JPH02302565A - Complex freezing device - Google Patents

Complex freezing device

Info

Publication number
JPH02302565A
JPH02302565A JP12282989A JP12282989A JPH02302565A JP H02302565 A JPH02302565 A JP H02302565A JP 12282989 A JP12282989 A JP 12282989A JP 12282989 A JP12282989 A JP 12282989A JP H02302565 A JPH02302565 A JP H02302565A
Authority
JP
Japan
Prior art keywords
evaporator
vapor
heat
ammonia
type freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12282989A
Other languages
Japanese (ja)
Inventor
Tsuneo Yumikura
弓倉 恒雄
Masaki Ikeuchi
正毅 池内
Takeshi Doi
全 土井
Kazunari Nakao
一成 中尾
Eiichi Ozaki
永一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12282989A priority Critical patent/JPH02302565A/en
Publication of JPH02302565A publication Critical patent/JPH02302565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To get a complex freezing device having a high coefficient of performance even in case of a low cold heat source temperature to be utilized by a method wherein a vapor compressive type freezer and a thermal driving freezer are made complex and a cold heat generated by an evaporator of the vapor compressive type freezer is used as a cooling source for a cooled element of the thermal driving type freezer. CONSTITUTION:In case of an ammonia absorptive type freezer having a complex ammonia absortive type freezer and a vapor compressive type freezer, for example, dilute solution flowing from an absorbing device 13 into a generating device 8 is heated by a flowing driving heat source to generate ammonia. Water vapor is separated by a purifying device 10, only ammonia vapor flows in the condensor 9, the vapor is cooled by a cold heat generated by the evaporator 1 to become liquid. The liquid flows into the evaporator 12, is heated by the flowing fluid and evaporates. This evaporation heat is utilized as a cold heat. In turn, rich solution with ammonia discharged by the generater 8 is heat exchanged with a dilute solution pipe with a heat recoverying heat exchanger 14, its temperature is decreased, the solution flows into an absorbing device 13 to absorb vapor from the evaporator 12 to become a low concentration solution and then the solution is sent again to the generator 8. The heat generated through this absorption at this time is taken away by liquid from the evaporator 1.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、例えば食品の冷凍などに必要な低温熱を発
生する冷凍装置に関するものである。
The present invention relates to a refrigeration device that generates low-temperature heat necessary for, for example, freezing food.

【従来の技術】[Conventional technology]

第4図は従来の蒸気圧縮式冷凍a(二段圧縮)の構成を
示す。図において、1は蒸発器、2は低段圧縮機、3は
中間冷却器、4は高段圧縮機、5は凝縮器で、この順序
で配管によって接続されている。ここで、低段圧縮機2
の吐出配管と、高段圧縮機4の吸入配管は、中間冷却器
3の伝熱管外側に接続されている。凝縮器5を出た配管
は分岐され、分岐の一方は中間冷却器3の伝熱管に、他
方は第1減圧装置6を介して中間冷却器3の管外側に接
続されている。さらに、中間冷却器3の伝熱管側は、第
2減圧装置7を介して蒸発器1に至っており、冷凍機の
二段圧縮冷凍サイクルを構成している。 次に動作について説明する。第5図は第4図に示した冷
凍サイクル内の各点における状態を圧力−エンタルピ<
p−h>線図で表したもので、図中の符号a〜hは第4
図中に同じ符号で示される各点に対応している。 蒸発器1で蒸発された後の冷媒蒸気(状態a)は、低段
圧縮機2に吸入され、中間圧力Pmまで圧縮されてbの
状態となる。状態すの過熱冷媒蒸気は、中間冷却器31
こ流入する。中間冷却器3には、高圧液(状B e )
の一部をバイパスさせ、第1減圧装置6により圧力Pm
まで減圧して流入させている。この冷媒の状態はfで示
される。状態fの冷媒は、中間冷却器3内で蒸発して凝
縮器5からの冷媒液の大部分(状態e)を冷却するとと
もに、低段圧縮機2から吐出された状態すの過熱冷媒蒸
気と混合されてCの状態となり、共に高段圧縮機4に吸
入され、ここで圧縮されてdの状態となる。この過熱蒸
気は、図示はしていない冷却塔から得られる冷却水によ
って冷却され、凝縮器5で凝縮して状態eの高圧液とな
る。この液の大部分は、前述したように中間冷却器3内
で冷却されて状態gとなり、第2減圧装置7を経て圧力
PLの蒸発圧力まで下がった状態りで蒸発器1に流入す
る。蒸発器1で冷媒は蒸発し、状Bhからaとなり、冷
凍サイクルは繰り返される。このときの蒸発熱が冷凍な
どに利用される。
FIG. 4 shows the configuration of a conventional vapor compression type refrigeration a (two-stage compression). In the figure, 1 is an evaporator, 2 is a low-stage compressor, 3 is an intercooler, 4 is a high-stage compressor, and 5 is a condenser, which are connected in this order by piping. Here, low stage compressor 2
The discharge pipe of the high-stage compressor 4 and the suction pipe of the high-stage compressor 4 are connected to the outside of the heat exchanger tube of the intercooler 3. The pipe exiting the condenser 5 is branched, and one of the branches is connected to the heat transfer tube of the intercooler 3, and the other is connected to the outside of the pipe of the intercooler 3 via the first pressure reducing device 6. Furthermore, the heat exchanger tube side of the intercooler 3 is connected to the evaporator 1 via the second pressure reducing device 7, and constitutes a two-stage compression refrigeration cycle of the refrigerator. Next, the operation will be explained. Figure 5 shows the state at each point in the refrigeration cycle shown in Figure 4 with pressure - enthalpy <
It is expressed as a ph> diagram, and the symbols a to h in the diagram are the fourth
This corresponds to each point indicated by the same reference numeral in the figure. The refrigerant vapor (state a) after being evaporated in the evaporator 1 is sucked into the low stage compressor 2 and compressed to an intermediate pressure Pm to become the state b. The superheated refrigerant vapor in the state is transferred to the intercooler 31.
This flows in. In the intercooler 3, high pressure liquid (like B e )
Bypassing a part of the pressure Pm by the first pressure reducing device 6
The pressure is reduced to 100% and the water is allowed to flow in. The state of this refrigerant is indicated by f. The refrigerant in state f evaporates in the intercooler 3 to cool most of the refrigerant liquid (state e) from the condenser 5, and also evaporates into superheated refrigerant vapor in state e discharged from the low stage compressor 2. They are mixed to form state C, and both are sucked into the high-stage compressor 4, where they are compressed to form state d. This superheated steam is cooled by cooling water obtained from a cooling tower (not shown), and is condensed in a condenser 5 to become a high-pressure liquid in state e. Most of this liquid is cooled in the intercooler 3 to the state g as described above, and flows into the evaporator 1 through the second pressure reducing device 7 with the pressure reduced to the evaporation pressure PL. The refrigerant is evaporated in the evaporator 1, changing from the state Bh to the state a, and the refrigeration cycle is repeated. The heat of evaporation at this time is used for things such as freezing.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の冷凍装置は以上のように構成されているので、蒸
発H1での蒸発温度が低くなると、冷凍サイクルの成績
係数(冷凍能力/圧縮機入力)が低下するという課題が
あった。 この発明は上記のような課題を解消するためになされた
もので、利用する冷熱源温度(蒸発温度)が低い場合に
おいても、成績係数の高い複合冷凍装置を得ることを目
的とする。
Since the conventional refrigeration apparatus is configured as described above, there has been a problem that when the evaporation temperature in the evaporation H1 becomes low, the coefficient of performance (refrigeration capacity/compressor input) of the refrigeration cycle decreases. This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a composite refrigeration system with a high coefficient of performance even when the temperature of the cold heat source (evaporation temperature) used is low.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る複合冷凍装置は、蒸気圧縮式冷凍機と熱
駆動式冷凍機を複合し、蒸気圧縮式冷凍機の蒸発器で得
られる冷熱を熱駆動式冷凍機の被冷却要素、例えば凝縮
器、吸収器の冷却源として用いるようにしたものである
The combined refrigeration system according to the present invention combines a vapor compression refrigerator and a thermally driven refrigerator, and transfers cold heat obtained from the evaporator of the vapor compression refrigerator to a cooled element of the thermally driven refrigerator, such as a condenser. It is designed to be used as a cooling source for an absorber.

【作 用】[For use]

この発明における複合冷凍装置は、蒸気圧縮式冷凍機と
熱駆動式冷凍機とを複合し、蒸気圧縮式冷凍機の蒸発器
で得た冷熱を熱駆動式冷凍機の冷却源として用いること
により、1気圧縮式冷凍サイクルの蒸発温度が従来より
上昇し、また熱駆動式冷凍機の凝縮圧力および駆動熱源
温度が従来の熱駆動式冷凍機に比べ低下する。
The combined refrigeration system of the present invention combines a vapor compression refrigerator and a thermally driven refrigerator, and uses the cold heat obtained by the evaporator of the vapor compression refrigerator as a cooling source for the thermally driven refrigerator. The evaporation temperature of the one-atm compression refrigeration cycle is higher than that of the conventional one, and the condensing pressure and drive heat source temperature of the thermally driven refrigerator are lower than those of the conventional thermally driven refrigerator.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図において、符号1〜7は第4図の従来装置と同じある
いは相当する機器を示し、蒸気圧縮式冷凍機の冷凍サイ
クルを構成している。8は発生器で、この発生器8内に
は管内に冷凍機駆動用熱源が流れる熱交換器を設けであ
る。また発生器8は、凝縮器9に精溜器10を介して上
記配管で接続されている。さらに凝縮器9は、第3減圧
装置11を介して蒸発器12に連結され、蒸発器12は
吸収器13と蒸気配管で連通している。また蒸発器12
は、利用する冷熱を取り出すための熱交換器を有してい
る。一方、発生器8および吸収器13は、発生器8から
吸収器13へ発生器8内の濃溶液が流れる濃溶液管と、
吸収器13から発生器8に希溶液が流れるF5溶液管と
によって相互に接続され、これらの溶液は熱回収熱交換
器14で熱交換を行うようになされている。これらの発
生器8.凝縮器9.精溜器10.第3減圧装置11゜蒸
発器12.吸収器13.熱回収熱交換器14および配管
により熱駆動式冷凍機の冷凍サイクルが構成されている
。また、凝縮器9および吸収器13内にそれぞれ設けら
れた熱交換器は、蒸発器1内の熱交換器とともに配管で
環状に接続されている。 次に動作について説明する。第2図は第1図に示した熱
駆動式冷凍機の冷凍サイクルを圧力一温度−濃度線図上
に描いたものである。ここでは、冷媒にNH3(アンモ
ニア)、吸収液にアンモニア水溶液(NH:l’ H2
0)を用いるアンモニア吸収冷凍機と、蒸気圧縮式冷凍
機を複合した冷凍機について説明する。蒸気圧縮式冷凍
機の動作は、第4図について説明した従来装置と同じで
ある。アンモニア吸収冷凍機では、吸収器工3から希溶
液管を通って発生器8に流入した希溶液(濃度×1)は
、発生器8内の熱交換器を流れる駆動熱源により加熱さ
れてアンモニア蒸気を発生する。この蒸気中には若干量
の水蒸気が含まれているため、通常は精溜器10を設け
、水蒸気を分離してアンモニア蒸気のみが凝縮器9に流
れるようになされている。 凝縮器9では、蒸発器1で得られた冷熱が吸収器13内
熱交換器を通って凝縮器9内の熱交換器に与えられ、冷
媒は冷却されて第2図に示す温度Tc。 圧力Pcの状態の液となる。このアンモニア液は、第3
減圧装置11で減圧されたのち蒸発器12に流入し、蒸
発器12で熱交換器内を流れる流体により加熱されて蒸
発する(温度T!、圧力PE)。 この蒸発熱が冷熱として利用される。 一方、発生器8でアンモニアを放出して濃度×2となっ
た濃溶液(温度TG)は、熱回収熱交換器14を通って
吸収器13に流入する。熱回収熱交換H14で濃溶液は
、吸収器13から発生器8に流れる希溶液管と熱交換す
ることによってその温度が低下する。また、吸収器13
に流入した濃溶液は、蒸発器12からの蒸気を吸収して
濃度×1となり、再び発生器8に送られる。このとき吸
収により発生した熱は、吸収器13内の熱交換器で、蒸
発器1から送られた液体に奪われる。したかって、蒸発
器1で得られた冷熱は、吸収器13で吸収熱、凝縮器9
で凝縮熱の除去に用いられている。 このように、従来の冷凍装置では、この発明の冷凍装置
の温度TEを第5図に示す圧力P、に相当する飽和温度
として蒸発器1から直接に得ていたのに対し、この発明
の冷凍装置では、蒸発器Iの圧力PLは第2図のTAの
温度レベルに相当した値となる。したがって、蒸気圧縮
式冷凍機の成績係数は、蒸発温度が上昇したことにより
著しく向上する。 なお、上記実施例では、発生器8の熱源は、他のプロセ
スなどから導入して用いたが、蒸気圧縮式冷凍機の凝縮
器5から放出される凝縮熱を熱源として用いてもよい。 また、前記の実施例では、NH3H2Oを熱駆動式冷凍
機の作動媒体として説明したが、特にこの媒体に限定さ
れるものではなく、メチルアミン(CHx N Hz 
)−塩化カルシウム(CaC1□)など他の媒体でも同
様の効果が得られる。さらに前記の実施例では、蒸気圧
縮式冷凍機として二段圧縮冷凍サイクルを用いたが、蒸
発温度の高い場合は、単段圧縮冷凍サイクルとしてもよ
い。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, numerals 1 to 7 indicate equipment that is the same as or corresponds to the conventional apparatus shown in FIG. 4, and constitutes a refrigeration cycle of a vapor compression refrigerator. Reference numeral 8 denotes a generator, and inside the generator 8 there is provided a heat exchanger through which a heat source for driving the refrigerator flows inside the tube. Further, the generator 8 is connected to the condenser 9 via the rectifier 10 through the piping described above. Further, the condenser 9 is connected to an evaporator 12 via a third pressure reducing device 11, and the evaporator 12 communicates with an absorber 13 through a steam pipe. Also, the evaporator 12
has a heat exchanger for extracting the cold heat to be used. On the other hand, the generator 8 and the absorber 13 include a concentrated solution pipe through which the concentrated solution in the generator 8 flows from the generator 8 to the absorber 13;
They are interconnected by an F5 solution pipe through which dilute solution flows from the absorber 13 to the generator 8, and these solutions exchange heat in a heat recovery heat exchanger 14. These generators8. Condenser9. Rectifier 10. Third pressure reducing device 11° evaporator 12. Absorber 13. The heat recovery heat exchanger 14 and piping constitute a refrigeration cycle of the thermally driven refrigerator. Further, the heat exchangers provided in the condenser 9 and the absorber 13 are connected together with the heat exchanger in the evaporator 1 in an annular manner through piping. Next, the operation will be explained. FIG. 2 depicts the refrigeration cycle of the heat-driven refrigerator shown in FIG. 1 on a pressure-temperature-concentration diagram. Here, the refrigerant is NH3 (ammonia), and the absorption liquid is an ammonia aqueous solution (NH:l' H2
A refrigerator that combines an ammonia absorption refrigerator using 0) and a vapor compression refrigerator will be described. The operation of the vapor compression refrigerator is the same as the conventional device described with reference to FIG. In the ammonia absorption refrigerator, the dilute solution (concentration x 1) that flows from the absorber 3 through the dilute solution pipe into the generator 8 is heated by the driving heat source flowing through the heat exchanger in the generator 8 and vaporized into ammonia vapor. occurs. Since this steam contains a small amount of water vapor, a rectifier 10 is usually provided to separate the water vapor and allow only ammonia vapor to flow to the condenser 9. In the condenser 9, the cold heat obtained in the evaporator 1 passes through the heat exchanger in the absorber 13 and is given to the heat exchanger in the condenser 9, and the refrigerant is cooled to the temperature Tc shown in FIG. The liquid becomes a state of pressure Pc. This ammonia solution is
After being depressurized by the depressurizer 11, it flows into the evaporator 12, where it is heated by the fluid flowing in the heat exchanger and evaporates (temperature T!, pressure PE). This heat of evaporation is used as cooling energy. On the other hand, the concentrated solution (temperature TG) whose concentration has become x2 by releasing ammonia in the generator 8 flows into the absorber 13 through the heat recovery heat exchanger 14 . In heat recovery heat exchange H14, the temperature of the concentrated solution is lowered by exchanging heat with the dilute solution tube flowing from the absorber 13 to the generator 8. In addition, the absorber 13
The concentrated solution that has flowed into the evaporator 12 absorbs the vapor from the evaporator 12, becomes concentrated by 1, and is sent to the generator 8 again. The heat generated by absorption at this time is absorbed by the liquid sent from the evaporator 1 in a heat exchanger within the absorber 13. Therefore, the cold heat obtained in the evaporator 1 is absorbed by the absorber 13, and the heat is absorbed in the condenser 9.
It is used to remove the heat of condensation. As described above, in the conventional refrigeration system, the temperature TE of the refrigeration system of the present invention is obtained directly from the evaporator 1 as the saturation temperature corresponding to the pressure P shown in FIG. In the device, the pressure PL in the evaporator I has a value corresponding to the temperature level TA in FIG. Therefore, the coefficient of performance of a vapor compression refrigerator is significantly improved by increasing the evaporation temperature. In the above embodiment, the heat source of the generator 8 was introduced from another process, but the heat of condensation released from the condenser 5 of the vapor compression refrigerator may be used as the heat source. Further, in the above embodiment, NH3H2O was explained as the working medium of the thermally driven refrigerator, but the working medium is not limited to this medium, and methylamine (CHx N Hz
)-Calcium chloride (CaC1□) and other media can provide similar effects. Further, in the above embodiment, a two-stage compression refrigeration cycle was used as the vapor compression refrigerator, but if the evaporation temperature is high, a single-stage compression refrigeration cycle may be used.

【発明の効果】【Effect of the invention】

以上のように、この発明による複合冷凍装置では、蒸気
圧縮式冷凍装置の蒸発温度を従来の蒸気圧縮式より高く
し、この蒸発熱を熱駆動冷凍機の凝縮器などの冷却源と
して利用するとともに、利用する低温熱を熱駆動式冷凍
機の蒸発器から得る構成としたため、蒸気圧縮式冷凍機
側の成績係数が著しく向上して、複合冷凍装置の成績係
数も従来の蒸気圧縮式に比べ大きくなり、高効率な運転
が可能となる効果がある。
As described above, in the combined refrigeration system according to the present invention, the evaporation temperature of the vapor compression type refrigeration system is made higher than that of the conventional vapor compression type, and this heat of evaporation is used as a cooling source for the condenser of the heat-driven refrigerator. Since the low-temperature heat to be used is obtained from the evaporator of the heat-driven refrigerator, the coefficient of performance of the vapor compression refrigerator is significantly improved, and the coefficient of performance of the combined refrigeration system is also greater than that of the conventional vapor compression system. This has the effect of enabling highly efficient operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による複合冷凍装置を示す
系統図、第2図は第1図の冷凍装置の動作状態を示す平
衡線図、第3図はこの発明の他の実施例による複合冷凍
装置を示す系統図、第4図は従来の蒸気圧縮式冷凍機の
系統図、第5図は第4図の冷凍機の動作状態を示す平衡
線図である。 ■は蒸発器、2は低段圧縮機、3は中間冷却器、4は高
段圧縮機、5は凝縮器、8は発生器、9は凝縮器、10
は精溜器、11は第3減圧装置、12は1発器、13は
吸収器、14は熱回収熱交換器である。 なお、図中、同一符号は同一または相当部分を示す。 特 許 出 願 人  三菱電機株式会社(外2名) TE     TC=TA      TG−〉1 寸       囚
FIG. 1 is a system diagram showing a combined refrigeration system according to an embodiment of the present invention, FIG. 2 is an equilibrium diagram showing the operating state of the refrigeration system shown in FIG. FIG. 4 is a system diagram showing a combined refrigeration system, FIG. 4 is a system diagram of a conventional vapor compression refrigerator, and FIG. 5 is an equilibrium diagram showing the operating state of the refrigerator shown in FIG. ■ is an evaporator, 2 is a low stage compressor, 3 is an intercooler, 4 is a high stage compressor, 5 is a condenser, 8 is a generator, 9 is a condenser, 10
1 is a rectifier, 11 is a third pressure reducing device, 12 is a generator, 13 is an absorber, and 14 is a heat recovery heat exchanger. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant Mitsubishi Electric Corporation (2 others) TE TC=TA TG->1 size prisoner

Claims (1)

【特許請求の範囲】[Claims] 冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮させる凝
縮器、凝縮された冷媒を蒸発させて冷熱を発生させる蒸
発器を有する蒸気圧縮式冷凍機と、発生器で発生した蒸
気を凝縮させる凝縮器、この凝縮器からの液体を蒸発さ
せる蒸発器、この蒸発器からの蒸気を液体に吸収させて
高濃度の液体を前記発生器に送る吸収器を有する熱駆動
式冷凍機と、前記蒸気圧縮式冷凍機の前記蒸発器で得ら
れた冷熱で、前記熱駆動式冷凍機の前記凝縮器および前
記吸収器を冷却可能に前記熱駆動式冷凍機の前記蒸発器
から冷熱を外部に取出す冷却系路とを備えた複合冷凍装
置。
A vapor compression refrigerator has a compressor that compresses refrigerant, a condenser that condenses the compressed refrigerant, an evaporator that evaporates the condensed refrigerant to generate cold heat, and a condenser that condenses the vapor generated in the generator. a thermally driven refrigerator having an evaporator for evaporating the liquid from the condenser, an absorber for absorbing the vapor from the evaporator into the liquid and sending the highly concentrated liquid to the generator; and the vapor compressor. A cooling system that extracts cold heat from the evaporator of the heat-driven refrigerator to the outside so that the condenser and the absorber of the heat-driven refrigerator can be cooled with the cold heat obtained by the evaporator of the heat-driven refrigerator. Composite refrigeration equipment equipped with
JP12282989A 1989-05-18 1989-05-18 Complex freezing device Pending JPH02302565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12282989A JPH02302565A (en) 1989-05-18 1989-05-18 Complex freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12282989A JPH02302565A (en) 1989-05-18 1989-05-18 Complex freezing device

Publications (1)

Publication Number Publication Date
JPH02302565A true JPH02302565A (en) 1990-12-14

Family

ID=14845672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12282989A Pending JPH02302565A (en) 1989-05-18 1989-05-18 Complex freezing device

Country Status (1)

Country Link
JP (1) JPH02302565A (en)

Similar Documents

Publication Publication Date Title
US20180172320A1 (en) Multi-stage plate-type evaporation absorption cooling device and method
US20040237527A1 (en) Exhaust heat recovery system
JPH01137170A (en) Method and device for absorbing heat
EP2659201B1 (en) Hybrid absorption-compression chiller and a related method for providing refrigeration effect
JP2897587B2 (en) Absorption refrigerator
CN101871702B (en) Double heat source high-efficiency absorption refrigerating plant
JP2006017350A (en) Refrigeration device
KR100355978B1 (en) Absorption refrigeration system with condensate solution coupling
JPH0953864A (en) Engine type cooling device
US5966948A (en) Sub-ambient absorber GAX cycle
CN210089182U (en) Absorption type supercooling refrigerating system
JPH02302565A (en) Complex freezing device
JPS62218773A (en) Cold and heat accumulator
JP2010121903A (en) Absorption-type refrigerating device
JP2008020094A (en) Absorption type heat pump device
JPH05272837A (en) Compression absorption composite heat pump
JP3231441B2 (en) Absorption refrigerator, chiller / heater and heat pump with steam turbine and compressor in absorber
JP2004069276A (en) Waste heat recovering cooling system
CN215892833U (en) Two-stage generation absorption heat pump air conditioner
CN217110104U (en) Vapor compression type refrigeration heat pump circulating system with surrounding type heat regenerator
JP2004301345A (en) Ammonia absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP5402187B2 (en) Refrigeration equipment
JP2685583B2 (en) Heat pump heat recovery device
CN113587491A (en) Double-stage generation absorption heat pump air conditioning device