JPH02302643A - Apparatus for controlling pressure in collecting drum - Google Patents

Apparatus for controlling pressure in collecting drum

Info

Publication number
JPH02302643A
JPH02302643A JP12363489A JP12363489A JPH02302643A JP H02302643 A JPH02302643 A JP H02302643A JP 12363489 A JP12363489 A JP 12363489A JP 12363489 A JP12363489 A JP 12363489A JP H02302643 A JPH02302643 A JP H02302643A
Authority
JP
Japan
Prior art keywords
pressure
collecting
gain
transmitter
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12363489A
Other languages
Japanese (ja)
Other versions
JPH0629826B2 (en
Inventor
So Kashima
宗 鹿嶌
Hajime Yamada
一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP12363489A priority Critical patent/JPH0629826B2/en
Publication of JPH02302643A publication Critical patent/JPH02302643A/en
Publication of JPH0629826B2 publication Critical patent/JPH0629826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To simplify the changing operation of preset values and to obtain a suitable control gain by providing a collecting-drum-pressure setting device, its transmitter, an output-operation control part, a bladder pressure transmitter, and a gain converter for operating the output of the setting device. CONSTITUTION:The following parts are provided: a collecting-drum-pressure setting device 21; a feedback control part 23 for operating proportion/integration for the output from the device 21 and the pressure at a stagnating point; and a gain operating part 24 for regulating the output gain of the control part 23 from the output of a bladder pressure transmitter 8 for detecting the pressure in a bladder 1. The total pressure in the collecting drum 4 is transmitted to the control part 23 through a collecting-drum pressure transmitter 7. The output of the setting device 21 is also imparted into a converter 24 directly. Gain conversion is performed with the two signals from the transmitter 8 and the setting device 21 as parameters. Then, the result of the operation in the operating part 24 is sent to a regulating valve 3, and the valve opening degree is regulated. In this way, the operation can be simplified and the optimum gain compensation can be obtained even if the design values are changed and the bladder pressure is strikingly decreased at the end of ventilation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吹出式風洞の集合胴圧力発信器に関するもので
、特に気流のマツハ数を制御する機構(以下、マツハ数
発信器と称す)をaする吹出式風洞の集合胴圧力発信器
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pressure transmitter for a collection shell of a blow-out type wind tunnel, and in particular a mechanism for controlling the Matsuha number of airflow (hereinafter referred to as a Matsuha number transmitter). This invention relates to a collecting shell pressure transmitter for a blow-out type wind tunnel.

〔従来の技術〕[Conventional technology]

吹出式風洞は、第2図に示すように、貯気槽1に蓄積さ
れた圧縮空気を高圧導管2で導き、外部からの信号で弁
開度を調整可能な調圧弁3で一定圧力に減圧した後、気
流の流れを整える集合胴(f!!流筒ともいう)4、ノ
ズル5、aFJ定部6を経由して大気へ放出する概略構
成を有しており、測定部6において模型を用いた所望の
空力的計71111を実施できるようになっている。
As shown in Figure 2, in the blow-out type wind tunnel, compressed air accumulated in an air storage tank 1 is guided through a high-pressure conduit 2, and the pressure is reduced to a constant pressure by a pressure regulating valve 3 whose opening degree can be adjusted by an external signal. After that, the airflow is discharged into the atmosphere via a collecting cylinder (also called f!! flow cylinder) 4, a nozzle 5, and an aFJ constant part 6, which adjusts the flow of the airflow. The desired aerodynamic measurements 71111 can be implemented.

このように、吹出式風洞においては貯気槽1に蓄積され
た圧縮空気を放出することのみにより通風するため、通
風時間は極めて短い時間(通例数秒〜数十秒程度)に限
られており、この間に計A?1を終了しなければならな
い。また、通風により貯気槽1の内部の圧縮空気を放出
してしまうと、貯気槽1に圧縮空気を再充填するために
は長い時間(通例数時間)を要する。このため、吹出式
風洞の発信器においては、実験の再現性を保証するため
の精度のみならず、短時間内に風洞内部の気流を所望の
状態に制御するという高速応答性が要求される。
In this way, in the blow-out type wind tunnel, ventilation is achieved only by releasing the compressed air accumulated in the air storage tank 1, so the ventilation time is limited to an extremely short period of time (usually several seconds to several tens of seconds). Total A during this time? 1 must be completed. Moreover, if the compressed air inside the air storage tank 1 is released by ventilation, it will take a long time (usually several hours) to refill the air storage tank 1 with compressed air. For this reason, a blowout type wind tunnel transmitter is required to have not only accuracy to ensure reproducibility of experiments, but also high-speed response to control the airflow inside the wind tunnel to a desired state within a short period of time.

第3図は従来の吹出式風洞の集合胴圧力発信器の構成ブ
ロック図であり、この装置は集合胴4の仝圧(よどみ点
圧力)が所定の値となるように、調圧弁3の開度を調整
する機能をHするものである。
FIG. 3 is a block diagram of a conventional blow-out type wind tunnel collecting shell pressure transmitter. This device operates by opening the pressure regulating valve 3 so that the pressure (stagnation point pressure) in the collecting shell 4 becomes a predetermined value. The function to adjust the degree is H.

第3図において、集合胴圧力発信器10は、集合胴内の
圧力を設定するための集合胴圧力設定器11、この集合
洞圧力設定器11の出力と後述する集合洞圧力との差を
とる減算器12、この減算器12の出力に対して比例、
積分演算を行うフィードバック制御部】3およびこのフ
ィード/<ツク制御部13の出力に対して貯気槽圧力に
応じてゲイン調節を行うゲイン変換器14を備えている
。    −このような従来の集合胴圧力発信器は、集
合胴圧力発信器7で検出した集合胴4内の圧力信号を入
力し、集合胴圧力設定器11から出力される集合胴圧力
設定信号との偏差を減算器12て演9し、この偏差に対
してフィードバック制御部13で比例、積分演算を行う
。このフィードバック制御部13から出力されるフィー
ドバック制御1c、号に対して貯気槽圧力発信器8から
出力される貯気槽1内の圧力信号に応じたゲイン変換を
ゲイン変換器14で行い、調圧弁開度信号として調圧弁
3へ出力し、集合胴3のよどみ点圧力が所定の圧力にな
るようにしている。
In FIG. 3, a collecting barrel pressure transmitter 10 includes a collecting barrel pressure setting device 11 for setting the pressure inside the collecting barrel, and calculates the difference between the output of this collecting barrel pressure setting device 11 and the collecting cavern pressure described later. a subtracter 12, proportional to the output of this subtracter 12;
3 and a gain converter 14 that performs gain adjustment on the output of the feed/<tsk control section 13 in accordance with the air storage tank pressure. - Such a conventional collecting shell pressure transmitter inputs the pressure signal inside the collecting shell 4 detected by the collecting shell pressure transmitter 7 and outputs the collecting shell pressure setting signal from the collecting shell pressure setting device 11. The deviation is calculated by the subtractor 12, and the feedback control unit 13 performs proportional and integral calculations on this deviation. The gain converter 14 performs gain conversion according to the pressure signal in the air storage tank 1 output from the air storage tank pressure transmitter 8 in response to the feedback control 1c outputted from the feedback control unit 13. It is output to the pressure regulating valve 3 as a pressure valve opening signal so that the stagnation point pressure of the collection cylinder 3 becomes a predetermined pressure.

集合胴圧力発信器としては、従来、航空宇宙技術研究所
報告TR−647、特開昭61−138304、特開昭
63−256835などにおいて種々の提案がなされて
いる。
Various proposals have been made regarding collecting barrel pressure transmitters in the Aerospace Technology Research Institute report TR-647, Japanese Patent Application Laid-open No. 61-138304, Japanese Patent Application Laid-open No. 63-256835, and the like.

これらはいずれも、上述したのと同様にフィー、ドパツ
ク制御部13のみにより調圧弁3の制御を行うものであ
るが、航空宇宙技術研究所報告TR−647および特開
昭63−256835においてはゲイン変換器14によ
り1/PT (P、rは貯気槽圧力信号を示す)のゲイ
ン変換を行って、貯気槽圧力の低下に伴う調圧弁の特性
変化を補償しており、また特開昭61−138304に
おいては風洞の集合胴圧力伝達特性を通風中に計Δ−1
し、その結果によりゲインおよび積分時間の設定をオン
ラインで行うようにしている。
In all of these, the pressure regulating valve 3 is controlled only by the feed and droplet control section 13 as described above, but in Aerospace Technology Research Institute report TR-647 and Japanese Patent Application Laid-Open No. 63-256835, the gain The converter 14 performs a gain conversion of 1/PT (P and r indicate the pressure signal of the reservoir tank) to compensate for changes in the characteristics of the pressure regulating valve due to a decrease in the pressure of the reservoir tank. In 61-138304, the pressure transmission characteristics of the collecting shell in the wind tunnel were determined by a total of Δ-1 during ventilation.
Then, the gain and integration time are set online based on the results.

このような従来の吹出式風洞においては、集合胴圧力発
信器はマツハ数一定すなわちallllll定量一定の
下に、集合胴圧力を一定値に保つことができれば十分で
あると考えられており、−回の通風の間に集合胴圧力、
マツ/\数を変化させることは制御の困難性から極めて
まれであった。
In such conventional blow-out type wind tunnels, it is thought that it is sufficient for the collecting shell pressure transmitter to be able to maintain the collecting shell pressure at a constant value under a constant Matsuha number, that is, a fixed constant of allllllll, - Collecting shell pressure during ventilation times,
It was extremely rare to change the number of pine trees due to the difficulty of control.

一方、近年の航空機の急激な進歩ならびにコンピュータ
を使用した風胴針A11l技術の向上に伴い、−回の通
風の途中においてマツハ数ならびに集合胴圧力を変化さ
せて、過渡的な応答を計11111 したり、より高度
なデータを得ることが望まれるようになってきた。
On the other hand, with the rapid progress of aircraft in recent years and the improvement of computer-based wind barrel needle A11l technology, the Matsuha number and collecting shell pressure were changed during the - ventilation period to obtain a total of 11111 transient responses. It has become desirable to obtain more sophisticated data.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、従来の集合胴圧力発信器において、単純
に1/PTに応じた比例ゲインを用いただけでは、集合
胴の圧力設定値を変更した場合に、その都度比例ゲイン
を設定しなおす必要があり、操作が煩雑となるという問
題がある。
However, if the conventional collecting shell pressure transmitter simply uses a proportional gain according to 1/PT, it is necessary to reset the proportional gain each time the collecting shell pressure setting value is changed. However, there is a problem that the operation becomes complicated.

また、調圧弁を通過する風量は調圧弁の上流および下流
の圧力により変化するが、一般に通風に伴い貯気槽圧力
が徐々に低下するため、調圧弁の上流側と下流側の圧力
が接近し、同一弁開度における風量が低下する。すなわ
ち、調圧弁の流量ゲインが低下することになるが、貯気
槽圧力によるゲイン補償を1/P1としただけでは貯気
槽圧力が大幅に低下してしまう通風終了付近における制
御ゲインの低下を十分に補償できない。
In addition, the amount of air passing through the pressure regulating valve changes depending on the pressure upstream and downstream of the pressure regulating valve, but in general, the pressure in the air storage tank gradually decreases with ventilation, so the pressures on the upstream and downstream sides of the pressure regulating valve become close to each other. , the air volume decreases at the same valve opening. In other words, the flow rate gain of the pressure regulating valve will decrease, but if the gain compensation based on the air storage tank pressure is set to 1/P1, the control gain will decrease near the end of ventilation, where the air storage tank pressure will drop significantly. cannot be adequately compensated.

さらに特開昭61−138304のよつl:通風中の計
測結果にもとづいて比例ゲインの設定を行えば、適切な
設定が可能となるが、制御°装置の構成が複雑になり、
再現性に欠けるうえ、通風をしてみないと最適な比例ゲ
インを決定することができないという問題がある。
Furthermore, according to Japanese Patent Application Laid-Open No. 138304/1983, if the proportional gain is set based on the measurement results during ventilation, an appropriate setting can be made, but the configuration of the control device becomes complicated.
In addition to lacking reproducibility, there are problems in that the optimal proportional gain cannot be determined unless ventilation is performed.

本発明は、このような従来のフィードバック制御による
集合胴圧力発信器の欠点を解消するためになされたもの
で、マツ八数設定値や集合胴圧力設定値の変更の際の操
作を簡単化し、しかも通風終了時における適切な制御ゲ
インを得ることが可能な集合胴圧力発信器を提供するこ
とを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional collecting barrel pressure transmitter using feedback control, and it simplifies the operation when changing the Matsuhachi set value or the collecting barrel pressure set value, Moreover, it is an object of the present invention to provide a collecting barrel pressure transmitter that can obtain an appropriate control gain at the end of ventilation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、気流のマツハ数を指令するマツハ数設
定器と、このマツハ数設定器から出力されるマツハ数設
定信号に基づいて貯気槽に貯えられた圧縮空気による気
流を制御する制御機構とを備えた、吹出し式風洞の集合
洞の圧力を制御する集合胴圧力発信器において、集合胴
のよどみ点圧力設定値を指令する集合胴圧力設定信号を
出力する集合胴圧力設定器と、集合胴のよどみ点圧力検
出値を集合胴圧力信号として出力する集合胴圧力発信器
と、貯気槽の圧力を検出して貯気槽圧力信号として出力
する貯気槽圧力発信器と、集合胴圧力設定器から出力さ
れる集合胴圧力設定信号と、集合胴圧力発信器から出力
される集合胴圧力信号に対して制御演算を行い、集合胴
のよどみ点圧力検出値を集合胴圧力設定器で設定した値
に制御するためのフィードバック制御信号を演算して調
圧弁の弁開度指令信号を出力するフィードバック制御部
と、貯気槽圧力発信器から出力される貯気槽圧力信号お
よび集合胴圧力設定器から出力される集合胴圧力設定信
号を受け、これらの信号に基づき弁開度指令信号に対す
る比例ゲインを演算するゲイン変換器とを備えたことを
特徴とする。
According to the present invention, there is a Matsuha number setting device that commands the Matsuha number of airflow, and a control that controls the airflow by compressed air stored in an air storage tank based on a Matsuha number setting signal output from the Matsuha number setting device. A collecting shell pressure transmitter for controlling the pressure in a collecting tunnel of a blow-out type wind tunnel, comprising: a collecting shell pressure setting device that outputs a collecting shell pressure setting signal that commands a stagnation point pressure setting value of the collecting shell; A collecting barrel pressure transmitter that outputs the detected stagnation point pressure value of the collecting barrel as a collecting barrel pressure signal, an air storage tank pressure transmitter that detects the pressure of the air storage tank and outputs it as an air storage tank pressure signal, Control calculations are performed on the collecting shell pressure setting signal output from the pressure setting device and the collecting shell pressure signal output from the collecting shell pressure transmitter, and the detected value of the pressure at the stagnation point of the collecting shell is determined by the collecting shell pressure setting device. A feedback control unit that calculates a feedback control signal for controlling to a set value and outputs a valve opening command signal for the pressure regulating valve, and an air storage tank pressure signal and collecting barrel pressure that are output from an air storage tank pressure transmitter. The present invention is characterized by comprising a gain converter that receives the collecting barrel pressure setting signal output from the setting device and calculates a proportional gain for the valve opening command signal based on these signals.

〔作 用〕[For production]

本発明によれば、通風による風量低下を補償するため比
例ゲインを増加させている。すなわち、調圧弁の流量ゲ
イン低下を比例ゲインを増加させることにより補償して
いる。したがって、集合胴の圧力設定値を変化させた場
合および通風終了時の貯気槽圧力の著しい低下時におい
ても操作の簡略化および最適なゲイン補償を得ることが
できる。
According to the present invention, the proportional gain is increased to compensate for the decrease in air volume due to ventilation. That is, the decrease in flow rate gain of the pressure regulating valve is compensated for by increasing the proportional gain. Therefore, it is possible to simplify the operation and obtain optimal gain compensation even when the pressure set value of the collecting barrel is changed or when the air storage tank pressure decreases significantly at the end of ventilation.

また、設定した比例ゲインの値を通風前に把握し得る。Moreover, the value of the set proportional gain can be grasped before ventilation.

〔実施例〕 以下、本発明の一実施例の構成を示すブロック図である
第1図を参照して、本発明の一実施例を詳細に説明する
[Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. 1, which is a block diagram showing the configuration of an embodiment of the present invention.

第1図における集合胴圧力発信器20は、従来の装置と
同様に、集Δ胴圧力の目標値を設定し、それを示す集合
胴圧力設定信号を出力する集合胴圧力設定器21、この
集合洞圧力設定器21の出力と後述する集合胴のよどみ
点圧力に対して比例、積分演算を行ってフィードバック
制御1g号として出力するフィードバック制御部23、
貯気槽1の圧力を検出する貯気槽圧力発信器8により゛
電気15号に変換された出力Ptによりフィードバック
制御部23の出力ゲインを調節するゲイン演算部24が
設けられている。一方、集合胴4の全圧(よどみ点圧力
)は集合胴圧力発信器7において電気信号に変換され、
前述した減算器22に伝達されている。また、従来装置
とは異なって、集合胴圧力設定器20の設定信号P。が
直接ゲイン変換器24にも与えられており、ゲイン変換
はPtとPOの2つの信号をパラメータとして行われる
。このような集合胴圧力発信器20の出力として、ゲイ
ン演算部24の演算結果の信号か調圧弁3に伝達され、
弁開度が調整される。
The collecting shell pressure transmitter 20 shown in FIG. a feedback control unit 23 that performs proportional and integral calculations on the output of the sinus pressure setting device 21 and the stagnation point pressure of the collecting cylinder, which will be described later, and outputs the result as feedback control No. 1g;
A gain calculation section 24 is provided that adjusts the output gain of the feedback control section 23 based on the output Pt converted into electrical No. 15 by the air storage tank pressure transmitter 8 that detects the pressure of the air storage tank 1. On the other hand, the total pressure (stagnation point pressure) of the collecting shell 4 is converted into an electrical signal by the collecting shell pressure transmitter 7,
The signal is transmitted to the subtracter 22 described above. Also, unlike the conventional device, the setting signal P of the collecting barrel pressure setting device 20 is different from the conventional device. is also directly applied to the gain converter 24, and gain conversion is performed using two signals, Pt and PO, as parameters. As the output of the collecting barrel pressure transmitter 20, a signal of the calculation result of the gain calculation section 24 is transmitted to the pressure regulating valve 3,
The valve opening degree is adjusted.

ここで、弁開度の制御のために貯気槽圧力と集合胴圧力
設定値とを使用しているのは次の理由による。
Here, the reason why the storage tank pressure and the collection barrel pressure set value are used to control the valve opening is as follows.

本来、調圧弁の制御のためには調圧弁上流側圧力および
下流側圧力を用いて制御を行うことか望ましい。まず、
上流側についてみると、調圧弁の上流側である高圧導管
部では圧力が不安定になるため、ここよりも圧力が安定
している貯気槽圧力を調圧弁上流側の圧力として推定す
ることとした。
Originally, in order to control the pressure regulating valve, it is desirable to perform control using the pressure on the upstream side and the pressure on the downstream side of the pressure regulating valve. first,
Looking at the upstream side, the pressure is unstable in the high pressure conduit section upstream of the pressure regulating valve, so the pressure in the storage tank, where the pressure is more stable than here, is estimated as the pressure upstream of the pressure regulating valve. did.

なお、高圧導管による圧力損失はわずかであるため、貯
気槽圧力を採用してもその差は僅かであり、特に問題は
ない。
Note that, since the pressure loss due to the high-pressure conduit is small, even if the air storage tank pressure is used, the difference is small and there is no particular problem.

一方、調圧弁下流側圧力については、調圧弁の下流側は
集合胴であるが、この圧力については集合胴圧力発信器
で検出した集合胴圧力に代えてより安定な集合胴圧力設
定値を使用する。これは吹出式風洞が極めて精度良く製
造された精密機械であり、設定値どおりの集合胴圧力制
御が可能であることから集合胴圧力設定値で代用するよ
うにしたものである。
On the other hand, regarding the pressure on the downstream side of the pressure regulating valve, the downstream side of the pressure regulating valve is the collecting shell, but for this pressure, a more stable collecting shell pressure set value is used instead of the collecting shell pressure detected by the collecting shell pressure transmitter. do. This is because the blow-out type wind tunnel is a precision machine manufactured with extremely high precision and it is possible to control the collecting shell pressure according to the set value, so the set value of the collecting shell pressure is used instead.

次に、貯気槽圧力と集合胴圧力設定値を使用した場合の
調圧弁開度と風量の関係について述べる。
Next, the relationship between the pressure regulating valve opening degree and the air volume when using the storage tank pressure and collecting shell pressure set values will be described.

調圧弁の特性に応じて調圧弁開度と風量の関係式が求ま
るが、最適な調圧弁の制御のためにこの関係式をもとに
逆の関係式、すなわち風量に対する調圧弁開度を比例ゲ
インとすることによって、この調圧弁開度と風量の関係
式を打ち消すことができるようになる。
A relational expression between the pressure regulating valve opening and air volume is determined according to the characteristics of the pressure regulating valve, but in order to optimally control the pressure regulating valve, an inverse relational expression is created based on this relation, that is, the pressure regulating valve opening is proportional to the air volume. By setting it as a gain, it becomes possible to cancel out the relational expression between the opening degree of the pressure regulating valve and the air volume.

いま、調圧弁の上流側圧力を貯気槽圧力P7、下流側圧
力を集合胴圧力設定値P。、調圧弁開度をθとすると、
これらにより決まる風量X6は次の式で与えられる。
Now, the upstream pressure of the pressure regulating valve is the storage tank pressure P7, and the downstream pressure is the collection barrel pressure set value P. , if the pressure regulating valve opening is θ, then
The air volume X6 determined by these is given by the following formula.

・・・(1) XG纏C1’・PT・θ         ・・・(2
)ここでkは空気の比熱比で通常に−1,4、C1゜0
1′は調圧弁により決まる定数である。
...(1) XG mat C1'・PT・θ ...(2
) Here, k is the specific heat ratio of air, usually -1,4, C1゜0
1' is a constant determined by the pressure regulating valve.

従来の集合胴圧力側8装置、例えば前述した文献、航空
宇宙技術研究所報告TR−647および特開昭63−2
56835において行われているゲイン補償は、上記チ
ョーク状態に関するものである。
Conventional collecting cylinder pressure side 8 devices, such as the above-mentioned literature, Aerospace Technology Research Institute report TR-647 and JP-A-63-2
The gain compensation performed in 56835 is related to the above choked condition.

このような関係をもとに、前述したゲイン演算部24に
おいては、貯気槽圧力発信′rA8から送られる貯気槽
圧力信号P□と集合胴圧力設定器21から送られてくる
集合胴圧力発信器P。とにより、前記演算の逆の関係式
となる下記演算を行い、ゲイン変換器21における可変
ゲインを表わす係数■。を求める。
Based on this relationship, the gain calculating section 24 described above calculates the storage tank pressure signal P□ sent from the storage tank pressure transmitter 'rA8 and the collecting barrel pressure sent from the collecting barrel pressure setting device 21. Transmitter P. Then, the following calculation is performed which is the inverse relational expression of the above calculation, and the coefficient (■) representing the variable gain in the gain converter 21 is obtained. seek.

PTk+1 ・・・(3) ただし、C2,02′は定数 これらの条件式およびゲイン計算式はゲイン演算部24
内のメモリに格納されている。
PTk+1...(3) However, C2, 02' is a constant.These conditional expressions and gain calculation expressions are calculated by the gain calculation section 24.
stored in memory within.

以上のような集合胴圧力発信器によれば、集合胴圧力設
定値P。ならびに貯気槽圧力P□に応じてチョーク状態
であるから非チョーク状態であるかを判断してそれぞれ
の状態に対応する式を選択して演算する。したがって、
貯気槽圧力P 、rが十分高いチョーク状態においては
(4)式によるゲインにより、従来と同様の性能を発揮
し、非チョーク状態となったときにはゲインは(3)式
により求められる。
According to the collecting barrel pressure transmitter as described above, the collecting barrel pressure setting value P. Also, it is determined whether it is a choked state or a non-choked state according to the air storage tank pressure P□, and an equation corresponding to each state is selected and calculated. therefore,
In a choked state where the air storage tank pressures P and r are sufficiently high, performance similar to that of the prior art is achieved using the gain obtained from equation (4), and when the tank is in a non-choked state, the gain is obtained using equation (3).

本発明にかかる集合胴圧力発信器はアナログ電子回路を
組合せて構成できるほか、その一部もしくは全部を電子
計算機により実現できる・以上の実施例は作動流体を空
気としたものであるが、本発明は空気以外の気体たとえ
ば窒素、ヘリウムなどを用いる場合でも同様の効果を得
ることができる。
The collecting barrel pressure transmitter according to the present invention can be configured by combining analog electronic circuits, and can also be realized in part or in whole by an electronic computer.The above embodiments use air as the working fluid, but the present invention Similar effects can be obtained even when using a gas other than air, such as nitrogen or helium.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、通風による風量低下を補
償するため比例ゲインを増加させているため、集合胴の
圧力設定値を変化させた場合および通風終了時の貯気槽
圧力の著しい低ド時においても操作の簡略化、最適なゲ
イン補償を得ることができる。また、比例ゲインの設定
値を通風前に確認することができるため運転性が向上す
るとともに安定した運転を行うことが可能となる。
As described above, according to the present invention, the proportional gain is increased in order to compensate for the decrease in air volume due to ventilation, so when the pressure setting value of the collection barrel is changed or when the ventilation ends, there is a significant decrease in the pressure in the storage tank. Operation can be simplified and optimal gain compensation can be obtained even when in mode mode. Furthermore, since the set value of the proportional gain can be checked before ventilating, drivability is improved and stable operation is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる集合胴圧力発信器の一実施例の
構成を示すブロック図、第2図は典型的な吹出式風洞を
示す概略説明図、第3図は従来の集合胴圧力発信器のブ
ロック図である。 1・・・貯気槽、2・・・高圧導管、3・・・調圧弁、
4・・・集合胴、7・・・集合胴圧力発信器、8・・・
貯気槽圧力発信器、20・・・集合胴圧力発信器、21
・・・集合胴圧力設定器、23・・・フィードバック制
御部、24・・・ゲイン演算器。
Fig. 1 is a block diagram showing the configuration of one embodiment of the collecting shell pressure transmitter according to the present invention, Fig. 2 is a schematic explanatory diagram showing a typical blow-out type wind tunnel, and Fig. 3 is a conventional collecting shell pressure transmitter. FIG. 1... Air storage tank, 2... High pressure conduit, 3... Pressure regulating valve,
4... Collecting cylinder, 7... Collecting cylinder pressure transmitter, 8...
Storage tank pressure transmitter, 20... Collection barrel pressure transmitter, 21
. . . Collection barrel pressure setting device, 23 . . . Feedback control unit, 24 . . . Gain calculator.

Claims (1)

【特許請求の範囲】 気流のマッハ数を指令するマッハ数設定器と、このマッ
ハ数設定器から出力されるマッハ数設定信号に基づいて
貯気槽に貯えられた圧縮空気による気流を制御する制御
機構とを備えた、吹出し式風洞の集合洞の圧力を制御す
る集合胴圧力制御装置において、 前記集合胴のよどみ点圧力設定値を指令する集合胴圧力
設定信号を出力する集合胴圧力設定器と、前記集合胴の
よどみ点圧力検出値を集合胴圧力信号として出力する集
合胴圧力発信器と、 前記貯気槽の圧力を検出して貯気槽圧力信号として出力
する貯気槽圧力発信器と、 前記集合胴圧力設定器から出力される集合胴圧力設定信
号と、前記集合胴圧力発信器から出力される集合胴圧力
信号に対して制御演算を行い、前記集合胴のよどみ点圧
力検出値を集合胴圧力設定器で設定した値に制御するた
めのフィードバック制御信号を演算して調圧弁の弁開度
指令信号を出力するフィードバック制御部と、 前記貯気槽圧力発信器から出力される貯気槽圧力信号お
よび前記集合胴圧力設定器から出力される集合胴圧力設
定信号を受け、これらの信号に基づき前記弁開度指令信
号に対する比例ゲインを演算するゲイン変換器とを備え
たことを特徴とする集合胴圧力制御装置。
[Claims] A Mach number setter that commands the Mach number of airflow, and control that controls the airflow by compressed air stored in an air storage tank based on a Mach number setting signal output from the Mach number setter. A collecting shell pressure control device for controlling the pressure in a collecting tunnel of a blow-off type wind tunnel, comprising: a collecting shell pressure setting device that outputs a collecting shell pressure setting signal that commands a stagnation point pressure setting value of the collecting shell; , a collecting shell pressure transmitter that outputs a detected stagnation point pressure value of the collecting shell as a collecting shell pressure signal; and an air storage tank pressure transmitter that detects the pressure of the air storage tank and outputs it as an air storage tank pressure signal. , Performing control calculations on the collecting barrel pressure setting signal output from the collecting barrel pressure setting device and the collecting barrel pressure signal output from the collecting barrel pressure transmitter, and determining the detected value of the stagnation point pressure of the collecting barrel. a feedback control unit that calculates a feedback control signal for controlling to the value set by the collecting barrel pressure setting device and outputs a valve opening command signal of the pressure regulating valve; A gain converter receives a tank pressure signal and a collecting barrel pressure setting signal output from the collecting barrel pressure setting device, and calculates a proportional gain for the valve opening command signal based on these signals. Collection barrel pressure control device.
JP12363489A 1989-05-17 1989-05-17 Collecting cylinder pressure control device Expired - Fee Related JPH0629826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12363489A JPH0629826B2 (en) 1989-05-17 1989-05-17 Collecting cylinder pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12363489A JPH0629826B2 (en) 1989-05-17 1989-05-17 Collecting cylinder pressure control device

Publications (2)

Publication Number Publication Date
JPH02302643A true JPH02302643A (en) 1990-12-14
JPH0629826B2 JPH0629826B2 (en) 1994-04-20

Family

ID=14865442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12363489A Expired - Fee Related JPH0629826B2 (en) 1989-05-17 1989-05-17 Collecting cylinder pressure control device

Country Status (1)

Country Link
JP (1) JPH0629826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157946A (en) * 2015-06-05 2015-12-16 中国航天空气动力技术研究院 Pressure regulating system capable of providing multiple paths of high-pressure airflow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157946A (en) * 2015-06-05 2015-12-16 中国航天空气动力技术研究院 Pressure regulating system capable of providing multiple paths of high-pressure airflow

Also Published As

Publication number Publication date
JPH0629826B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
CN107966235B (en) High-precision pressure measurement system with variable reference pressure
CN101887267B (en) Mach number controller in wind tunnel
CN113008507A (en) High-flow high-stability Mach number wind tunnel rapid adjusting system and method based on temporary flushing gas source
CA1240380A (en) Transient derivative scheduling control system
CN114061890B (en) Downward blowing type static pressure matching control method for large-size opening jet flow wind tunnel
JP3670900B2 (en) Transmitter automatic calibration method and transmitter automatic calibration apparatus
CN111006843B (en) Continuous variable speed pressure method of temporary impulse type supersonic wind tunnel
CN114967474B (en) General wind tunnel flow field control method based on neural network
CN114061891B (en) Downward-blowing injection type static pressure matching control method for large-size open jet wind tunnel
US7036319B2 (en) Method of balancing the supply of bleed air from a plurality of engines
US20150000297A1 (en) Method for determining at least one firing temperature for controlling a gas turbine and gas turbine for performing the method
JPH02302643A (en) Apparatus for controlling pressure in collecting drum
JPH087109B2 (en) Pressure control device for blow-out wind tunnel
CN113236443B (en) Self-tuning method for pressure feedback control parameter of variable thrust engine
JP2515648B2 (en) Pressure control device for blow-out wind tunnel
JPH02302642A (en) Apparatus for controlling pressure in collecting drum
CN117666331B (en) High-speed wind tunnel flow field composite adjusting method
Lu et al. Rapid valve opening technique for supersonic blowdown tunnel
JPH0619302B2 (en) Collecting cylinder pressure control device
JPS63256835A (en) Draft control method for blow-off air channel
JPH02267328A (en) Controller of gas turbine engine and controlling method
RU2587526C1 (en) Air pressure regulator in antechamber of wind tunnel
JP2515649B2 (en) Pressure control device for blow-out wind tunnel
Matsumoto et al. Pre-programmed controller for a supersonic blowdown tunnel
JPS61290339A (en) Control of blow-off type air tunnel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees