic detection element of the present invention is applied to a magnetic recording device, as shown in FIG. It is also possible to use the amplified signal after adding, subtracting, multiplying, and dividing and performing arithmetic processing. Using a hard magnetic material as the magnetic body 1, the seventh
As shown in the figure, if both ends are magnetized so that they become N and S poles, and the horizontal direction (N-8 direction) is aligned with the track direction of recording bit 6, the N and S poles will have opposite directions. Force acts. In this case, by taking the difference between the voltages detected by the respective piezoelectric elements 2, it is possible to observe the signal as a larger signal. Furthermore, if the magnetic detection element deviates from directly above the track of the recording medium to either the left or the right, it can be detected as an imbalance in the output between the piezoelectric elements 2, and it can also be used as a signal for tracking the magnetic detection element.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面に基づいて、さら
に詳細に説明する。
An embodiment of the present invention will be described below in more detail based on the drawings.

(実施例 1) 第8図の(、)ないしくd)に示す手順で磁気検出素子
を作製した。まず、ジルコニア材を加工し、幅500μ
m、深さ500μmの溝を形成した基材8の溝底部に、
厚さ0.5μmの金属性の電極膜15を形成した。電極
膜15の上には、P b Z r O3とPbTi0.
の固溶体セラミックから成る圧電素子2を付着した。第
8図(a)における圧電素子2の横方向および高さ方向
の寸法は、それぞれ300μm、490μmとした。第
8図(b)に示すように、圧電素子2の上に、厚さ0.
5μmの金属性の電極膜15を形成し、その上に1μm
の間隔をとってホトレジスト16を設けた。蒸着用マス
クを通して、スパッタ法で軟質磁性材料であるパーマロ
イを蒸着した後、ドライエツチング法でホトレジストを
除去すると共に、パーマロイ膜を台形柱状に加工した磁
性体1を圧電素子2の上に形成した〔第8図(C)〕。
(Example 1) A magnetic detection element was produced according to the procedure shown in (,) to d) of FIG. First, we processed zirconia material to a width of 500 μm.
m, at the bottom of the groove of the base material 8 in which a groove with a depth of 500 μm was formed,
A metallic electrode film 15 having a thickness of 0.5 μm was formed. On the electrode film 15, PbZrO3 and PbTi0.
A piezoelectric element 2 made of solid solution ceramic was deposited. The dimensions of the piezoelectric element 2 in the lateral direction and height direction in FIG. 8(a) were 300 μm and 490 μm, respectively. As shown in FIG. 8(b), the piezoelectric element 2 has a thickness of 0.
A 5 μm metal electrode film 15 is formed, and a 1 μm metal electrode film 15 is formed on it.
Photoresist 16 was provided at intervals of . Permalloy, a soft magnetic material, was deposited by sputtering through a vapor deposition mask, and then the photoresist was removed by dry etching, and magnetic material 1, which was a permalloy film processed into a trapezoidal column shape, was formed on piezoelectric element 2. Figure 8 (C)].

基材8の溝部に樹脂17を充填した後、上端部を第8図
(d)に示すごとく曲面状に加工し、ついで0.1μm
厚のダイヤモンド状炭素から成る遮蔽膜18を高周波ス
パッタ法で形成した。そして、断面形状が第8図(d)
で示される角柱状の試料を周期20μmピッチで切断し
、化学処理によって樹脂を溶解除去した後、切断面の両
面に、その断面外形とほぼ等しい薄板を張り合せた。こ
の薄板張り合わせのときに、圧電素子2の上下端に形成
した電極膜15からリード線を、それぞれ外部に引き出
した。以上の手順によって、断面構造が、上述の第1図
に示したものとほぼ同様の磁気検出素子を作製した。
After filling the groove portion of the base material 8 with the resin 17, the upper end portion is processed into a curved surface shape as shown in FIG.
A thick shielding film 18 made of diamond-like carbon was formed by high frequency sputtering. The cross-sectional shape is shown in Figure 8(d).
A prismatic sample shown in was cut at a pitch of 20 μm, and after the resin was dissolved and removed by chemical treatment, thin plates approximately equal to the cross-sectional outline of the cut surface were pasted on both sides of the cut surface. When bonding the thin plates together, lead wires were drawn out from the electrode films 15 formed at the upper and lower ends of the piezoelectric element 2, respectively. Through the above procedure, a magnetic sensing element having a cross-sectional structure substantially similar to that shown in FIG. 1 above was manufactured.

(実施例 2) 実施例1に示した磁気検出素子の製造工程において、軟
質磁性材料であるパーマロイの代りに、永久磁石材料(
硬質磁性材料)のFe−12tit%C。
(Example 2) In the manufacturing process of the magnetic detection element shown in Example 1, a permanent magnetic material (
Fe-12tit%C of hard magnetic material).

−24wt%Cr合金をスパッタ法で蒸着した以外は、
実施例1と同様の手順で磁気検出素子を作製した。
-24wt%Cr alloy was deposited by sputtering method.
A magnetic detection element was produced in the same manner as in Example 1.

この磁気検出素子を磁場中に置き、永久磁石材料から成
る磁性体1の圧電素子に接している側がN極1反対側が
S極になるように磁化処理を行った。
This magnetic detection element was placed in a magnetic field and magnetized so that the side of the magnetic body 1 made of a permanent magnet material in contact with the piezoelectric element became a N pole and the opposite side became an S pole.

(実施例 3) 第9図(a)ないしくf)に示す工程で、磁性体1の両
側に磁気シールド材19a、19bを配置した磁気検出
素子を作製した。まず、第9図(、)に示すような形状
に加工したフェライト製の基材8aに、スパッタ法によ
り軟質磁性材料であるCo−Nb−Zr合金から成る磁
気シールド材19aを厚さ0.5μmの膜厚に形成した
。この上に、厚さ0.1μmの樹脂膜20aを塗布した
後、B a T i O3−CaTiO3材料から成る
圧電素子2を固着した〔第9図(b)〕。ついで、圧電
素子2の側面側からCo−Nb−Zr合金膜をスパッタ
法で、0.15 μmの膜厚に形成し、磁性体1とし、
さらにこの上に厚さ0.1μmの樹脂膜20bを被覆し
た〔第9図(c)〕。また、対となる基材8bの側面に
、第9図(C)に示すように、スパッタ法でCo−Nb
−Zr合金から成る厚さ0.5μmの磁気シールド材1
9bを形成した。これらの両基材8a、8bを、第9図
(d)に示すように接合し、接合体の下端を研摩して平
坦化した後、ダイヤモンドカッタで厚さ1+nmに切断
した〔第9図(e)〕。ついで、磁性体1の先端部の奥
行方向の厚さが5μmになるように、斜めに研摩すると
共に、下端部左右の面取りを行い、樹脂20a、20b
を除去して第9図(f)に示す磁気へラドチップを作製
した。そして、斜め研摩した前後面に、磁性体1に少な
くとも触れないように覆いを設けると共に、圧電素子2
に電極を取り付けることによって、磁気検出素子を作製
した。なお、本実施例においては磁性体1の先端部に覆
いを設けていないが、磁気シールド材19a、19bと
の間隔は0.1μmと極小であり、磁気検出素子の走行
に伴って、磁性体1に直接衝突する空気流による作用は
極めて小さいので省略することが可能であった。
(Example 3) A magnetic detection element in which magnetic shielding materials 19a and 19b were arranged on both sides of the magnetic body 1 was manufactured in the steps shown in FIGS. 9(a) to 9(f). First, a magnetic shielding material 19a made of a Co-Nb-Zr alloy, which is a soft magnetic material, is attached to a thickness of 0.5 μm by sputtering on a ferrite base material 8a processed into the shape shown in FIG. It was formed to a film thickness of . A resin film 20a having a thickness of 0.1 μm was applied thereon, and then a piezoelectric element 2 made of BaTiO3-CaTiO3 material was fixed thereto [FIG. 9(b)]. Next, a Co-Nb-Zr alloy film was formed on the side surface of the piezoelectric element 2 by sputtering to a thickness of 0.15 μm to form the magnetic body 1.
Further, a resin film 20b having a thickness of 0.1 μm was coated thereon [FIG. 9(c)]. Further, as shown in FIG. 9(C), Co--Nb was applied to the side surface of the pair of base materials 8b by sputtering.
- Magnetic shielding material 1 with a thickness of 0.5 μm made of Zr alloy
9b was formed. These two base materials 8a and 8b were joined as shown in FIG. 9(d), the lower end of the joined body was polished to make it flat, and then cut to a thickness of 1+ nm with a diamond cutter [FIG. 9( e)]. Next, the tip of the magnetic body 1 is polished diagonally so that the thickness in the depth direction is 5 μm, and the left and right sides of the lower end are chamfered, and the resins 20a and 20b are
was removed to produce a magnetic herad chip shown in FIG. 9(f). Then, a cover is provided on the diagonally polished front and rear surfaces so as not to touch the magnetic material 1 at least, and the piezoelectric element 2 is
A magnetic detection element was fabricated by attaching electrodes to the . In this embodiment, the tip of the magnetic body 1 is not covered, but the distance between the magnetic shielding materials 19a and 19b is as small as 0.1 μm, and as the magnetic detection element moves, the magnetic body The effect of the air flow directly impinging on 1 was so small that it could be omitted.

(実施例 4) 実施例3において、磁性体1の材料を永久磁石材料であ
るFe−28警t%Cr −81t%COとした以外は
、実施例3と同様にして磁気検出素子を作製した。なお
、磁場中での処理によって、磁性体1の開放端側がN極
、圧電素子2と接合されている側がS極になるように磁
化した。
(Example 4) A magnetic detection element was produced in the same manner as in Example 3, except that the material of the magnetic body 1 was Fe-28%Cr-81t%CO, which is a permanent magnet material. . In addition, by processing in a magnetic field, the open end side of the magnetic body 1 was magnetized so that it became a north pole, and the side joined to the piezoelectric element 2 became a south pole.

(実施例 5) 実施例3と類似の工程によって、第6図に示す断面構造
を持つ磁気検出素子を作製した。磁性体1の材料はパー
マロイであり、記録媒体に面する側の端面の寸法は@0
゜25μm、奥行3μmとした。
(Example 5) A magnetic sensing element having a cross-sectional structure shown in FIG. 6 was manufactured by a process similar to that of Example 3. The material of the magnetic body 1 is permalloy, and the dimension of the end face facing the recording medium is @0
゜25 μm and depth 3 μm.

補助磁極10は軟磁性のMn−Znフェライトとし、磁
性体lとの接合部の近くに、コイル12を設けた。
The auxiliary magnetic pole 10 was made of soft magnetic Mn-Zn ferrite, and a coil 12 was provided near the joint with the magnetic material 1.

圧電素子2として、B ’ a T No j系の材料
を使用し、側面に形成したパーマロイ膜との間にS」0
2から成る厚さ0.05μmの絶縁体13を設けた。
As the piezoelectric element 2, a B' a T No j type material is used, and S'0 is used between it and the permalloy film formed on the side surface.
An insulator 13 having a thickness of 0.05 μm was provided.

(実施例 6) 実施例1と類似の方法で、第7図に示す断面構造を持つ
磁気検出素子を作製した。磁性体1として5IIICo
5を用い、寸法はlI!f10μm、奥行0.2μm、
高さ2μmとした。2個の圧電素子2はB a T 1
03材とした。隔室4は外気に対して密閉構造とし、隔
室4内には1気圧のHeを充填した。
(Example 6) A magnetic sensing element having the cross-sectional structure shown in FIG. 7 was produced by a method similar to Example 1. 5IIICo as magnetic material 1
5, and the dimensions are lI! f10μm, depth 0.2μm,
The height was set to 2 μm. The two piezoelectric elements 2 are B a T 1
03 material was used. The compartment 4 had a sealed structure against the outside air, and was filled with He at 1 atm.

上述の実施例1〜6で作製した磁気検出素子の特性評価
を、下記の条件で行った。なお、評価の比較基準として
、ギャップ長0.2μm、トラック幅5μm、コイルの
巻数34のフェライト材を用いたリングヘッドを使用し
た。磁気記録媒体として、5インチ径のリジッド磁気デ
ィスクを用いた。磁性膜は、Co基合金膜で、保磁力9
000 e、飽和磁化600emu / ccであり、
トラック幅5μmで30kPCIの磁気記録を行っであ
る。各磁気検出素子の磁極先端部と磁気記録媒体の表面
との距離は0.3μmとし、磁気検出素子と磁気記録媒
体との相対運動速度を10m/sとした。第1表に、上
述の各実施例で作製した磁気検出素子の再生出力と信号
/雑音比(S/N)をリングヘッドのそれと相対比較5
″C示す・        以下余白第   1   
表 第1表に示すごとく、本発明の実施例1〜6で作製した
磁気検出素子は、いずれも再生出力が一段と大きく、か
つS/N比が極めて大であり、優れた磁気記録再生特性
を示していることが分かる。
Characteristic evaluations of the magnetic sensing elements produced in Examples 1 to 6 above were performed under the following conditions. As a comparison standard for evaluation, a ring head made of ferrite material with a gap length of 0.2 μm, a track width of 5 μm, and a coil with 34 turns was used. A 5-inch diameter rigid magnetic disk was used as the magnetic recording medium. The magnetic film is a Co-based alloy film with a coercive force of 9
000 e, saturation magnetization 600 emu/cc,
Magnetic recording was performed at 30 kPCI with a track width of 5 μm. The distance between the magnetic pole tip of each magnetic sensing element and the surface of the magnetic recording medium was 0.3 μm, and the relative motion speed between the magnetic sensing element and the magnetic recording medium was 10 m/s. Table 1 shows a relative comparison of the reproduction output and signal/noise ratio (S/N) of the magnetic detection elements fabricated in each of the above examples with that of the ring head.
”C shows・Left below margin 1st
As shown in Table 1, the magnetic sensing elements manufactured in Examples 1 to 6 of the present invention all had higher reproduction outputs, extremely high S/N ratios, and exhibited excellent magnetic recording and reproduction characteristics. You can see what it shows.

また、実施例1と実施例3で作製した磁気検出素子を第
5図に示すように磁気記録媒体を挾んで補助磁極10を
対向させ、補助磁極10を励磁することによって垂直磁
化膜から成る磁気記録媒体に記録するのにも使用するこ
とができた。実施例5で作製した磁気検出素子のコイル
に電流を流すことにより、第6図に示した構成で磁気記
録ができることも確認できた。
In addition, as shown in FIG. 5, the magnetic sensing elements fabricated in Example 1 and Example 3 are sandwiched between the magnetic recording medium and the auxiliary magnetic poles 10 are placed opposite each other, and by exciting the auxiliary magnetic poles 10, a magnetic field composed of a perpendicularly magnetized film is generated. It could also be used to record on recording media. It was also confirmed that magnetic recording could be performed with the configuration shown in FIG. 6 by passing a current through the coil of the magnetic sensing element produced in Example 5.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明による磁気検出素子
を用いた磁気記憶装置によれば、磁気記録の再生感度を
大幅に改善することができるので、磁気記録媒体と磁気
検出素子のスペーシングが多少法がっても十分なS/N
を保持しての再生が可能となると共に、微弱な漏洩磁束
を高感度で検出することが必要な超高密度記録にも十分
に対応できる極めて高性能の磁気検出素子が得られる。
As explained in detail above, according to the magnetic storage device using the magnetic detection element according to the present invention, the reproduction sensitivity of magnetic recording can be greatly improved, so that the spacing between the magnetic recording medium and the magnetic detection element can be reduced to some extent. Sufficient S/N even with high speed
It is possible to obtain an extremely high-performance magnetic detection element that can perform reproduction while retaining the magnetic flux, and can also sufficiently handle ultra-high-density recording that requires highly sensitive detection of weak leakage magnetic flux.

また、再生だけでなく、記録にも兼用できるという特徴
があって、実用的にも優れた超高密度記録が行える記憶
装置が実現できる。
Furthermore, it has the feature that it can be used not only for playback but also for recording, making it possible to realize a storage device that can perform extremely high-density recording, which is also excellent in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の磁気検出素子の動作原理
を示す説明図、第3図は本発明の磁気検出素子における
磁性体の形状の一例を示す斜視図、第4図は本発明の磁
気検出素子の構成の一例を示す模式図、第5図および第
6図は本発明の磁気検出素子を磁気記録に適用した場合
の動作を示す説明図、第7図は本発明の磁気検出素子の
構成の他の一例を示す説明図、第8図は本発明の実施例
1において例示した磁気検出素子の製造工程を示す誘明
図、第9図は本発明の実施例3において例示した磁気検
出素子の製造工程を示す説明図である。 ■・・磁性体      2・・・圧電素子3・・・遮
蔽膜      4・・・隔室5・・・基板 6・・記録ビット(磁気記録膜) 7・・・漏洩磁束     8.8a、8b ・基材9
・・磁気シールド材  10・・・補助磁極11・・・
磁束       12・・・コイル13・・絶縁体 
     14・・・高透磁率膜15・・・電極膜  
    16・・・ホトレシス1−17・・・樹脂  
     18・・・遮蔽膜19a、19b・・・磁気
シールド材 20a、20b−樹脂膜
1 and 2 are explanatory diagrams showing the operating principle of the magnetic detection element of the present invention, FIG. 3 is a perspective view showing an example of the shape of the magnetic body in the magnetic detection element of the present invention, and FIG. FIGS. 5 and 6 are explanatory diagrams showing the operation when the magnetic detection element of the present invention is applied to magnetic recording, and FIG. 7 is a schematic diagram showing an example of the configuration of the magnetic detection element of the present invention. An explanatory diagram showing another example of the structure of the element, FIG. 8 is an explanatory diagram showing the manufacturing process of the magnetic detection element exemplified in Example 1 of the present invention, and FIG. It is an explanatory view showing a manufacturing process of a magnetic sensing element. ■... Magnetic material 2... Piezoelectric element 3... Shielding film 4... Compartment 5... Substrate 6... Recording bit (magnetic recording film) 7... Leakage magnetic flux 8.8a, 8b ・Base material 9
...Magnetic shielding material 10...Auxiliary magnetic pole 11...
Magnetic flux 12...Coil 13...Insulator
14... High magnetic permeability film 15... Electrode film
16... Photoresis 1-17... Resin
18... Shielding film 19a, 19b... Magnetic shielding material 20a, 20b-resin film

Claims (1)

【特許請求の範囲】 1、磁性体の先端部が磁気記録媒体に対向し、該磁気記
録媒体に記録された磁区である記録ビットより漏洩する
磁場中で力を受け、かつ上記記録ビットの形状にほぼ対
応した特定形状の先端部を有する磁性体と、上記磁性体
が受ける力を検出し電気信号に変換して出力する電気変
換素子を設けたことを特徴とする磁気検出素子。 2、請求の範囲第1項記載の磁気検出素子において、磁
気記録媒体に対向して配置される磁性体の先端部の形状
は、その幅が記録ビットの長さよりも小さく、奥行きが
トラック幅にほぼ等しい、直方体状、台形柱状、三角柱
状、クサビ形状のうちより選ばれた1種の形状を有する
ことを特徴とする磁気検出素子。 3、請求の範囲第1項または第2項記載の磁気検出素子
において、磁性体を軟質磁性材料によって構成したこと
を特徴とする磁気検出素子。 4、請求の範囲第1項または第2項記載の磁気検出素子
において、磁性体を硬質磁性材料によって構成したこと
を特徴とする磁気検出素子。 5、請求の範囲第1項ないし第4項記載の磁気検出素子
において、磁性体が受ける力を検出し電気信号に変換し
て出力する電気変換素子が、圧電素子であることを特徴
とする磁気検出素子。 6、磁性体の先端部が、磁気記録媒体に対向し、該磁気
記録媒体に記録された磁区である記録ビットより漏洩す
る磁場中で力を受け、かつ上記記録ビットの形状にほぼ
対応した特定形状の先端部を有する磁性体と、上記磁性
体が受ける力を検出し電気信号に変換して出力する電気
変換素子を設け、かつ上記磁性体の先端部から極小距離
離れた位置に極薄の遮蔽膜を設けて上記磁性体を気密に
包囲して外気から遮断する隔室を形成し、該隔室の内部
を、空気よりも密度の小さいガスを用いて充填置換する
か、もしくは大気圧よりも低い減圧状態に保持する構造
としたことを特徴とする磁気検出素子。 7、請求の範囲第1項ないし第6項記載の磁気検出素子
において、磁気記録媒体の目標とする記録ビットからの
漏洩磁束を効率よく検出する手段として、隣接する記録
ビットから発散される漏洩磁束が磁性体に及ばないよう
にするための磁気シールド材を、上記磁性体を挾んで上
記媒体の移動方向の前後、もしくは上記媒体の移動方向
の前後および左右の位置に設置する構造としたことを特
徴とする磁気検出素子。 8、請求の範囲第1項ないし第7項記載の磁気検出素子
において、磁性体を主磁極として用い、磁気記録媒体を
挾んで上記主磁極の反射側に補助磁極を設ける構造とし
たことを特徴とする磁気検出素子。 9、請求の範囲第1項ないし第8項記載の磁気検出素子
において、磁性体を主磁極となし、該主磁極と同じ側に
補助磁極を構成し、上記主磁極である磁性体に接合され
ている圧電素子の側面に、直接もしくは電気絶縁材料か
らなる絶縁体を介して上記補助磁極を接合する構造とし
たことを特徴とする磁気検出素子。 10、請求の範囲第1項ないし第9項記載の磁気検出素
子において、磁性体に少なくとも2個の電気変換素子を
接合し、かつ上記磁性体の両端をN、S極となるように
磁化しておき、上記複数の電気変換素子によって検出さ
れる信号を加減乗除し、演算処理を行った後の増幅信号
を用いる手段を有することを特徴とする磁気検出素子。 11、請求の範囲第1項ないし第10項のいずれか1項
記載の磁気検出素子を用いて磁気記録再生用の磁気ヘッ
ドを構成し、磁気記録媒体の記録ならびに再生を行う手
段を有することを特徴とする磁気記憶装置。
[Scope of Claims] 1. The tip of the magnetic body faces a magnetic recording medium and receives force in a magnetic field leaking from a recording bit, which is a magnetic domain recorded on the magnetic recording medium, and the shape of the recording bit is What is claimed is: 1. A magnetic detection element comprising: a magnetic body having a tip having a specific shape that substantially corresponds to the magnetic body; and an electric conversion element that detects the force applied to the magnetic body, converts it into an electric signal, and outputs it. 2. In the magnetic sensing element according to claim 1, the shape of the tip of the magnetic material disposed facing the magnetic recording medium has a width smaller than the length of the recording bit and a depth equal to the track width. A magnetic sensing element characterized in that it has a substantially equal shape selected from among a rectangular parallelepiped shape, a trapezoidal columnar shape, a triangular columnar shape, and a wedge shape. 3. A magnetic detection element according to claim 1 or 2, characterized in that the magnetic body is made of a soft magnetic material. 4. A magnetic detection element according to claim 1 or 2, characterized in that the magnetic body is made of a hard magnetic material. 5. The magnetic detection element according to claims 1 to 4, wherein the electric conversion element that detects the force applied to the magnetic body, converts it into an electric signal, and outputs it is a piezoelectric element. detection element. 6. The tip of the magnetic material faces the magnetic recording medium, receives force in a magnetic field leaking from a recording bit that is a magnetic domain recorded on the magnetic recording medium, and has a specific shape that substantially corresponds to the shape of the recording bit. A magnetic body having a shaped tip, an electric conversion element that detects the force applied to the magnetic body, converts it into an electric signal, and outputs it, and an ultra-thin A shielding film is provided to airtightly enclose the magnetic material to form a compartment that is isolated from the outside air, and the interior of the compartment is filled with a gas having a lower density than air, or is heated to a temperature lower than atmospheric pressure. 1. A magnetic detection element characterized by having a structure that maintains a low decompression state. 7. In the magnetic detection element according to claims 1 to 6, as a means for efficiently detecting leakage magnetic flux from a target recording bit of a magnetic recording medium, leakage magnetic flux emanating from adjacent recording bits is used. In order to prevent the magnetic material from reaching the magnetic material, magnetic shielding materials are installed in the front and back of the moving direction of the medium, or in the front and back and left and right positions of the moving direction of the medium, sandwiching the magnetic material. Characteristic magnetic detection element. 8. The magnetic sensing element according to claims 1 to 7, characterized in that a magnetic material is used as the main magnetic pole, and an auxiliary magnetic pole is provided on the reflective side of the main magnetic pole, sandwiching the magnetic recording medium. magnetic sensing element. 9. In the magnetic sensing element according to claims 1 to 8, a magnetic material is used as a main magnetic pole, an auxiliary magnetic pole is formed on the same side as the main magnetic pole, and is joined to the magnetic material that is the main magnetic pole. A magnetic sensing element characterized in that the auxiliary magnetic pole is connected to a side surface of a piezoelectric element directly or through an insulator made of an electrically insulating material. 10. In the magnetic detection element according to claims 1 to 9, at least two electrical conversion elements are bonded to a magnetic body, and both ends of the magnetic body are magnetized to form N and S poles. A magnetic detection element characterized in that it has means for adding, subtracting, multiplying and dividing the signals detected by the plurality of electrical conversion elements, and using an amplified signal after performing arithmetic processing. 11. A magnetic head for magnetic recording and reproducing is configured using the magnetic sensing element according to any one of claims 1 to 10, and has means for recording and reproducing a magnetic recording medium. Features of magnetic storage device.
JP12305589A 1989-05-17 1989-05-17 Magnetic detecting element and magnetic storage device using the same Pending JPH02302922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12305589A JPH02302922A (en) 1989-05-17 1989-05-17 Magnetic detecting element and magnetic storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12305589A JPH02302922A (en) 1989-05-17 1989-05-17 Magnetic detecting element and magnetic storage device using the same

Publications (1)

Publication Number Publication Date
JPH02302922A true JPH02302922A (en) 1990-12-14

Family

ID=14851085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12305589A Pending JPH02302922A (en) 1989-05-17 1989-05-17 Magnetic detecting element and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JPH02302922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142732A (en) * 2015-02-05 2016-08-08 佐保 ミドリ Magnetometric sensor and magnetic property measurement device
JP2019158508A (en) * 2018-03-12 2019-09-19 Tdk株式会社 Magnetic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142732A (en) * 2015-02-05 2016-08-08 佐保 ミドリ Magnetometric sensor and magnetic property measurement device
JP2019158508A (en) * 2018-03-12 2019-09-19 Tdk株式会社 Magnetic sensor

Similar Documents

Publication Publication Date Title
US5898548A (en) Shielded magnetic tunnel junction magnetoresistive read head
US6437558B2 (en) Passive solid-state magnetic field sensors and applications therefor
JP4883930B2 (en) Recording head reduces side track erasure
US5936810A (en) Magnetoresistive effect head
JP3022023B2 (en) Magnetic recording / reproducing device
US3864751A (en) Induced bias magnetoresistive read transducer
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
KR100260804B1 (en) Thin film magnetic head
US7397624B2 (en) Transducers for ferroelectric storage medium
EP0911810A2 (en) Magnetic tunnel junction devices
JPH09185809A (en) Magnetic head
JP2002100005A (en) Magnetic head
EP0631276A2 (en) Magnetoresistive read head having an exchange layer
JPH07141601A (en) Magnetic memory device
EP0789250A2 (en) Thin film giant magnetoresistive cip transducer with flux guide yoke structure
JPH02302922A (en) Magnetic detecting element and magnetic storage device using the same
JP3431265B2 (en) Magnetic disk drive
JPH09243721A (en) Magnetic sensor
JP2658872B2 (en) Magnetoresistance effect element
JPH03224118A (en) Magnetic head
JPS5936330B2 (en) magnetic head
JPS6035731B2 (en) magnetoresistive transducer
JPH028468B2 (en)
JPH08330645A (en) Magnetic detection element
Wolfson et al. Dynamic Kerr imaging of soft underlayers for perpendicular recording applications