JP2515649B2 - Pressure control device for blow-out wind tunnel - Google Patents
Pressure control device for blow-out wind tunnelInfo
- Publication number
- JP2515649B2 JP2515649B2 JP3290807A JP29080791A JP2515649B2 JP 2515649 B2 JP2515649 B2 JP 2515649B2 JP 3290807 A JP3290807 A JP 3290807A JP 29080791 A JP29080791 A JP 29080791A JP 2515649 B2 JP2515649 B2 JP 2515649B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- heater
- differential pressure
- signal
- differential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、一般に極超音速風洞
のような高マッハ数の空力試験を行う場合に使用される
もので、詳しくは、空気が加速にともなって温度低下し
液化することを防止するための加熱器を備えている吹出
式風洞の圧力制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is generally used when performing a high Mach number aerodynamic test such as in a hypersonic wind tunnel. More specifically, the temperature of air decreases as it accelerates and liquefies. The present invention relates to a pressure control device for a blow-out type wind tunnel provided with a heater for preventing the above.
【0002】[0002]
【従来の技術】図4は、この種の吹出式風洞の一般的な
構成を示す図であり、同図において、1は貯気槽で、高
圧の圧縮空気を貯える。3は調圧弁で、上記貯気槽1内
の高圧の圧縮空気が高圧導管2を経て導かれ、外部から
の信号により調整された弁開度に応じて一定の圧力に減
圧される。4は加熱器、5は集合胴、6はノズル、7は
測定部であり、上記調圧弁3で一定の圧力に減圧された
圧縮空気は、これら加熱器4、集合胴5、ノズル6およ
び測定部7を経由して真空槽8の内部へ放出される。な
お、aは加熱器4の出口を締め切るための遮断弁、bは
測定部7を出た空気を冷却するための冷却器である。ま
た、上記加熱器4による空気加熱は、通例800℃〜1
000℃程度で、加速にともなう空気温度の低下によ
り、空気が液化することを防止するものである。2. Description of the Related Art FIG. 4 is a diagram showing a general structure of a blow-out type wind tunnel of this type. In FIG. 4, 1 is an air storage tank for storing high-pressure compressed air. Reference numeral 3 denotes a pressure regulating valve, which guides the high-pressure compressed air in the air storage tank 1 through the high-pressure conduit 2 and reduces the pressure to a constant pressure according to the valve opening adjusted by a signal from the outside. Reference numeral 4 is a heater, 5 is a collecting cylinder, 6 is a nozzle, and 7 is a measuring unit. The compressed air depressurized to a constant pressure by the pressure regulating valve 3 is used as the heater 4, the collecting cylinder 5, the nozzle 6 and the measuring unit. It is discharged into the vacuum chamber 8 via the section 7. Here, a is a shutoff valve for shutting off the outlet of the heater 4, and b is a cooler for cooling the air that has exited the measuring unit 7. Further, air heating by the heater 4 is usually 800 ° C to 1 ° C.
At about 000 ° C., the air is prevented from being liquefied due to the decrease of the air temperature accompanying the acceleration.
【0003】上記のような風洞においては、貯気槽1に
貯えられた圧縮空気のみで通風し、かつ通風後の空気の
すべてを真空槽8の内部に放出するため、通風時間が通
例で数秒から数十秒程度の極く短時間に制限されてお
り、その間にすべての計測を終了しなければならない。
また、通風により貯気槽1の内部の圧縮空気を放出して
真空槽8の圧力を上昇させた後、再試験のために貯気槽
1を再充填して真空槽8を再び所定の真空にするために
は、数時間オーダーの多大な時間を要する。さらに、こ
のような高マッハ数の空力試験を行う風洞では、気流の
マッハ数がノズル6の形状で決定されるため、特別な制
御装置は装備してなくて、所要のマッハ数に応じてノズ
ル6を交換するのが通例である。In the above-mentioned wind tunnel, since only the compressed air stored in the air storage tank 1 allows ventilation and all the air after ventilation is discharged into the vacuum chamber 8, the ventilation time is typically several seconds. It is limited to a very short time of about several tens of seconds, during which all measurements must be completed.
Further, after the compressed air inside the air storage tank 1 is released by ventilation to increase the pressure in the vacuum tank 8, the air storage tank 1 is refilled for a retest and the vacuum tank 8 is again filled with a predetermined vacuum. Requires a large amount of time on the order of several hours. Further, in the wind tunnel for performing the aerodynamic test at such a high Mach number, since the Mach number of the airflow is determined by the shape of the nozzle 6, no special control device is provided, and the nozzle is not provided in accordance with the required Mach number. It is customary to replace 6.
【0004】また、風洞の圧力制御装置は、集合胴5の
全圧、つまり、よどみ点圧力が所定の値となるように、
調圧弁3の開度を調整する機能を有するものであり、試
験の再現性を保証するための精度と合わせて、少しでも
試験時間を長くするために短時間で風洞内部の気流を整
定させるための高速応答性が要求される。[0004] The pressure control device in the wind tunnel controls the total pressure of the collecting cylinder 5, that is, the stagnation point pressure to a predetermined value.
It has the function of adjusting the opening of the pressure regulating valve 3, and in order to stabilize the air flow inside the wind tunnel in a short time in order to extend the test time even a little, in addition to the accuracy to guarantee the reproducibility of the test. High-speed response is required.
【0005】ところで、従来の吹出式風洞の圧力制御装
置は、図5に示すように構成されていた。同図におい
て、10は圧力制御装置で、圧力設定器11、比例・積
分制御を行うフィードバック制御部12および通風初期
に調圧弁3の開度が過剰になり加熱器4の空気流量が過
大とならないように、その調圧弁3の開度を一定の開度
に保つ弁開度制限器13からなる。このような構成の従
来の吹出式風洞の圧力制御装置では、集合胴5のよどみ
点圧力として調圧弁3の下流側の圧力を圧力発信器9に
より検出し、その検出信号と上記圧力設定器11から出
力される圧力設定信号との偏差を演算し、その偏差に対
して比例・積分演算をフィードバック制御部12で行
い、このフィードバック制御部12から出力されるフィ
ードバック制御信号により調圧弁3の開度を制御するも
のである(航空宇宙技術研究所報告TR−116,TR
−647、特開昭61−138304号,特開昭63−
235845号,特開昭63−256835号および特
開平2−302642号公報参照)。By the way, a conventional pressure control device for a blow-out type wind tunnel is constructed as shown in FIG. In the figure, reference numeral 10 is a pressure control device, and the opening of the pressure setting device 11, the feedback control unit 12 for performing proportional / integral control, and the ventilation valve 3 does not become excessive at the beginning of ventilation, and the air flow rate of the heater 4 does not become excessive. As described above, the valve opening limiter 13 keeps the opening of the pressure regulating valve 3 at a constant opening. In the conventional blow-out type wind tunnel pressure control device having such a configuration, the pressure on the downstream side of the pressure regulating valve 3 is detected by the pressure transmitter 9 as the stagnation pressure of the collecting cylinder 5, and the detection signal and the pressure setting device 11 are used. The feedback control unit 12 calculates a deviation from the pressure setting signal output from the feedback control unit 12 and performs proportional / integral calculation on the deviation. Aerospace technology research institute report TR-116, TR
-647, JP-A 61-138304, JP-A 63-
235845, JP-A-63-256835 and JP-A-2-302642).
【0006】また、通風初期の加熱器4への空気流量の
増加を防止するために、遮断弁aを閉じたままで通風を
開始し、加熱器4への空気の充填が完了した後にフィー
ドバック制御部12を作動させることも行われていた。Further, in order to prevent an increase in the air flow rate to the heater 4 in the initial stage of ventilation, ventilation is started with the shut-off valve a closed, and the feedback control unit is provided after the heater 4 is completely filled with air. Activating 12 was also done.
【0007】[0007]
【発明が解決しようとする課題】ところで、この種の風
洞の加熱器4は、一般にその内部に多量の蓄熱体(通例
7〜10トン程度)を有しており、これに過剰な空気流
量を与えると、蓄熱体が浮き上がり、加熱器4の内部を
破損する可能性があり、これに付随して次のような制御
上の問題を発生する可能性があった。即ち、加熱器4の
内部の蓄熱体の浮き上がりを防止するために空気流量を
制限する必要があるが、従来の装置では、空気流量を制
限する機構がないために、経験的に安全が確認されてい
る範囲で運転せざるを得ない。By the way, the heater 4 of the wind tunnel of this kind generally has a large amount of heat storage body (usually about 7 to 10 tons) therein, and an excessive air flow rate is applied to this. If it is given, the heat storage body may float up and damage the inside of the heater 4, which may cause the following control problem. That is, it is necessary to limit the air flow rate in order to prevent the heat storage body inside the heater 4 from floating, but in the conventional device, safety is confirmed empirically because there is no mechanism for limiting the air flow rate. I have no choice but to drive within the range.
【0008】また、新規設備である場合、運転可能範囲
を試行錯誤的に決定する必要があり、試運転の期間が長
くなるうえに、誤操作により加熱器4を破損する可能性
が高い。さらに、圧力制御装置の調整に際しては、加熱
器4の内部の蓄熱体の浮き上がりを考慮しなければなら
ず、十分な圧力制御性能を発揮させるまでの制御パラメ
ータの選定が難しい。Further, in the case of a new facility, it is necessary to determine the operable range by trial and error, the trial operation period becomes long, and there is a high possibility that the heater 4 is damaged by an erroneous operation. Further, when adjusting the pressure control device, it is necessary to consider the floating of the heat storage body inside the heater 4, and it is difficult to select control parameters until sufficient pressure control performance is exhibited.
【0009】この発明は上記実情に鑑みてなされたもの
で、通風初期における運転点の設定のいかんに拘らず、
加熱器の内部の蓄熱体の浮き上がりをなくし、また、試
運転時に誤操作があっても、加熱器の破損を防止して、
安全かつ高性能な圧力制御を実現することができる吹出
式風洞の圧力制御装置を提供することを目的としてい
る。The present invention has been made in view of the above situation, regardless of the setting of the operating point in the early stage of ventilation,
The floating heat storage inside the heater is eliminated, and even if there is an error in the trial run, the heater is prevented from being damaged,
It is an object of the present invention to provide a pressure control device for a blow-out type wind tunnel that can realize safe and high-performance pressure control.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、この発明の請求項1に係る吹出式風洞の圧力制御装
置は、蓄熱式加熱器が許容する圧力差を設定する差圧制
限設定器から出力される差圧制限設定信号と上記加熱器
の入口と出口の圧力差を検出する差圧信号発信器から出
力される加熱器差圧信号とを差圧制限制御部に入力させ
て、加熱器差圧信号が上記差圧制限設定信号以上になる
と、空気流量を制限するための差圧制限制御信号を出力
する差圧制限制御部と、圧力制御部から出力される圧力
制御信号および上記差圧制限制御部から出力される差圧
制限制御信号とを入力して、空気流量の少ない方に相当
する信号を出力する低位信号選択器とを備えたものであ
る。In order to achieve the above object, a pressure control device for a blow-out type wind tunnel according to claim 1 of the present invention is a differential pressure limit setting device for setting a pressure difference allowed by a heat storage type heater. The differential pressure limit setting signal output from the heater and the differential pressure signal of the heater output from the differential pressure signal transmitter that detects the pressure difference between the inlet and the outlet of the heater are input to the differential pressure limit control unit for heating. When the differential pressure limit signal exceeds the differential pressure limit setting signal, a differential pressure limit control unit that outputs a differential pressure limit control signal for limiting the air flow rate, a pressure control signal output from the pressure control unit, and the difference The differential pressure limiting control signal output from the pressure limiting control unit is input, and a low level signal selector that outputs a signal corresponding to the one with a smaller air flow rate is provided.
【0011】また、この発明の請求項2に係る吹出式風
洞の圧力制御装置は、上記差圧信号発信器として、加熱
器の入口側の圧力を検出する第1の圧力発信器と、加熱
器の出口側の圧力を検出する第2の圧力発信器と、これ
ら第1および第2の圧力発信器による検出圧力の差を演
算する減算器とから構成されたものを使用するようにし
たものである。According to a second aspect of the present invention, there is provided a pressure control device for a blow-out type wind tunnel, wherein the differential pressure signal transmitter is a first pressure transmitter for detecting pressure on the inlet side of the heater, and the heater. A second pressure transmitter for detecting the pressure on the outlet side of the device and a subtractor for calculating the difference between the pressures detected by the first and second pressure transmitters are used. is there.
【0012】[0012]
【作用】この発明の請求項1によれば、圧力制御部で
は、通常のフィードバック制御やフィードフォワード制
御などの公知の制御手段により、集合胴の圧力を設定値
に保つために必要な空気流量に相当する調圧弁の開度が
求められるとともに、差圧制限制御部では、差圧制限設
定器から出力される差圧制限設定信号と加熱器の入口と
出口の圧力差を検出する差圧信号発信器から出力される
加熱器差圧信号とを入力して、その圧力差が加熱器の許
容する圧力差となるような調圧弁の開度が指令され、か
つ、低位信号選択器では、上記圧力制御部から出力され
る圧力制御信号と上記差圧制限制御部から出力される差
圧制限制御信号とを入力して、両信号のうち空気流量の
少ない方、すなわち、調圧弁の開度の小さい方に相当す
る信号を選択して、それを調圧弁に出力しその弁開度が
制御されることになる。このように、差圧制限制御部お
よび低位信号選択器を組合せることにより、加熱器の入
口と出口の圧力差に応じて、自動的に所定の圧力制御作
用状態と差圧制限制御状態とに切り換えることができ
る。According to the first aspect of the present invention, in the pressure control section, the air flow rate necessary for maintaining the pressure of the collecting cylinder at the set value is set by the well-known control means such as normal feedback control and feedforward control. The corresponding opening of the pressure regulating valve is obtained, and the differential pressure limit control section outputs a differential pressure limit setting signal output from the differential pressure limit setting device and a differential pressure signal detecting the pressure difference between the inlet and outlet of the heater. Input the heater differential pressure signal output from the heater, command the opening of the pressure regulating valve so that the pressure difference becomes the pressure difference allowed by the heater, and, in the low-level signal selector, By inputting the pressure control signal output from the control unit and the differential pressure limiting control signal output from the differential pressure limiting control unit, the one with a smaller air flow rate of both signals, that is, the opening of the pressure regulating valve is smaller. Select the signal corresponding to Outputs Les the pressure regulating valve so that the valve opening is controlled. In this way, by combining the differential pressure limiting control unit and the low-level signal selector, depending on the pressure difference between the inlet and the outlet of the heater, the predetermined pressure control working state and the differential pressure limiting control state are automatically set. It can be switched.
【0013】[0013]
【実施例】以下、この発明の一実施例を図面にもとづい
て説明する。図1は、この発明の一実施例による吹出式
風洞の圧力制御装置の全体構成図であり、同図におい
て、1〜7、9およびaは図5に示す従来例と同一のた
め、該当部分に同一符号を付して、それらの詳しい説明
を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of a pressure control device for a blow-out type wind tunnel according to an embodiment of the present invention. In FIG. 1, 1 to 7, 9 and a are the same as the conventional example shown in FIG. Are denoted by the same reference numerals and detailed description thereof will be omitted.
【0014】図1において、20は圧力制御装置で、集
合胴5のよどみ点圧力の目標値を設定し、それを圧力設
定信号として出力する圧力設定器21と、この圧力設定
器21の出力を後述する圧力信号に対して比例・積分演
算を行い、また必要に応じてフィードフォワード制御な
ど公知の各種制御を行う圧力制御部22と、加熱器4の
入口と出口との圧力差の許容値を与え、この圧力差の許
容値を差圧制限設定信号として出力する差圧制限設定器
23と、この差圧制限設定器23からの出力と後述する
加熱器差圧信号に対して比例・積分演算を行う差圧制限
制御部24と、上記圧力設定器21から出力される圧力
制御信号と上記差圧制限制御部24から出力される差圧
制限制御信号とを入力して調圧弁3の開度の小さい方に
相当する信号を選択する低位信号選択器25とから構成
されている。15は加熱器4の入口と出口との圧力差を
検出する差圧信号発信器で、その圧力差を電気信号に変
換して上記差圧制限制御部24へ伝達する。In FIG. 1, reference numeral 20 denotes a pressure control device, which sets a target value of the stagnation pressure of the collecting cylinder 5 and outputs it as a pressure setting signal, and an output of this pressure setting device 21. A pressure control unit 22 that performs proportional / integral calculation with respect to a pressure signal to be described later, and performs various known controls such as feedforward control as necessary, and an allowable value of the pressure difference between the inlet and the outlet of the heater 4 are set. A differential pressure limit setting unit 23 that gives an allowable value of this pressure difference as a differential pressure limit setting signal, and a proportional / integral calculation with respect to the output from this differential pressure limit setting unit 23 and a heater differential pressure signal described later. The differential pressure limiting control unit 24 for performing the above, the pressure control signal output from the pressure setting unit 21 and the differential pressure limiting control signal output from the differential pressure limiting control unit 24 are input to open the opening degree of the pressure regulating valve 3. Select the signal corresponding to the smaller And a low signal selector 25 for. Reference numeral 15 is a differential pressure signal transmitter for detecting a pressure difference between the inlet and the outlet of the heater 4, which converts the pressure difference into an electric signal and transmits it to the differential pressure limiting control section 24.
【0015】つぎに、上記構成の動作について説明す
る。集合胴5のよどみ点圧力は圧力発信器9により電気
信号に変換されて圧力制御部22に伝達され、また、差
圧信号発信器15により検出された加熱器4の入口と出
口との圧力差は電気信号に変換されて上記差圧制限制御
部24へ伝達される。さらに、圧力制御装置20の出力
として、上記低位信号選択器25で選択された信号が調
圧弁3に伝達されて、弁開度がその選択された信号によ
り自動調整される。Next, the operation of the above configuration will be described. The stagnation pressure of the collecting cylinder 5 is converted into an electric signal by the pressure transmitter 9 and transmitted to the pressure controller 22, and the pressure difference between the inlet and the outlet of the heater 4 detected by the differential pressure signal transmitter 15. Is converted into an electric signal and transmitted to the differential pressure limit control unit 24. Further, as the output of the pressure control device 20, the signal selected by the low-level signal selector 25 is transmitted to the pressure regulating valve 3, and the valve opening is automatically adjusted by the selected signal.
【0016】ここで、上記差圧制限制御部24および低
位信号選択器25の動作について、さらに詳しく説明す
る。通風初期において、圧力制御部22は低圧にある加
熱器4および集合胴5を圧力設定器21により設定され
た圧力に上昇させるために、調圧弁3を急激に開けて大
量の空気を加熱器4および集合胴5へ送り出すことにな
る。このとき、一時的に加熱器4の入口と出口との圧力
差が増大し、差圧制限設定器23で与えられた許容値を
越えることになる。Now, the operations of the differential pressure limit control section 24 and the low level signal selector 25 will be described in more detail. At the initial stage of ventilation, the pressure control unit 22 rapidly opens the pressure regulating valve 3 to raise the pressure of the heater 4 and the collecting cylinder 5 at a low pressure to the pressure set by the pressure setter 21, and a large amount of air is heated by the heater 4. And it will be sent to the collecting cylinder 5. At this time, the pressure difference between the inlet and the outlet of the heater 4 temporarily increases and exceeds the allowable value given by the differential pressure limit setting unit 23.
【0017】図2は、上記圧力制御装置20の各部の応
答動作を示すもので、同図の実線は上記実施例の場合の
応答を示し、破線は差圧制限制御部24を備えてない場
合の応答を示している。同図(c)において、A点で通
風を開始すると、調圧弁3の開度が増加する。ところ
が、B点において、加熱器4の入口と出口との圧力差
が、図2(b)のCで示すところの差圧制限設定器23
で設定された許容値に到達すると、差圧制限制御部24
の働きにより、調圧弁3の開度を制限して加熱器4の入
口と出口との圧力差の増加を抑える。この加熱器4の入
口と出口との圧力差を制限した状態のままで加熱器4の
圧力の上昇を待ち、その圧力が図2(a)のDで示すと
ころの圧力設定器21で設定された圧力に到達すると、
上記圧力差が徐々に減少して、差圧制限制御から圧力制
御へと移行する。FIG. 2 shows the response operation of each part of the pressure control device 20. The solid line in FIG. 2 shows the response in the above embodiment, and the broken line does not include the differential pressure limit control part 24. Shows the response. In FIG. 7C, when ventilation starts at point A, the opening degree of the pressure regulating valve 3 increases. However, at the point B, the pressure difference between the inlet and the outlet of the heater 4 is the differential pressure limit setter 23 as shown by C in FIG. 2B.
When the permissible value set in is reached, the differential pressure limit control unit 24
By the action of, the opening of the pressure regulating valve 3 is limited to suppress an increase in the pressure difference between the inlet and the outlet of the heater 4. Waiting for the pressure of the heater 4 to rise with the pressure difference between the inlet and the outlet of the heater 4 being limited, the pressure is set by the pressure setter 21 shown by D in FIG. 2 (a). When the pressure reached
The pressure difference gradually decreases, and the differential pressure limiting control shifts to the pressure control.
【0018】上記のような過渡的な応答が終了すると、
加熱器4の入口と出口との圧力差は差圧制限設定器23
で設定された許容値Cよりも小さい値となるため、低位
信号選択器25では、差圧制限制御に代わって圧力制御
部22による圧力制御が選択されることになる。When the transient response as described above ends,
The pressure difference between the inlet and the outlet of the heater 4 is the differential pressure limit setting device 23.
Since the value is smaller than the allowable value C set in step 1, the low-order signal selector 25 selects the pressure control by the pressure controller 22 instead of the differential pressure limit control.
【0019】図3は、この発明の他の実施例による吹出
式風洞の圧力制御装置の全体構成図であり、同図におい
て、上記実施例と相違する点は、差圧信号発信器15に
代えて、加熱器4の出口圧力を発信する第2の圧力発信
器14を設けた点であり、その他の構成は図1に示す実
施例と同一であるため、該当部分に同一の符号を付して
それらの説明を省略する。この実施例においては、圧力
制御で使用している圧力発信器9を第1の圧力発信器と
し、この第1の圧力発信器9からの出力と上記第2の圧
力発信器14からの出力とを減算器26に入力して、両
者の差を演算し、その演算した値を差圧制限制御部24
に入力することで、上記実施例と同様な動作および作用
が得られるものである。FIG. 3 is an overall configuration diagram of a blow-out type wind tunnel pressure control device according to another embodiment of the present invention. In FIG. 3, the difference from the above embodiment is that the differential pressure signal transmitter 15 is used. The second pressure transmitter 14 for transmitting the outlet pressure of the heater 4 is provided. Since other configurations are the same as those of the embodiment shown in FIG. 1, the same reference numerals are given to corresponding parts. And their description is omitted. In this embodiment, the pressure transmitter 9 used for pressure control is the first pressure transmitter, and the output from the first pressure transmitter 9 and the output from the second pressure transmitter 14 are Is input to the subtractor 26, the difference between the two is calculated, and the calculated value is calculated as the differential pressure limit control unit 24.
By inputting into, the same operation and action as in the above embodiment can be obtained.
【0020】なお、この発明の圧力制御装置は、公知の
アナログ電子回路を組合せて実現できるが、その一部も
しくは全部の演算を電子計算機で行わせるようにして
も、上記実施例と同様な効果を奏する。The pressure control device of the present invention can be realized by combining known analog electronic circuits. However, even if a part or all of the arithmetic operations are performed by an electronic computer, the same effect as in the above embodiment is obtained. Play.
【0021】さらに、上記各実施例では、作動流体とし
て、空気を使用したが、空気以外の気体、たとえば窒素
やヘリウムなどを使用してもよく、上記実施例と同様な
効果を奏する。さらにまた、上記各実施例では、集合胴
5のよどみ点圧力として、計測が容易な調圧弁3の下流
側の圧力を使用したが、これ以外に、たとえば加熱器4
の出口圧力や集合胴5のよどみ点圧力を直接計測し、そ
の信号を制御に使用してもよい。Further, in each of the above-mentioned embodiments, air is used as the working fluid, but a gas other than air, such as nitrogen or helium, may be used, and the same effect as in the above-mentioned embodiments is obtained. Furthermore, in each of the above embodiments, the pressure on the downstream side of the pressure regulating valve 3 which is easy to measure is used as the stagnation point pressure of the collecting cylinder 5, but in addition to this, for example, the heater 4
It is also possible to directly measure the outlet pressure and the stagnation point pressure of the collecting cylinder 5 and use the signal for control.
【0022】[0022]
【発明の効果】以上のように、この発明によれば、差圧
制限制御部および低位信号選択器を組合せることによ
り、加熱器の入口と出口の圧力差が増加して、加熱器に
おける蓄熱体の浮き上がりの可能性がある場合は自動的
に差圧制限制御状態に切り換え、また、上記圧力差が小
さくなって、蓄熱体の浮き上がりの可能性がなくなった
場合は自動的に所定の圧力制御状態に切り換えることが
できる。したがって、通風初期を含めて、加熱器の内部
の蓄熱体の浮き上がりを考慮することなく、運転点を自
由に設定しても、加熱器を破損することを防止できる。
また、試運転時においても、予め設定された以上の空気
流量を流すことなく、運転することができ、試行錯誤に
ともなう加熱器の破損の可能性もない。さらに、加熱器
における蓄熱体の浮き上がりと切り離して圧力制御装置
の調整を行えるため、制御パラメータを自由に選定して
圧力制御性能を十分に発揮させることができる。As described above, according to the present invention, the pressure difference between the inlet and the outlet of the heater is increased by combining the differential pressure limiting control section and the low level signal selector, and the heat storage in the heater is increased. If there is a possibility that the body will float up, it will automatically switch to the differential pressure limit control state, and if the above-mentioned pressure difference becomes small and there is no possibility that the heat storage body will float up, the prescribed pressure control will be performed automatically. You can switch to the state. Therefore, it is possible to prevent the heater from being damaged even when the operating point is freely set without considering the floating of the heat storage body inside the heater, including the initial stage of ventilation.
Further, even during the trial operation, the operation can be performed without flowing an air flow rate higher than the preset value, and there is no possibility of damage to the heater due to trial and error. Furthermore, since the pressure control device can be adjusted separately from the floating of the heat storage body in the heater, the control parameters can be freely selected and the pressure control performance can be sufficiently exhibited.
【図1】この発明の一実施例による吹出式風洞の圧力制
御装置の全体構成図である。FIG. 1 is an overall configuration diagram of a pressure control device for a blow-out type wind tunnel according to an embodiment of the present invention.
【図2】圧力制御動作を説明する図である。FIG. 2 is a diagram illustrating a pressure control operation.
【図3】この発明の他の実施例による吹出式風洞の圧力
制御装置の全体構成図である。FIG. 3 is an overall configuration diagram of a pressure control device for a blow-out type wind tunnel according to another embodiment of the present invention.
【図4】吹出式風洞の一般的な構成図である。FIG. 4 is a general configuration diagram of a blow-out wind tunnel.
【図5】従来の吹出式風洞の圧力制御装置の全体構成図
である。FIG. 5 is an overall configuration diagram of a conventional pressure control device for a blow-out type wind tunnel.
1 貯気槽 3 調圧弁 4 蓄熱式加熱器 5 集合胴 6 ノズル 9 第1の圧力発信器 14 第2の圧力発信器 15 差圧信号発信器 20 圧力制御装置 21 圧力設定器 22 圧力制御部 23 差圧制限設定器 24 差圧制限制御部 25 低位信号選択器 DESCRIPTION OF SYMBOLS 1 Storage tank 3 Pressure regulating valve 4 Heat storage type heater 5 Collecting cylinder 6 Nozzle 9 First pressure transmitter 14 Second pressure transmitter 15 Differential pressure signal transmitter 20 Pressure controller 21 Pressure setter 22 Pressure controller 23 Differential pressure limit setter 24 Differential pressure limit controller 25 Low level signal selector
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−302642(JP,A) 特公 平8−7109 (JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-302642 (JP, A) JP-B-8-7109 (JP, B2)
Claims (2)
を通し、かつ蓄熱式加熱器により加熱し、蓄熱式加熱器
とノズルとの間に位置する集合胴を経由してノズルへ通
風するようになされているとともに、調圧弁により空気
流量を調整することにより集合胴の圧力を制御するため
の圧力制御部を備えた吹出式風洞の圧力制御装置におい
て、上記蓄熱式加熱器が許容する圧力差を設定し差圧制
限設定信号として出力する差圧制限設定器と、上記加熱
器の入口と出口の圧力差を加熱器差圧信号として出力す
る差圧信号発信器と、上記差圧制限設定器から出力され
る差圧制限設定信号および上記差圧信号発信器から出力
される加熱器差圧信号を入力して、加熱器差圧信号が上
記差圧制限設定信号以上になると、空気流量を制限する
ための差圧制限制御信号を出力する差圧制限制御部と、
上記圧力制御部から出力される圧力制御信号および上記
差圧制限制御部から出力される差圧制限制御信号を入力
して、空気流量の少ない方に相当する信号を調圧弁に出
力する低位信号選択器とを備えたことを特徴とする吹出
式風洞の圧力制御装置。1. A heat storage type heater, wherein high pressure compressed air stored in an air storage tank is passed through a pressure regulating valve and heated by a heat storage type heater.
Air and together are adapted to air to the nozzle via the collecting cylinder located between the nozzle, the pressure regulating valve
In a pressure control device for a blow-out type wind tunnel equipped with a pressure control unit for controlling the pressure of the collecting cylinder by adjusting the flow rate, the pressure difference allowed by the regenerative heater is set and output as a differential pressure limit setting signal. A differential pressure limit setting device, a differential pressure signal transmitter for outputting the pressure difference between the inlet and the outlet of the heater as a heater differential pressure signal, and a differential pressure limit setting signal output from the differential pressure limit setting device and When the heater differential pressure signal output from the differential pressure signal transmitter is input and the heater differential pressure signal becomes equal to or higher than the differential pressure limit setting signal, a differential pressure limit control signal for limiting the air flow rate is output. A differential pressure limiting control unit,
The pressure control signal output from the pressure control unit and the differential pressure limit control signal output from the differential pressure limit control unit are input, and a signal corresponding to the one with a smaller air flow rate is output to the pressure regulating valve. A pressure control device for a blow-out type wind tunnel, comprising:
の圧力を検出する第1の圧力発信器と、加熱器の出口側
の圧力を検出する第2の圧力発信器と、これら第1およ
び第2の圧力発信器による検出圧力の差を演算する減算
器とから構成されている請求項1の吹出式風洞の圧力制
御装置。2. The differential pressure signal transmitter comprises a first pressure transmitter for detecting pressure on the inlet side of the heater, a second pressure transmitter for detecting pressure on the outlet side of the heater, and these. 2. The pressure control device for a blow-out type wind tunnel according to claim 1, comprising a subtractor for calculating a difference between pressures detected by the first and second pressure transmitters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290807A JP2515649B2 (en) | 1991-10-09 | 1991-10-09 | Pressure control device for blow-out wind tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290807A JP2515649B2 (en) | 1991-10-09 | 1991-10-09 | Pressure control device for blow-out wind tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0719991A JPH0719991A (en) | 1995-01-20 |
JP2515649B2 true JP2515649B2 (en) | 1996-07-10 |
Family
ID=17760743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3290807A Expired - Lifetime JP2515649B2 (en) | 1991-10-09 | 1991-10-09 | Pressure control device for blow-out wind tunnel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2515649B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184349B (en) * | 2022-02-15 | 2022-04-15 | 中国空气动力研究与发展中心高速空气动力研究所 | Method for obtaining supersonic jet static operation pressure matching point of jet wind tunnel |
-
1991
- 1991-10-09 JP JP3290807A patent/JP2515649B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0719991A (en) | 1995-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4361620B2 (en) | Gas container filling method | |
JPH05150839A (en) | Valve controller and method of valve control | |
JPH0643811B2 (en) | Gas turbine hot parts cooling method | |
US4870859A (en) | Flowmeter controller for an air inleakage monitoring system | |
JP2515649B2 (en) | Pressure control device for blow-out wind tunnel | |
US4500950A (en) | Industrial process control apparatus and method | |
US4470948A (en) | Suppression of malfunction under water-solid conditions | |
JPH087109B2 (en) | Pressure control device for blow-out wind tunnel | |
JP2515648B2 (en) | Pressure control device for blow-out wind tunnel | |
JP3322633B2 (en) | Bleed air flow control system for axial compressor | |
US4840063A (en) | Fail safe valve for an air inleakage monitoring system in a steam turbine | |
JPH1047079A (en) | Anti-surge controller | |
JP2938277B2 (en) | Inflow valve control device | |
JPH11258104A (en) | Wind generating device for wind tunnel | |
JP3045960B2 (en) | Hydraulic servo controller | |
JPS585412A (en) | Controller for steam turbine plant with reheater | |
JPH09170592A (en) | Gas flow rate control device in lng base | |
Balakrishna et al. | Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel | |
JPS63176605A (en) | Warming controller | |
JPS6054365B2 (en) | How to operate a blast furnace blower | |
JP2002294316A (en) | Method for controlling pressure of hot stove | |
JPS6132403Y2 (en) | ||
JPH02302643A (en) | Apparatus for controlling pressure in collecting drum | |
JP2988213B2 (en) | Multi-pressure steam turbine protection device | |
JPS60161480A (en) | Automatic operation of coke dry quenching apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110430 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 16 |