JPH0230187B2 - - Google Patents

Info

Publication number
JPH0230187B2
JPH0230187B2 JP55033041A JP3304180A JPH0230187B2 JP H0230187 B2 JPH0230187 B2 JP H0230187B2 JP 55033041 A JP55033041 A JP 55033041A JP 3304180 A JP3304180 A JP 3304180A JP H0230187 B2 JPH0230187 B2 JP H0230187B2
Authority
JP
Japan
Prior art keywords
substrate
mis transistor
voltage
integrated circuit
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55033041A
Other languages
Japanese (ja)
Other versions
JPS56129358A (en
Inventor
Osamu Tomizawa
Kenji Anami
Masahiko Yoshimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3304180A priority Critical patent/JPS56129358A/en
Publication of JPS56129358A publication Critical patent/JPS56129358A/en
Publication of JPH0230187B2 publication Critical patent/JPH0230187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/205Substrate bias-voltage generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 この発明は、半導体集積回路、特に同一チツプ
内に内蔵された基板バイアス電圧発生回路を有す
る半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit, and particularly to a semiconductor integrated circuit having a substrate bias voltage generation circuit built into the same chip.

金属−絶縁物−半導体(MIS)型構造をもつ半
導体集積回路の基板は、通常一定電位にバイアス
されて使用される。このバイアス電源は、集積回
路外部から与えられる場合もあるが、より好まし
くは、集積回路内部で同一チツプ上に設けられ
る。第1図は従来から提案されているオンチツプ
基板バイアス発生回路の回路図を示す。ここで1
01は発振回路、102は駆動回路、103は交
流結合用キヤパシタ、104,105はダイオー
ド接続されたMIS型トランジスタである。108
は基板であり基板発生回路の出力端子106はこ
の基板に接続される。109は、接地線に接続さ
れた拡散領域と基板との間に生ずる容量である。
The substrate of a semiconductor integrated circuit having a metal-insulator-semiconductor (MIS) type structure is normally biased to a constant potential. This bias power supply may be applied from outside the integrated circuit, but is more preferably provided on the same chip inside the integrated circuit. FIG. 1 shows a circuit diagram of a conventionally proposed on-chip substrate bias generation circuit. Here 1
01 is an oscillation circuit, 102 is a drive circuit, 103 is an AC coupling capacitor, and 104 and 105 are diode-connected MIS type transistors. 108
is a substrate, and the output terminal 106 of the substrate generation circuit is connected to this substrate. 109 is a capacitance generated between the diffusion region connected to the ground line and the substrate.

次に動作について説明する。説明を簡略化する
ためにP型基板を用いたnチヤンネルMOS型集
積回路を例にとつて説明する。発振器101の出
力は駆動回路102を介してキヤパシタ103に
供給される。トランジスタ105及び104のし
きい値電圧をVTHとし、102の出力振幅を
VPPとすると、節点107の電位は、トランジ
スタ105のクランプ作用により、最大値が
VTH、最小値がVTH−VPPを持つ負電圧の矩
形波になる。この負電圧によつてトランジスタ1
04を介して、電子が基板に汲みだされ、基板1
08の電位が負にバイアスされる。定常状熊での
基板電位はトランジスタ104のしきい値電圧だ
けシフトするため大略2VTH−VPPとなる。発
振器101及び駆動回路102は通常0から電源
電圧VCCにいたる論理振幅が得られるように設
計されるため、基板電位VBBは、2VTH−VCC
になり、例えばVTHが0.6V、VCCが5.0Vのとき
約−3.8Vの基板バイアスを得ることができる。
Next, the operation will be explained. To simplify the explanation, an n-channel MOS type integrated circuit using a P-type substrate will be taken as an example. The output of oscillator 101 is supplied to capacitor 103 via drive circuit 102 . The threshold voltage of transistors 105 and 104 is VTH, and the output amplitude of transistor 102 is
VPP, the potential at node 107 reaches its maximum value due to the clamping action of transistor 105.
VTH becomes a negative voltage square wave whose minimum value is VTH - VPP. This negative voltage causes transistor 1 to
04, electrons are pumped to the substrate 1
The potential of 08 is negatively biased. Since the substrate potential in the steady state is shifted by the threshold voltage of the transistor 104, it becomes approximately 2VTH-VPP. Since the oscillator 101 and the drive circuit 102 are normally designed to have a logic amplitude ranging from 0 to the power supply voltage VCC, the substrate potential VBB is 2VTH - VCC.
For example, when VTH is 0.6V and VCC is 5.0V, a body bias of approximately -3.8V can be obtained.

次に電源電圧の変動に対する基板バイアス発生
電圧VBBの変動を考える。電源電圧がVCC1か
らより低い電源電圧VCC2に変化したとき、発生
する基板バイアス電圧の定常値は、2VTH−
VCC1から2VTH−VCC2まで変化する。しかし
ながら過渡状熊では、第2図に示すように、電源
線に接続されたn型拡散領域とP型基板との間の
容量性結合によりVBBは2VTH−VCC1まで定
まる電位よりさらに負の方向に一度低くなつた後
ある一定の時定数τで定常値2VTH−VCC2に向
つて上昇する。この時定数τは、第1図における
端子106の出力抵抗と、基板−接地間もしくは
基板−電源間の容量とで定まる。端子106の出
力抵抗は、電源及び接地線に接続されたn型拡散
領域とP型基板で形成されたPN接合の逆バイア
ス状熊におけるリーク電流で決まるため非常に高
い抵抗値を示し、例えば数10GΩ以上の値にな
る。従つて容量が100PF程度のときでも時定数τ
は1秒以上となる。
Next, consider the fluctuation of the substrate bias generation voltage VBB with respect to the fluctuation of the power supply voltage. When the power supply voltage changes from VCC1 to the lower power supply voltage VCC2, the steady-state value of the body bias voltage generated is 2VTH−
Changes from VCC1 to 2VTH−VCC2. However, in the transient state, as shown in Figure 2, VBB becomes more negative than the potential determined by 2VTH-VCC1 due to capacitive coupling between the n-type diffusion region connected to the power supply line and the P-type substrate. Once it becomes low, it rises toward the steady value 2VTH-VCC2 with a certain time constant τ. This time constant τ is determined by the output resistance of the terminal 106 in FIG. 1 and the capacitance between the board and the ground or between the board and the power supply. The output resistance of the terminal 106 is determined by the leakage current in the reverse bias shape of the PN junction formed by the n-type diffusion region connected to the power supply and ground line and the p-type substrate, so it exhibits a very high resistance value, for example, several The value becomes 10GΩ or more. Therefore, even when the capacity is about 100PF, the time constant τ
is 1 second or more.

半導体集積回路における基板バイアスは、与え
られたVCCに対して定常状熊で最適の電圧値に
なるよう設定されるため上記のように過渡的に発
生する異常な基板バイアスは、集積回路の動作上
好ましくない。
The substrate bias in semiconductor integrated circuits is set to the optimum voltage value in a steady state for a given VCC, so the abnormal substrate bias that occurs transiently as described above will affect the operation of the integrated circuit. Undesirable.

従来の半導体集積回路の基板バイアス発生回路
は以上のように構成されているので、VCCの変
動に対して過渡的に発生した異常な基板バイアス
が定常値に復帰する時定数が大きく、このため半
導体集積回路の正常な動作に支障を来たすという
欠点があつた。
Conventional substrate bias generation circuits for semiconductor integrated circuits are configured as described above, so the time constant for abnormal substrate bias that occurs transiently to return to a steady value in response to fluctuations in VCC is large; The drawback was that it interfered with the normal operation of the integrated circuit.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、基板バイアス発生
回路の出力端と、接地線もしくは電源線との間に
比較的小さな抵抗値を有するバイパス手段を設け
ることにより、基板バイアス発生電圧のVCCに
対する応答を早めた装置を提供することを目的と
している。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes providing bypass means having a relatively small resistance value between the output terminal of the substrate bias generation circuit and the ground line or power line. By doing so, it is an object of the present invention to provide a device in which the response of the substrate bias generation voltage to VCC is accelerated.

以下、この発明の一実施例を図について説明す
る。第3図において、201は自走型発振器、2
03はこの発振器201の出力側に駆動回路20
2を介して接続された交流結合用キヤパシタ、2
05はこの結合用キヤパシタ203と基準電位線
である接地との間にダイオード接続された第1の
MISトランジスタ、204はこの第1のMISトラ
ンジスタ205の上記結合用キヤパシタ203に
接続される側の電極と基板209との間に基板発
生回路の出力端子206を介して接続され、上記
第1のMISトランジスタ205の上記電極の電圧
により基板電位を発生させる第2のMISトランジ
スタ、210は接地されたn型拡散領域と基板2
09との間に生ずる接合容量、211はゲートが
接地されて基板209と接地との間にダイオード
接続されたデプレツシヨン型の第3のMISトラン
ジスタ1個により構成され、上記基板電位が所望
の電位2VTH−VCCになるように電流をバイパスす
るパイパス手段である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, 201 is a free-running oscillator;
03 is a drive circuit 20 on the output side of this oscillator 201.
an AC coupling capacitor connected via 2;
05 is a first diode connected between this coupling capacitor 203 and the ground which is a reference potential line.
The MIS transistor 204 is connected between the electrode of the first MIS transistor 205 on the side connected to the coupling capacitor 203 and the substrate 209 via the output terminal 206 of the substrate generation circuit. A second MIS transistor that generates a substrate potential by the voltage of the electrode of the transistor 205; 210 is a grounded n-type diffusion region and the substrate 2;
The junction capacitance 211 generated between the substrate 209 and the substrate 209 is constituted by one depletion type third MIS transistor whose gate is grounded and diode-connected between the substrate 209 and the ground, and the substrate potential is set to the desired potential 2. This is a bypass means to bypass the current so that VTH - V CC .

次に動作について説明する。 Next, the operation will be explained.

発振器201は、自走型発振器であり、一定の
発振周波数で発振し、矩形波もしくは矩形波に近
い出力を駆動回路に供給する。駆動回路202
は、これを受けて、波形整形を行い、交流結合用
キヤパシタ203の一端に印加する。ここでの信
号の論理振幅はVCCに近い値である。ダイオー
ド接続されたトランジスタ205のクランプ作用
により、キヤパシタの他端での信号はしきい値
VTHを最大値、VTH−VCCを最小値とする信
号にレベル変換される。この負の電圧によつてト
ランジスタ204を介して基板に電子が汲み出さ
れ、基板が負にバイアスされる。トランジスタ2
04のしきい値電圧VTHだけシフトするため定
常状熊での基板電位は2VTH−VCCとなり、
2VTH−VCCの電圧によつて基板−接地間の浮
遊容量210が充電されていると考えられる。今
VCCがVCC1からより低い電源電圧VCC2に変化
したとき、発生する基板バイアス電圧の定常値
は、2VTH−VCC1から2VTH−VCC2まで変化
する。このときの過渡状熊では前述した如く、電
源−基板間の容量性結合によりVBBは2VTH−
VCC1で定まる電位よりさらに負の方向に一度低
くなるが、端子206と接地間に抵抗として機能
する第3のMISトランジスタ211を設けバイパ
スしているために、容量210に充電されている
電荷がこのMISトランジスタ211を介してすみ
やかに放電され、すみやかに定常値2VTH−
VCC2に達する。つまり、基板電位が負でその絶
対電位が低いとき、第2のMISトランジスタ20
4は逆バイアス状態でしや断され、基板電位は抵
抗と等価な第3のMISトランジスタ211により
上昇する。そして、基板電位が2VTH−VCCまで上
昇すると、第2のMISトランジスタ204は順バ
イアスとなり、第2のMISトランジスタ204の
コンダクタンスを第3のMISトランジスタのコン
ダクタンスより大きく設定しているので、基板電
位の上昇が止まりここで落ち着くことになる。従
つてVCCの急激な低下に対して過渡的に発生す
る基板バイアス電圧の悪影響を大幅に低減するこ
とができる。
The oscillator 201 is a free-running oscillator, oscillates at a constant oscillation frequency, and supplies a rectangular wave or an output close to a rectangular wave to the drive circuit. Drive circuit 202
In response to this, the waveform is shaped and applied to one end of the AC coupling capacitor 203. The logic amplitude of the signal here is close to VCC. Due to the clamping action of diode-connected transistor 205, the signal at the other end of the capacitor is at the threshold value.
The level is converted to a signal whose maximum value is VTH and minimum value is VTH - VCC. This negative voltage pumps electrons to the substrate through transistor 204, biasing the substrate negatively. transistor 2
Since the threshold voltage of 04 is shifted by VTH, the substrate potential in the steady state becomes 2VTH−VCC,
It is considered that the stray capacitance 210 between the board and the ground is charged by the voltage of 2VTH-VCC. now
When VCC changes from VCC1 to a lower power supply voltage VCC2, the steady-state value of the generated body bias voltage changes from 2VTH-VCC1 to 2VTH-VCC2. In the transient state at this time, as mentioned above, VBB is 2VTH- due to capacitive coupling between the power supply and the board.
The potential is further lowered once in the negative direction than the potential determined by VCC1, but because the third MIS transistor 211 that functions as a resistor is provided between the terminal 206 and the ground to bypass it, the charge stored in the capacitor 210 is It is quickly discharged through the MIS transistor 211, and the steady value 2VTH-
Reaches VCC2. In other words, when the substrate potential is negative and its absolute potential is low, the second MIS transistor 20
4 is cut off in a reverse bias state, and the substrate potential is increased by the third MIS transistor 211, which is equivalent to a resistor. Then, when the substrate potential rises to 2V TH - V CC , the second MIS transistor 204 becomes forward biased, and since the conductance of the second MIS transistor 204 is set larger than the conductance of the third MIS transistor, the substrate potential increases. The potential stops rising and settles here. Therefore, it is possible to significantly reduce the adverse effects of the transiently generated body bias voltage in response to a sudden drop in VCC.

VCCの上昇に対しては、第3のMISトランジ
スタ211に比べてトランジスタ204の順方向
インピーダンスが十分低いため、VBB発生電圧
の応答が遅れることは少なく、問題にならない。
With respect to an increase in VCC, since the forward impedance of the transistor 204 is sufficiently lower than that of the third MIS transistor 211, there is little delay in the response of the VBB generated voltage, and this is not a problem.

なお上記実施例では、バイパス手段としてゲー
トとソースを短絡したデプレツシヨン型MOSト
ランジスタをダイオードとして1個用いたものを
示したがさらにバイパス手段のインピーダンスを
可変とするために第4図に示す如く、金属配線2
15を変えることにより、或いはコンタクトホー
ルの形状を変えることによりトリミングできるよ
うな構成をとることも可能である。
In the above embodiment, one depletion type MOS transistor with its gate and source short-circuited was used as a diode as the bypass means, but in order to make the impedance of the bypass means variable, as shown in FIG. Wiring 2
It is also possible to adopt a configuration in which trimming can be performed by changing the contact hole 15 or by changing the shape of the contact hole.

また、上記実施例では基準電圧線として接地線
を用いバイパス手段を基板バイアス発生回路の出
力端と接地線との間に設けたが、基準電圧線とし
て電源線を用い上記出力端と電源線との間に設け
てもよい。
Further, in the above embodiment, a ground wire is used as the reference voltage line and a bypass means is provided between the output end of the substrate bias generation circuit and the ground wire, but a power line is used as the reference voltage line and the bypass means is provided between the output end and the power line. It may be provided in between.

以上のように、この発明は、基板バイアス発生
回路出力端と基準電位との間にゲートが基準電位
側に接続されたデプレツシヨン型のトランジスタ
からなるバイパス手段を設けたため、VCCの変
動に対する基板バイアス電圧の応答を早くするこ
とができ、動作余裕の高い集積回路が得られる効
果がある。
As described above, the present invention provides a bypass means consisting of a depletion type transistor whose gate is connected to the reference potential side between the output terminal of the substrate bias generation circuit and the reference potential. This has the effect of making the response faster and providing an integrated circuit with a high operating margin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の基板バイアス発生回路を示す回
路図、第2図は従来の回路を用いた時の発生電圧
の電源電圧変動に対する応答を示す模式図、第3
図は本発明の一実施例における基板バイアス回路
の回路図、第4図は本発明になるバイパス手段の
他の実施例を示す回路図である。 201は発振器、203は結合用キヤパシタ、
204は第2のMIS型トランジスタ、205は第
1のMIS型トランジスタ、209は基板、211
は第3のMISトランジスタを示す。尚、各図中同
一符号は同一または相当部分を示す。
Fig. 1 is a circuit diagram showing a conventional substrate bias generation circuit, Fig. 2 is a schematic diagram showing the response of the generated voltage to power supply voltage fluctuation when using the conventional circuit, and Fig. 3
The figure is a circuit diagram of a substrate bias circuit in one embodiment of the present invention, and FIG. 4 is a circuit diagram showing another embodiment of the bypass means according to the present invention. 201 is an oscillator, 203 is a coupling capacitor,
204 is a second MIS type transistor, 205 is a first MIS type transistor, 209 is a substrate, 211
indicates the third MIS transistor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 同一チツプ内に内蔵された基板電位発生回路
を有する半導体集積回路に於て、発振器の出力側
に接続された結合用キヤパシタと、この結合用キ
ヤパシタと接地との間にダイオード接続された第
1のMISトランジスタと、この第1のMISトラン
ジスタの上記結合用キヤパシタに接続される側の
電極と基板との間に接続され、上記第1のMISト
ランジスタの上記電極の電圧により基板電位を発
生させる第2のMISトランジスタと、ゲートが基
準電位線に接続されて上記基板と基準電位線との
間にダイオード接続されたデプレツシヨン型の第
3のMISトランジスタにより構成され、上記基板
電位が所望の電位になるように電流をバイパスす
るバイパス手段とを備えたことを特徴とする半導
体集積回路。 2 基準電位線は接地されていることを特徴とす
る特許請求の範囲第1項記載の半導体集積回路。 3 バイパス手段は、第3のMISトランジスタを
複数個直列接続してなり、かつこれら第3のMIS
トランジスタの入力端を選択的に接地したことを
特徴とする特許請求の範囲第1項または第2項記
載の半導体集積回路。
[Claims] 1. In a semiconductor integrated circuit having a substrate potential generation circuit built into the same chip, a coupling capacitor connected to the output side of an oscillator, and a coupling capacitor between the coupling capacitor and the ground. A diode-connected first MIS transistor is connected between the electrode of the first MIS transistor connected to the coupling capacitor and the substrate, and is connected by the voltage of the electrode of the first MIS transistor. It is composed of a second MIS transistor that generates a substrate potential, and a depletion-type third MIS transistor whose gate is connected to a reference potential line and which is diode-connected between the substrate and the reference potential line. 1. A semiconductor integrated circuit comprising: bypass means for bypassing a current so that the voltage reaches a desired potential. 2. The semiconductor integrated circuit according to claim 1, wherein the reference potential line is grounded. 3 The bypass means is formed by connecting a plurality of third MIS transistors in series, and
3. The semiconductor integrated circuit according to claim 1, wherein input terminals of the transistors are selectively grounded.
JP3304180A 1980-03-12 1980-03-12 Semiconductor integrated circuit Granted JPS56129358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3304180A JPS56129358A (en) 1980-03-12 1980-03-12 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3304180A JPS56129358A (en) 1980-03-12 1980-03-12 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS56129358A JPS56129358A (en) 1981-10-09
JPH0230187B2 true JPH0230187B2 (en) 1990-07-04

Family

ID=12375695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3304180A Granted JPS56129358A (en) 1980-03-12 1980-03-12 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS56129358A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739566A (en) * 1980-08-22 1982-03-04 Toshiba Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148492A (en) * 1978-05-15 1979-11-20 Nec Corp Integrated circuit
JPS5627952A (en) * 1979-08-17 1981-03-18 Hitachi Ltd Circuit for generating substrate bias voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148492A (en) * 1978-05-15 1979-11-20 Nec Corp Integrated circuit
JPS5627952A (en) * 1979-08-17 1981-03-18 Hitachi Ltd Circuit for generating substrate bias voltage

Also Published As

Publication number Publication date
JPS56129358A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
JP3550197B2 (en) Voltage booster circuit for semiconductor memory device
US4460835A (en) Semiconductor integrated circuit device with low power consumption in a standby mode using an on-chip substrate bias generator
JP3765433B2 (en) Circuit and method for maintaining a substrate voltage at a desired value
JP3159749B2 (en) Integrated circuit
US4115710A (en) Substrate bias for MOS integrated circuit
KR960013760B1 (en) C-mos integrated circuit
KR890005159B1 (en) The generator of back-bias voltage
EP0029681A2 (en) Bias-voltage generator
KR900004725B1 (en) Power voltage regulator circuit
KR100213304B1 (en) Substrate bias generator circuit
JP2869791B2 (en) Semiconductor integrated circuit device and electronic device using the same
KR930022373A (en) Charge pump circuit with improved charge pumping efficiency
KR100218078B1 (en) Substrate electric potential generation circuit
US4705966A (en) Circuit for generating a substrate bias
KR940004445B1 (en) Standard voltage generating device
US5604671A (en) Charge pump circuit for boosting voltage
KR19990003681A (en) Back bias generator and method for generating the semiconductor device
JPS63308794A (en) Board bias circuit
JPH0230187B2 (en)
US5532652A (en) Oscillation circuit with enable/disable frequency stabilization
US5361000A (en) Reference potential generating circuit
JPH0468784B2 (en)
JP4080696B2 (en) Semiconductor integrated circuit
KR100211759B1 (en) Dual back bias voltage supplying device
KR900006192B1 (en) Back bias voltage generator