JPH02302392A - Method for controlling solidified texture of metal and apparatus therefor - Google Patents

Method for controlling solidified texture of metal and apparatus therefor

Info

Publication number
JPH02302392A
JPH02302392A JP12206989A JP12206989A JPH02302392A JP H02302392 A JPH02302392 A JP H02302392A JP 12206989 A JP12206989 A JP 12206989A JP 12206989 A JP12206989 A JP 12206989A JP H02302392 A JPH02302392 A JP H02302392A
Authority
JP
Japan
Prior art keywords
metal body
solidification
metal
control device
ceramic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12206989A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Takao Kawakazu
高穂 川和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12206989A priority Critical patent/JPH02302392A/en
Publication of JPH02302392A publication Critical patent/JPH02302392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the control of especially the temperature gradient of a coagulation interface over a wide range and obtain a metal having unidirectionally solidified texture by encircling a vertical ceramic cylinder with a high-frequency induction coil for heating, vertically shifting the ceramic cylinder relative to the coil and supplying a melting raw material into the cylinder. CONSTITUTION:A melting raw material 4 consisting of a metallic rod having circular or polygonal cross-section is clamped 5, set at a specific position and melted by heating with a high-frequency induction coil 3 while lowering 10 the receiving table 2. During the above process, the temperature gradient is made to be sufficiently large to prevent the super-cooling of texture at the coagulation interface contacting with the molten zone 6 and the temperature gradient is controlled in such a manner as to keep the coagulation interface to be upwards convex. A unidirectional excellent solidified texture can be formed by this process. A metallic rod having unidirectionally solidified texture with extremely excellent directionality can be produced in high energy effect.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は純金属、各種合金からなる棒状金属体を溶解
凝固し凝固組織を制御させ、一方向性凝固組織もしくは
単結晶組織を得ることを目的とした金属体の凝固組織制
御装置及び装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention melts and solidifies a rod-shaped metal body made of pure metal or various alloys, controls the solidification structure, and obtains a unidirectional solidification structure or single crystal structure. The present invention relates to an apparatus and apparatus for controlling the solidification structure of a metal body.

[従来の技術] 凝固組織を制御した金属体の製造装置は特公昭62−5
7418号公報、特開昭62−227551号公報等に
提案されている。
[Prior art] An apparatus for manufacturing metal bodies with a controlled solidification structure was developed by the Japanese Patent Publication No. 1986-5.
This method has been proposed in JP-A No. 7418, Japanese Unexamined Patent Application Publication No. 62-227551, and the like.

特公昭62−57418号公報ではルツボ内で溶解した
金属を順次凝固させながら上方に引き上げる方法であり
、一方特開閉62−227551号公報は同じくルツボ
中で溶解した金属をルツボ側壁に設けた開口部から順次
水平方向に引き抜く方法である。
Japanese Patent Publication No. 62-57418 discloses a method in which metal melted in a crucible is sequentially solidified and pulled upward, while Japanese Patent Publication No. 62-227551 discloses a method in which metal melted in a crucible is pulled upward through an opening provided in the side wall of the crucible. This method involves sequentially pulling out horizontally from the beginning.

[発明が解決しようとする課題] これらの方法は、いずれも溶解素材を全量一旦溶解し、
その後引き抜きながら順次凝固させる手法であり、大量
の溶湯を準備し、温度コントロールしながら保持する必
要があって、エネルギー効率という点から不利益が多い
[Problem to be solved by the invention] In both of these methods, the entire amount of the melted material is melted,
This method involves sequentially solidifying the molten metal while drawing it out, which requires preparing a large amount of molten metal and holding it while controlling the temperature, which has many disadvantages in terms of energy efficiency.

又両者において、凝固組織を制御するための鋳型加熱方
法は、単純な抵抗加熱又は多重巻きコイルを用いた高周
波加熱方法である。従って凝固組織を制御するために最
も重要な凝固界面における温度勾配の制御要素が限定さ
れる。もつとも凝固完了した金属体を水、その他のガス
によって強制冷却することができるが、割れ悪受性の高
い金属例えば金属間化合物は金属体に割れが発生し、良
好な金属体が得られない。
In both cases, the mold heating method for controlling the solidification structure is simple resistance heating or high frequency heating using a multi-wound coil. Therefore, the control element for the temperature gradient at the solidification interface, which is most important for controlling the solidification structure, is limited. Although it is possible to forcibly cool the solidified metal body with water or other gas, metals that are highly susceptible to cracking, such as intermetallic compounds, will cause cracks in the metal body, making it impossible to obtain a good metal body.

以上述べた通り従来の方法又は装置では、凝固組織が制
御された良好な金属体を得ることが困難な場合が多い。
As described above, it is often difficult to obtain a metal body with a well-controlled solidification structure using conventional methods or devices.

本発明は、金属体の凝固組織を一方向に制御した、いわ
ゆる一方向性凝固組織とした金属体を得るため、特に凝
固界面の温度勾配を広い範囲で制御し、かつ良好な一方
向凝固組織を一有する金属体を製造するための装置を提
供することを目的とする。
In order to obtain a metal body with a so-called unidirectional solidification structure in which the solidification structure of the metal body is controlled in one direction, the present invention particularly aims to control the temperature gradient at the solidification interface over a wide range and to have a good unidirectional solidification structure. An object of the present invention is to provide an apparatus for manufacturing a metal body having one of the following.

ここで金属体は純金属例えばAffl、Cu、Ti。Here, the metal body is a pure metal such as Affl, Cu, or Ti.

Fe、SL等であり、又これらの合金、金属間化合物が
あるが、これらに限定されない、金属であれば、下方又
は上方から一方向に凝固させることにより一方向性凝固
組織又は単結晶組織が得られる。
For metals, including but not limited to Fe, SL, alloys, and intermetallic compounds thereof, unidirectional solidification structures or single crystal structures can be obtained by solidifying in one direction from below or above. can get.

[課題を解決するための手段] 第1の発明の金属体の凝固組織制御装置は、受台上にセ
ラミック円筒を垂直に立て、加熱用の高周波誘導コイル
を、該セラミック円筒を囲んで配置され、該高周波誘導
コイル又は該セラミック円筒を相対的に上向き又は下向
きに移動させる機構を有し、溶解素材を該セラミック円
筒内へ供給する機構とを具備したことを特徴とする。
[Means for Solving the Problems] The apparatus for controlling the solidification structure of a metal body according to the first invention comprises: a ceramic cylinder is vertically erected on a pedestal, and a high-frequency induction coil for heating is arranged surrounding the ceramic cylinder. , a mechanism for relatively moving the high-frequency induction coil or the ceramic cylinder upward or downward, and a mechanism for supplying the melted material into the ceramic cylinder.

第2の発明の金属体の凝固組織制御方法は、第1の発明
の凝固組織制御装置を用いて、高周波誘導電力、溶解速
度、凝固速度を制御して、凝固した金属体中心部の凝固
界面が上方に凸となるように制御しながら溶解凝固を行
うことを特徴とする。
The solidification structure control method of a metal body according to the second invention uses the solidification structure control device according to the first invention to control high-frequency induction power, dissolution rate, and solidification rate, so as to control the solidification interface at the center of the solidified metal body. It is characterized by performing melting and solidification while controlling it so that it becomes convex upward.

[実施例] 本発明の基本的構成を図面を参照しながら説明する。[Example] The basic configuration of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の金属体の凝固組織制御装置
を示す図で、あ条、金属体の凝固組織制御装置の中心に
通常セラミック製の受台2を配置し、その上にセラミッ
ク円筒1を配置する。セラミック円筒1は融点の低いA
II、Cu等を溶解する場合には例えばシリカ(SiO
z)製でもよいが、融点の高いFe等である場合には、
アルミナ(Aρ2OS〉、熱分解ボロンナイトライド(
P−BN>等のセラミックがよい、該セラミック円筒1
の外部から高周波電力を供給する高周波コイル3を配!
する。この高周波コイル3の構造は溶解素材4に局所的
に電力を入力するため平板状のものがよい、溶解素材4
は上部でこれを保持する溶解素材支持チャック5により
吊り下げられている。この溶解素材支持チャック5は必
要により溶解素材と同軸で回転する。この回転は溶解素
材4の溶解面を均一にすると共に、溶融帯6内の温度分
布を均一にする作用があり、組織制御に寄与する。
FIG. 1 is a diagram showing a solidification structure control device for a metal body according to an embodiment of the present invention, in which a pedestal 2, usually made of ceramic, is arranged at the center of the striations and the solidification structure control device for a metal body. A ceramic cylinder 1 is placed. The ceramic cylinder 1 has a low melting point A
When dissolving II, Cu, etc., for example, silica (SiO
z), but if it is made of Fe etc. with a high melting point,
Alumina (Aρ2OS), pyrolytic boron nitride (
The ceramic cylinder 1 is preferably made of ceramic such as P-BN>.
A high-frequency coil 3 is arranged to supply high-frequency power from the outside!
do. The structure of this high-frequency coil 3 is preferably a flat plate in order to locally input electric power to the melted material 4.
is suspended by a melted material support chuck 5 that holds it at the upper part. This melted material support chuck 5 rotates coaxially with the melted material as necessary. This rotation has the effect of making the melting surface of the melting material 4 uniform and also making the temperature distribution in the melting zone 6 uniform, contributing to structure control.

高周波電力を溶融帯6に局部的に集中させるには、平板
状の高周波コイルがよく、その構造例を第2図、第3図
に示す、第2図は本発明の一実施例の平板状の高周波コ
イルを示す図で、第2図(a)は本発明の一実施例の平
板状の高周波コイルの斜視図で、第2図(b)は、第2
[g(a)のA−A断面図である。7は銅製の円板体よ
りなる第1の集磁リングであって内部は冷却媒体例えば
水を流通させる渭71を形成し、全体として通常水冷さ
れた高周波コイル3が発生する磁力線の分散を防止する
。第2図は高周波コイルの上方への磁力線の分散を防止
する例である。銅製の第1の集磁リング7と高周波コイ
ル3の間には絶縁体72が挿入されている。
In order to locally concentrate the high-frequency power in the melting zone 6, a flat high-frequency coil is suitable, and examples of its structure are shown in FIGS. 2 and 3. FIG. 2(a) is a perspective view of a flat high-frequency coil according to an embodiment of the present invention, and FIG. 2(b) is a perspective view of a flat high-frequency coil according to an embodiment of the present invention.
[It is an AA sectional view of g(a). Reference numeral 7 denotes a first magnetism collecting ring made of a copper disk, and the inside thereof forms a bank 71 through which a cooling medium, for example, water, flows, and as a whole prevents the dispersion of magnetic lines of force generated by the high-frequency coil 3, which is usually water-cooled. do. FIG. 2 is an example of preventing the magnetic lines of force from dispersing upward in a high-frequency coil. An insulator 72 is inserted between the first magnetism collecting ring 7 made of copper and the high frequency coil 3.

第3図は他の実施例の平板状の高周波コイルを示す図で
、第3図(a)は本発明の他の実施例の平板状の高周波
コイルの斜視図で、第3図(b)は、第3図(a>のB
−8断面図である。この図は銅製の第1の集磁リングと
一体に形成された高周波コイル3で、水冷用接続部31
より冷却水が給排水され、水冷用の渭32と接続されて
いる。
FIG. 3 is a diagram showing a flat high frequency coil according to another embodiment, FIG. 3(a) is a perspective view of a flat high frequency coil according to another embodiment of the present invention, and FIG. 3(b) is a diagram showing a flat high frequency coil according to another embodiment of the present invention. is B in Figure 3 (a>
-8 sectional view. This figure shows the high frequency coil 3 formed integrally with the first magnetism collecting ring made of copper, and the water cooling connection part 31.
Cooling water is supplied and drained from the pipe, and it is connected to a water cooling pipe 32.

これらの高周波コイル3は通常加熱用として設計された
ものである。
These high frequency coils 3 are normally designed for heating purposes.

第1図に示す高周波コイル3は、上側に内部を水冷した
銅製の第1の集磁リング7ができるだけ高周波コイル3
に接近してLられてあり、これによって上方への磁力線
の分散を防止することができる。これは磁力線を溶融体
6に集中させるためである。また、高周波コイル3の下
方には、凝固界面における温度勾配が一方向凝固組織に
最適となるような位置に第2の集磁リング70が設けで
ある。第2の集磁リング70が高周波コイル3より離れ
るほど、既凝固部分に磁力線が吸収されて発熱がありす
るので、この第2の集磁リング70と高周波コイルとの
距離を調整することにより、凝固界面の温度勾配を調節
することがってきる。
The high frequency coil 3 shown in FIG.
It is possible to prevent the magnetic lines of force from dispersing upward. This is to concentrate the lines of magnetic force on the melt 6. Further, a second magnetic flux collecting ring 70 is provided below the high-frequency coil 3 at a position where the temperature gradient at the solidification interface is optimal for a unidirectionally solidified structure. The farther the second magnetic flux collecting ring 70 is from the high frequency coil 3, the more the magnetic lines of force are absorbed in the solidified portion and the more heat is generated. Therefore, by adjusting the distance between the second magnetic flux collecting ring 70 and the high frequency coil, The temperature gradient at the solidification interface can be adjusted.

上記第1の集磁リングおよび第2の集磁リングを用い、
これによって溶融帯6の凝固界面における温度勾配を制
御し最終的に結晶方位を制御する。
Using the first magnetic flux collecting ring and the second magnetic flux collecting ring,
This controls the temperature gradient at the solidification interface of the molten zone 6 and ultimately controls the crystal orientation.

また、溶解素材4の供給速度、入力電力等を制御しなが
ら溶解速度を制御し、溶解と凝固を完了する。高周波コ
イル3を定位置とした場合には受台2を下降させる。赤
外線を透過する透明石英又は熱分解ボロンナイトライド
(P−BN)によってセラミック円筒1が構成された場
合は、溶融帯を観察するテレビカメラ又は赤外線カメラ
9を配置し、観察しながら溶解速度制御することもでき
る。受台2は凝固が完了した金属体8を降下させる降下
機構10に接続している。一方受台2を固定しておき、
高周波コイル3、第1の集磁リング7および第2の集磁
リング70を上方向に移動しながら溶解を実施するもの
も当然考えられる。
Furthermore, the melting speed is controlled while controlling the supply speed of the melting material 4, input power, etc., and melting and solidification are completed. When the high frequency coil 3 is in the fixed position, the pedestal 2 is lowered. When the ceramic cylinder 1 is made of transparent quartz or pyrolytic boron nitride (P-BN) that transmits infrared rays, a television camera or an infrared camera 9 is arranged to observe the melting zone, and the dissolution rate is controlled while observing. You can also do that. The pedestal 2 is connected to a lowering mechanism 10 that lowers the solidified metal body 8. On the other hand, fix the cradle 2,
Of course, it is also conceivable that melting is carried out while moving the high frequency coil 3, the first magnetic flux collecting ring 7, and the second magnetic flux collecting ring 70 upward.

溶解する金属体8が大気中で酸化し易い、例えば純鉄の
場合には、第1図に示す装置全体を、例えば透明石英で
構成したセラミック容器又は金属製容器のような密閉容
器内に収容し、内部に不活性ガス等を充填し溶解凝固を
行うことがよい、この密閉容器は、全体的には前記透明
石英の代わりに金属製容器で構成し、一部に内部観察用
の窓を設け、これをガラス、石英等で構成することが実
際的である。・ 第1図に示すセラミック円筒1は底付きであり、高周波
コイル3または金属体8のいずれか一方を相対的に移動
させながら溶解、凝固を実施した場合を示したが、次に
説明するような他の実施態様もある。すなわち、第4図
に示すように上端、下端の開いたセラミック円筒1とし
、溶解−凝固を開始する際には、第4図(b)に示す通
り受台2の一部を切り込んで溶解−凝固させた金属体8
を形成させてから受台2を降下機構10により下降させ
ることも可能である。
If the metal body 8 to be melted is easily oxidized in the atmosphere, for example, pure iron, the entire apparatus shown in FIG. 1 is housed in a closed container such as a ceramic container made of transparent quartz or a metal container. However, it is preferable to melt and solidify the container by filling it with an inert gas or the like.This hermetic container is constructed entirely of a metal container instead of the transparent quartz, and a part is provided with a window for internal observation. It is practical to provide a filter and construct it from glass, quartz, or the like. - The ceramic cylinder 1 shown in Fig. 1 has a bottom, and the case where melting and solidification were performed while moving either the high-frequency coil 3 or the metal body 8 relatively was shown, but as will be explained next. There are other implementations as well. That is, as shown in FIG. 4, a ceramic cylinder 1 is formed with open upper and lower ends, and when melting and solidification is started, a part of the pedestal 2 is cut and melted as shown in FIG. 4(b). Solidified metal body 8
It is also possible to lower the pedestal 2 by the lowering mechanism 10 after forming the cradle.

第4図(a>は、この実施態様における定常状態を示し
、第4図(b)は製造開始時の状態を示す図である。そ
の他の点は第1図と同じ構成である。この装置では前記
セラミック円筒lを定位置に配宣し、上方より溶解素材
4を連続的又は半連続的に供給し、溶解−凝固を完了し
た金属体8を連続的又は半連続的に下方に引き抜くこと
によって目的が達せられる。ここで高周波コイル3は定
位置とし、したがって溶融帯6も定位置に留まる。
FIG. 4(a) shows the steady state in this embodiment, and FIG. 4(b) shows the state at the start of production.Other points are the same as in FIG. 1.This device Then, the ceramic cylinder l is placed in a fixed position, the molten material 4 is continuously or semi-continuously supplied from above, and the metal body 8 that has completed melting and solidification is continuously or semi-continuously drawn downward. The objective is achieved by, where the high-frequency coil 3 remains in place and therefore the melting zone 6 also remains in place.

ここでこの凝固組織制御装置の運転方法及び作用につい
て説明する。まず溶解素材4として通常市販で得られる
円形、あるいは多角形の棒状金属体を用意する。Aβ、
Cu、Feあるいはこれらの合金は棒状に形成されてい
ればよい、加工が困難な金属の場合には粉末を圧縮成形
した棒状素材がよい、これを素材支持チャック5によっ
て保持し、所定の位置にセットして、高周波電力により
溶解しながら、例えば受台2を下降81横10によって
下降させる。ここで重要な点は第4図(a)、(b)に
示すように、 ■下側の凝固界面において組織的に適冷が生じないよう
な十分な温度勾配を有すること、■下側の凝固界面が上
側に凸となるように温度分布を制御すること が一方向で、かつ良好な凝固組織を得るために必要であ
る。■の条件は凝固界面において溶湯内で等軸晶が発生
せず、従って結晶は常に凝固界面から上方へ向かって進
行するための条件である。この条件は金属の種類によっ
て異なる。■の条件は凝固界面が常に上方でかつ同一平
面で観察したとき金属体内部から外周に向かって凝固す
る条件であり、これによって金属体内部に凝固収縮孔が
発生ぜず、又通常の鋳塊に観察される中心部の偏析を防
止する重要な要件である。上記の条件は高周波コイル形
状、溶解速度、相互的移動速度、更には、溶解素材の回
転速度によって制御される。高周波電力は一般に外部高
周波コイル3から入力すると、金属体の外周に大きな電
力が入力され(表皮効果)、内部へ行く程に入力電力が
低下するので、本装置は極めて都合がよい。
Here, the operating method and operation of this coagulation structure control device will be explained. First, a commercially available circular or polygonal rod-shaped metal body is prepared as the melting material 4. Aβ,
Cu, Fe, or their alloys only need to be formed into a rod shape. In the case of metals that are difficult to process, a rod-shaped material made by compression molding of powder is preferable. This is held by the material support chuck 5 and held in a predetermined position. After setting, for example, the pedestal 2 is lowered by lowering 81 and horizontal 10 while being melted by high-frequency power. The important points here, as shown in Figures 4(a) and (b), are: 1) having a sufficient temperature gradient to prevent systematic cooling at the lower solidification interface; 2) It is necessary to control the temperature distribution so that the solidification interface is convex upward in one direction and to obtain a good solidification structure. Condition (2) is such that no equiaxed crystals are generated in the molten metal at the solidification interface, and therefore the crystals always advance upward from the solidification interface. This condition differs depending on the type of metal. Condition (2) is a condition in which the solidification interface is always above and solidifies from the inside of the metal body toward the outer periphery when observed on the same plane, and as a result, solidification shrinkage holes do not occur inside the metal body, and normal ingots are solidified. This is an important requirement to prevent the central segregation observed in The above conditions are controlled by the high frequency coil shape, the melting speed, the reciprocal movement speed, and also the rotational speed of the melted material. Generally, when high-frequency power is input from the external high-frequency coil 3, a large amount of power is input to the outer periphery of the metal body (skin effect), and the input power decreases as it goes inside, so this device is extremely convenient.

このように前記の従来の装置よりも、多くの制御要素を
有しているので、一方向凝固組織を有する金属体の製造
に極めて重要な役割を果たす。第4図は前記の通り底部
が開いた短いセラミック円筒を用い、上方より連続的又
は半連続的に溶解素材を供給し、溶解−凝固した金属体
を連続的又は半連続的に製造できる点が異なる。第4図
(b)には、本装置における製造開始時における機構を
示したものである。即ち、受台2の一部を例えば図示の
通り切り込んでおき、所定の時間後、下降機構10によ
り受台2を下降させて、溶解−凝固を行う0次にこの装
置を使用した具体的な実施例について説明する。
Since it has more control elements than the conventional apparatus described above, it plays a very important role in producing a metal body having a unidirectionally solidified structure. Fig. 4 shows that, as mentioned above, a short ceramic cylinder with an open bottom is used, and the molten material is supplied continuously or semi-continuously from above, and the melted and solidified metal body can be produced continuously or semi-continuously. different. FIG. 4(b) shows the mechanism of this apparatus at the time of starting production. That is, a part of the pedestal 2 is cut, for example, as shown in the figure, and after a predetermined period of time, the pedestal 2 is lowered by the lowering mechanism 10 to perform melting and solidification. An example will be explained.

(実施例1) 外径250■謙Φ、長さ1500龍の石英製の密閉容器
内にArガスを封入し、第1図の装置をその内部にセッ
トした。内径50m■Φ、外径54龍Φの石英ルツボの
セラミック円筒1を、受台2に立て、外径40111Φ
、純度99.99%のA!!金属棒を溶解−凝固させ、
5〜15 m* / viaで引き抜いた。得られたA
I金属体は、約49龍Φで、長さは400 asである
。金属体8の断面には3個の結晶しか観察されず、又各
結晶は下方から上方へ向かっており完全な一方向性凝固
組織を有していた。
(Example 1) Ar gas was sealed in a sealed quartz container with an outer diameter of 250 mm and a length of 1500 mm, and the apparatus shown in FIG. 1 was set inside the container. A quartz crucible ceramic cylinder 1 with an inner diameter of 50 m Φ and an outer diameter of 54 Φ is placed on a pedestal 2, and an outer diameter of 40111 Φ is placed.
, 99.99% purity A! ! Melting and solidifying a metal rod,
Pulled out at 5-15 m*/via. Obtained A
The I metal body is approximately 49 Φ and 400 as long. Only three crystals were observed in the cross section of the metal body 8, and each crystal was oriented from the bottom to the top and had a completely unidirectional solidification structure.

上記において、溶解素材4を毎分10回回転転た場合と
、全く回転しなかった場合を比較したところ、回転した
場合には断面内の結晶数は異なっていないが、方向性が
優れていた。この種の純A1金属体を1〜2龍Φの線材
に加工したものは特に電気的特性に優れていた。尚上記
の実験において、電力は200 KHzの高周波を最大
13KW*で負荷した。
In the above, when we compared the case where the melted material 4 was rotated 10 times per minute and the case where it was not rotated at all, we found that when it was rotated, the number of crystals in the cross section was not different, but the directionality was better. . This kind of pure A1 metal body processed into a wire rod with a diameter of 1 to 2 Φ had particularly excellent electrical characteristics. In the above experiment, a high frequency power of 200 KHz was applied at a maximum of 13 KW*.

(実施例2) 実施例1で用いた石英ルツボの代わりに熱分解ボロンナ
イトライド(P−BN)のセラミック円筒1を第4図に
示す通りに配置した。第4図(b)は前記の通り、溶解
−凝固を作業を開始する状態を示す、この場合、熱分解
ボロンナイトライド(P−B、N)のセラミック円筒1
で内径50龍Φ、外径54龍Φである。溶解素材として
は、純度99.99%、直径45mmのA、&金属棒で
ある。溶解、凝固した金属体は、直径約49 maΦ、
長さ、500■■のものであった。この金属体の性質も
、実施例1と変わりなく、電気的特性に優れていた。尚
本実験のおいては、溶融帯を赤外線カメラで観察しなが
ら実験と行った。
(Example 2) Instead of the quartz crucible used in Example 1, a ceramic cylinder 1 made of pyrolytic boron nitride (P-BN) was arranged as shown in FIG. 4. As described above, FIG. 4(b) shows the state where the melting-solidification operation is started. In this case, the ceramic cylinder 1 of pyrolyzed boron nitride (PB, N)
The inner diameter is 50 mm and the outer diameter is 54 mm. The melting material is A & metal rod with a purity of 99.99% and a diameter of 45 mm. The melted and solidified metal body has a diameter of approximately 49 maΦ,
The length was 500mm. The properties of this metal body were also the same as in Example 1, and the electrical properties were excellent. In this experiment, the experiment was conducted while observing the molten zone with an infrared camera.

[発明の効果] 本発明の方法及び装置は、高周波誘導コイルと溶解素材
との相対的な移動により、溶解素材を順次溶解、凝固さ
せ、溶解速度、冷却方法を制御するので、エネルギー効
果も高く、極めて方向性に優れた一方向性凝固組織を有
する棒状金属体が製造できた。この棒状金属体は結晶方
位が一方向に制御されているため、機械的、電気的な特
性が優れている。
[Effects of the Invention] The method and apparatus of the present invention sequentially melt and solidify the melted material through the relative movement of the high-frequency induction coil and the melted material, and control the melting rate and cooling method, so it is highly energy efficient. A rod-shaped metal body having a unidirectional solidification structure with excellent directionality could be manufactured. Since the crystal orientation of this rod-shaped metal body is controlled in one direction, it has excellent mechanical and electrical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の金属体の凝固組織制御装置
の縦断面図、第2図および第3図は本実施例のそれぞれ
異なる高周波コイルを示す図、第4図は底部開放セラミ
ック円筒を用いた場合の装置の構成を示す縦断面図であ
る。 1・・・セラミック円筒、2・・・受台、3・・・高周
波コイル、4・・・溶解素材、5・・・素材支持チャッ
ク、6・・・溶融帯、7・・・第1の集磁リング、8・
・・金属体、9・・・テレビカメラ又は赤外線カメラ、
10・・・降下機構、70・・・第2の集磁リング、7
1・・・水冷用溝、72・・・絶縁体、31・・・水冷
用接続部、32・・・水冷用溝。
FIG. 1 is a vertical cross-sectional view of a solidification structure control device for a metal body according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing different high-frequency coils of this embodiment, and FIG. 4 is a ceramic with an open bottom. FIG. 3 is a longitudinal cross-sectional view showing the configuration of the device when a cylinder is used. DESCRIPTION OF SYMBOLS 1... Ceramic cylinder, 2... Pedestal, 3... High frequency coil, 4... Melting material, 5... Material support chuck, 6... Melting zone, 7... First Magnetism collecting ring, 8.
...Metal body, 9...TV camera or infrared camera,
10... Lowering mechanism, 70... Second magnetism collecting ring, 7
DESCRIPTION OF SYMBOLS 1... Water cooling groove, 72... Insulator, 31... Water cooling connection part, 32... Water cooling groove.

Claims (5)

【特許請求の範囲】[Claims] (1)受台上にセラミック円筒を垂直に立て、加熱用の
高周波誘導コイルを該セラミック円筒を囲んで配置させ
、該高周波誘導コイル又は該セラミック円筒を相対的に
上向き又は下向きに移動させる機構を有し、溶解素材を
該セラミック円筒内へ供給する機構とを具備したことを
特徴とする金属体の凝固組織制御装置。
(1) A mechanism is provided in which a ceramic cylinder is placed vertically on a pedestal, a high-frequency induction coil for heating is placed surrounding the ceramic cylinder, and the high-frequency induction coil or the ceramic cylinder is relatively moved upward or downward. 1. A solidification structure control device for a metal body, comprising: a mechanism for supplying a melted material into the ceramic cylinder.
(2)請求項1に記載した金属体の凝固組織制御装置全
体を金属製容器又はセラミック製容器内に収容したこと
を特徴とする金属体の凝固組織制御装置。
(2) A solidification structure control device for a metal body, characterized in that the entire solidification structure control device for a metal body according to claim 1 is housed in a metal container or a ceramic container.
(3)請求項2に記載において、セラミック容器が透明
石英により構成されていることを特徴とする金属体の凝
固組織制御装置。
(3) A solidification structure control device for a metal body according to claim 2, wherein the ceramic container is made of transparent quartz.
(4)請求項1、2及び3の何れか1に記載の凝固組織
制御装置において、金属溶解帯を観察又は測温するため
のテレビカメラもしくは赤外線カメラを装着させること
を特徴とする金属体の凝固組織制御装置。
(4) In the solidification structure control device according to any one of claims 1, 2 and 3, the metal body is equipped with a television camera or an infrared camera for observing the metal dissolution zone or measuring the temperature. Coagulation tissue control device.
(5)請求項1、2、3及び4の何れか1に記載の凝固
組織制御装置を用いて、高周波誘導電力、溶解速度、凝
固速度を制御して、凝固した金属体中心部の凝固界面が
上方に凸となるように制御しながら溶解凝固を行うこと
を特徴とする金属体の凝固組織制御方法。
(5) Using the solidification structure control device according to any one of claims 1, 2, 3, and 4, the solidification interface of the center of the solidified metal body is controlled by controlling the high frequency induction power, the dissolution rate, and the solidification rate. A method for controlling the solidification structure of a metal body, characterized by performing melting and solidification while controlling the metal body to be convex upward.
JP12206989A 1989-05-16 1989-05-16 Method for controlling solidified texture of metal and apparatus therefor Pending JPH02302392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12206989A JPH02302392A (en) 1989-05-16 1989-05-16 Method for controlling solidified texture of metal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12206989A JPH02302392A (en) 1989-05-16 1989-05-16 Method for controlling solidified texture of metal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02302392A true JPH02302392A (en) 1990-12-14

Family

ID=14826871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12206989A Pending JPH02302392A (en) 1989-05-16 1989-05-16 Method for controlling solidified texture of metal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02302392A (en)

Similar Documents

Publication Publication Date Title
JP5344919B2 (en) Apparatus and method for crystal growth
US4178986A (en) Furnace for directional solidification casting
CA1309320C (en) Continuous method for manufacturing grain-oriented magnetostrictive bodies
JPH092897A (en) Production of polycrystalline semiconductor and manufacturing equipment therefor
CN111230078A (en) Directional solidification method for metal material
CN112048605A (en) Directional annealing device and method for preparing metal columnar crystals
US5067551A (en) Method for manufacturing alloy rod having giant magnetostriction
JPS61169149A (en) Continuous casting method
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
JP3992469B2 (en) Oxide eutectic bulk production equipment and production method
JPH02302392A (en) Method for controlling solidified texture of metal and apparatus therefor
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JP3005633B2 (en) Method for producing polycrystalline silicon ingot for solar cell
JPH0337181A (en) Production of big magnetostrictive alloy rod composed of rare earth metal and transition metal
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JPH11255575A (en) Device for pulling single crystal and its cooling
JPH07138012A (en) Device for casting silicon
JP3367069B2 (en) Manufacturing method of giant magnetostrictive alloy rod
CN115198356B (en) Large-sized metal monocrystal with specific orientation and preparation method thereof
KR950011093B1 (en) Process and apparatus for producing refractory electric pole by inductive-heating
JP3342583B2 (en) High frequency heating coil for horizontal continuous casting
JPS62137147A (en) Apparatus for producing bar-shaped ingot
KR0185285B1 (en) Method of manufacturing ingot having unidirectional freezing or single crystal organism
GB1564658A (en) Manufacture of silicon mouldings