JPH02298764A - Pulse tube type refrigerator - Google Patents

Pulse tube type refrigerator

Info

Publication number
JPH02298764A
JPH02298764A JP11726989A JP11726989A JPH02298764A JP H02298764 A JPH02298764 A JP H02298764A JP 11726989 A JP11726989 A JP 11726989A JP 11726989 A JP11726989 A JP 11726989A JP H02298764 A JPH02298764 A JP H02298764A
Authority
JP
Japan
Prior art keywords
fluid
pulse tube
space
valve
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11726989A
Other languages
Japanese (ja)
Other versions
JP2706980B2 (en
Inventor
Yoshihiro Ishizaki
嘉宏 石崎
Koichi Harada
原田 宏一
Masaaki Sasaki
正明 佐々木
Yoichi Matsubara
洋一 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHONAN GIJUTSU CENTER KK
ECTI KK
Original Assignee
SHONAN GIJUTSU CENTER KK
ECTI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHONAN GIJUTSU CENTER KK, ECTI KK filed Critical SHONAN GIJUTSU CENTER KK
Priority to JP1117269A priority Critical patent/JP2706980B2/en
Publication of JPH02298764A publication Critical patent/JPH02298764A/en
Application granted granted Critical
Publication of JP2706980B2 publication Critical patent/JP2706980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To improve refrigerating efficiency without loss of merits of light weight, compact structure and high reliability and to efficiently generate low temperature by connecting a buffer tank or a variable volume space via a one-way valve. CONSTITUTION:When a piston 12 is directed toward a top dead point in a pulsating manner, fluid in a compressing space 15 and fluid in a pulse tube 5 are adiabatically compressed, and compression heats are discharged via radiators 16, 6. In this case, the fluid in the space 15 is cooled by a cold accumulator 2, fed to the tube 5, the fluid in the tube 5 is adiabatically compressed to radiate heat by the radiator 6, and fed into a buffer tank 10 via a check valve 9 which is opened when it becomes a certain pressure. Then, when the piston 12 is directed toward a bottom dead point in a pulsating manner, the pressure in the space 15 is abruptly lowered. Accordingly, a check valve 11 is opened, and the fluid in the tank 10 is returned to the space 15. In this case, the phases of the hydraulic pressure in the tank 10 and the space 15 are deviated to obtain a low temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温超伝導体の冷却や真空装置などで使用す
る単純な構造、低価格、高信頼度を特長とする冷凍機に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigerator that is characterized by its simple structure, low cost, and high reliability and is used in cooling high-temperature superconductors, vacuum equipment, etc. be.

[従来の技術] バ/I、X管式冷凍機は1963年W、E、GifTo
rdにより初めて提案された。
[Prior art] B/I, X tube type refrigerators were developed in 1963 by W, E,
It was first proposed by rd.

この低温生成する方式は、作動流体の非平衡状態の特性
を動作原理としており、実際の動作状態の方程式を導き
解析することを困難にしている。
This low-temperature generation method uses the non-equilibrium state characteristics of the working fluid as its operating principle, making it difficult to derive and analyze equations for actual operating conditions.

また、パルス管式冷凍機の低温生成に関する原理は多く
の論文で発表されているが、いづれも条件に仮定が多く
、理論的には未だ確立されていない。
Furthermore, although many papers have published the principles of low-temperature generation in pulse tube refrigerators, there are many assumptions in the conditions and the theory has not yet been established.

然し実際に低温生成が可能なことが実証されている。However, it has been demonstrated that low-temperature production is actually possible.

[発明が解決しようとする課題] 既存のパルス管式冷凍機は、機器構成が単純で、然も低
温部に可動部分がないことから冷凍機としての信頼性が
高いことをその特長としているが、反面効率が他の如何
なる冷凍機よりも悪い欠陥を有している。例えば絶体温
度77にで冷凍出力1ワツトを得るのに約1キロワツト
の動力を必要としていた。
[Problem to be solved by the invention] Existing pulse tube refrigerators have a simple equipment configuration and are characterized by high reliability as refrigerators because there are no moving parts in the low temperature section. However, it has the disadvantage that its efficiency is worse than any other type of refrigerator. For example, to obtain 1 watt of refrigeration output at an absolute temperature of 77, approximately 1 kilowatt of power was required.

即ち、従来の長所を損なうことなしに効率の高いパルス
管式冷凍機が望まれていた。
In other words, there has been a desire for a pulse tube refrigerator that is highly efficient without sacrificing the advantages of conventional refrigerators.

[課題を解決するための手段] 本発明は上記のごとく、パルス管式冷凍機の効率を、従
来の長所を損なうことなしに高めることを目的とし、低
温部にピストン等の低温可動機構を一切必要とせずに絶
体温度で100に以下を効率よく生成し、且つ簡単な構
造から高信頼度を得ることを特長としたパルス管式冷凍
機を提案するものである。
[Means for Solving the Problems] As described above, the present invention aims to increase the efficiency of a pulse tube refrigerator without impairing the conventional advantages, and does not include any low-temperature movable mechanism such as a piston in the low-temperature part. The present invention proposes a pulse tube refrigerator which is characterized by efficiently generating 100°C or less at an absolute temperature without the need for heat, and by achieving high reliability due to its simple structure.

即ち、従来の蓄冷器、熱交換器、パルス管及び冷凍部な
どの構成よりなるパルス管式冷凍機に対し、バッファー
タンク又は可変容量空間を一方弁を介して、連接するこ
とにより作動流体の熱交換の効率を向上させ、パルス管
式冷凍機の効率を高めることを提案するものである。
That is, in contrast to the conventional pulse tube refrigerator, which consists of a regenerator, a heat exchanger, a pulse tube, and a refrigeration section, the heat of the working fluid can be reduced by connecting a buffer tank or variable capacity space through a one-way valve. It is proposed to improve the efficiency of exchange and increase the efficiency of pulse tube refrigerators.

[作用] 前記目的に対し、本発明は、圧縮機よりの作動流体を弁
を介して、又は、圧縮部よりの作動流体を放熱器を介し
て蓄冷器に入れ冷却し、更に冷凍部、パルス管などを通
過させた後、ほぼ常温部にある熱交換器で放熱させ、流
入側逆止弁と流量調整弁、又はその一つを介して、機械
的、流体的、電磁的、或いはそれらの何れかにより制御
されるほぼ常温にある圧縮ピストンの背圧部の容積可変
空間に、又は一定容積のタンクに入れた後、再び排出側
逆止弁と流体調整弁、又はその何れかの一つを介してパ
ルス管を通過させ冷凍部で被冷却体を冷却して蓄冷器で
暖め再び弁を通じて圧縮機に戻る又は、蓄冷器で暖め再
び圧縮空間へ戻ることを連続的に行って低温生成するよ
うにしたものである。
[Function] To achieve the above object, the present invention cools the working fluid from the compressor through a valve or the working fluid from the compression section through a radiator into a regenerator, and further cools the working fluid through a refrigerating section and a pulse generator. After passing through a pipe, etc., the heat is radiated by a heat exchanger located at approximately room temperature, and the heat is transferred mechanically, fluidically, electromagnetically, or After being put into the variable volume space of the back pressure part of the compression piston at approximately room temperature controlled by either, or into a tank with a constant volume, the discharge side check valve and/or fluid regulating valve. The object to be cooled is cooled in the refrigeration section through a pulse tube, warmed in a regenerator, and then returned to the compressor through a valve, or heated in the regenerator and returned to the compression space again to generate low temperature. This is how it was done.

[実施例] 本発明を図面を参照して説明する。[Example] The present invention will be explained with reference to the drawings.

第1図は従来のパルス管式冷凍機の構造説明図である。FIG. 1 is an explanatory diagram of the structure of a conventional pulse tube refrigerator.

図示しない圧縮機よりの作動流体(主としてヘリウム、
以後流体と云う)は、例えば15気圧で間欠的に開閉す
る吸入弁1より蓄冷材として150メツシユの金網を数
百枚積層した蓄冷器2に入り温度降下し、流体と熱交換
し被冷却部を冷却する冷凍部3よりほぼ何も詰められて
いない空洞のパルス管5の内部で残留する流体を断熱圧
縮し、その時その残留する流体は温度上昇し、ほぼ常温
でその圧縮熱を熱交換器6で大気へ、或いは熱交換器6
と接触する図示しない冷却流体に放熱する。
Working fluid from a compressor (not shown) (mainly helium,
The fluid (hereinafter referred to as "fluid") enters the regenerator 2, which is made of several hundred layers of 150-mesh wire mesh as a regenerator material, through an inlet valve 1 that is intermittently opened and closed at, for example, 15 atm, its temperature drops, and it exchanges heat with the fluid to cool the part. The remaining fluid is adiabatically compressed inside the hollow pulse tube 5, which is filled with almost nothing, than the refrigeration section 3. At that time, the temperature of the remaining fluid rises, and the heat of compression is transferred to the heat exchanger at almost room temperature. 6 to the atmosphere or heat exchanger 6
The heat is radiated to a cooling fluid (not shown) that comes into contact with the cooling fluid.

この時のパルス管5は、冷凍部3を絶対温度77にとし
、常温を300にとすれば、熱交換器6の凡そ320K
までの温度勾配を保つ。
At this time, the pulse tube 5 has a temperature of about 320 K in the heat exchanger 6, assuming that the absolute temperature of the freezing section 3 is 77 and the room temperature is 300 K.
Maintain a temperature gradient up to

即ち320−77−243で、243度の温度差を保つ
That is, it is 320-77-243, maintaining a temperature difference of 243 degrees.

次に熱交換器6の内部やパルス管5内に残留した流体は
、間欠的に開閉する吐出弁7が開くと再びパルス管5や
蓄冷器2の内部の蓄冷材空隙部に残留する流体を押し出
しながら温度降下し、冷凍部3で図示しない被冷却体を
冷却して温度上昇し、更に蓄冷器2で暖められ、ほぼ常
温で吐出弁7より圧力略5気圧で圧縮機に戻る。これを
連続的に行って低温生成する。
Next, when the discharge valve 7, which opens and closes intermittently, opens the fluid remaining inside the heat exchanger 6 and the pulse tube 5, the fluid remaining in the pulse tube 5 and the regenerator material gap inside the regenerator 2 is removed again. The temperature drops while being pushed out, the temperature rises by cooling an object to be cooled (not shown) in the freezing section 3, the temperature is further warmed in the regenerator 2, and the material is returned to the compressor through the discharge valve 7 at about room temperature at a pressure of about 5 atmospheres. This is done continuously to generate low temperature.

尚、冷凍部3で得られる冷凍は、吐出弁7が開くことに
より蓄冷器などに残留する流体が、図示しないが、圧縮
機に戻る配管内の流体を押す仕事を連続的に行うことと
、パルス管内と吐出弁7付近より圧縮機に戻る流体の位
相のずれにより得られる。また、冷凍は、理論的には熱
交換器6での放熱量から蓄冷器2での非効率分、更に断
熱損失分を差し引いた量が冷凍量として得られる。
Note that the refrigeration obtained in the refrigeration section 3 is achieved by the fact that when the discharge valve 7 opens, the fluid remaining in the regenerator etc. continuously performs the work of pushing the fluid in the pipe that returns to the compressor (not shown). This is achieved by a phase shift between the fluid inside the pulse tube and the fluid returning to the compressor from the vicinity of the discharge valve 7. In addition, theoretically, the amount of refrigeration obtained by subtracting the inefficiency in the regenerator 2 and the adiabatic loss from the heat radiation amount in the heat exchanger 6 is obtained as the amount of refrigeration.

即ち、仮想上の冷凍量の最大値は、冷凍機外へ放熱した
エネルギーだけ冷凍量として取れる。
That is, the virtual maximum value of the amount of refrigeration can be taken as the amount of refrigeration equal to the energy radiated to the outside of the refrigerator.

尚、吐出弁7は吸入弁1が開いている時は閉じており、
1サイクルにおいて開いている時間は吸入弁1より長い
Note that the discharge valve 7 is closed when the suction valve 1 is open.
The open time in one cycle is longer than that of the suction valve 1.

以上のごと〈従来のパルス管式冷凍機は単純な機器構成
でしかも低温部に可動機構がなくとも低温生成が可能で
あり、高信頼度の冷凍機としての特長を有するが、効率
が悪いことが唯一の欠点であった。
As mentioned above, conventional pulse tube refrigerators have a simple equipment configuration and can generate low temperatures even without a moving mechanism in the low temperature section, and have the features of a highly reliable refrigerator, but they are inefficient. was the only drawback.

第2図は、第1図の構造を改良して高効率化した本発明
のパルス管式冷凍機の基本的な流路並び断面構造説明図
で、図示しない圧縮機よりのほぼ15気圧の流体は、吸
入弁1を瞬間的に開き直ぐ閉じることにより蓄冷器2、
冷凍部3、パルス管5内を通り放熱器6で冷却され、一
定方向のみに流体が流れる流入側逆止弁(以後、通弁と
云う)8よりある容積を持つバッファータンクIOに断
熱的に放出される。この時の圧縮熱は放熱器6やバッフ
ァータンク10の外表面より大気へ、或いは他の被冷却
流体に放熱される。
FIG. 2 is an explanatory diagram of the basic flow path arrangement and cross-sectional structure of the pulse tube refrigerator of the present invention, which has improved the structure of FIG. 1 to achieve high efficiency. By opening the suction valve 1 momentarily and immediately closing it, the regenerator 2,
The fluid passes through the refrigeration section 3 and the pulse tube 5, is cooled by the radiator 6, and is adiabatically connected to the buffer tank IO having a certain volume through the inflow side check valve (hereinafter referred to as the "through valve") 8 through which fluid flows only in a fixed direction. released. The compression heat at this time is radiated from the outer surface of the radiator 6 and the buffer tank 10 to the atmosphere or to other fluids to be cooled.

次に吐出弁7が開くとバッファータンク10内の流体は
、排出側逆止弁11より放熱器6、パルス管5、冷凍部
3で図示しない被冷却体を冷却し蓄冷器2で暖められ、
吐出弁7よりほぼ5気圧で圧縮器に戻る。(例えば流体
の作動圧力は15と8気圧でも、20と10気圧でも良
いが、圧力比が大きくなると効率は高くなるが、振動が
大きくなる)尚、吸入弁1が閉まり、冷凍機内の流体が
ほぼ15気圧で封入された後、吐出弁7が開くと、バッ
ファータンク10内、パルス管5内、蓄冷器2内の空間
部などにそれぞれ残留する流体が吐出弁7より同時に放
出され、圧縮機の低圧に戻る配管内の流体を断熱的に圧
縮する仕事によって特に冷凍部3前後の流体が膨張し低
温が得られる。
Next, when the discharge valve 7 is opened, the fluid in the buffer tank 10 is cooled by the discharge side check valve 11, cools an object to be cooled (not shown) in the radiator 6, pulse tube 5, and refrigeration part 3, and is warmed in the regenerator 2.
It returns to the compressor from the discharge valve 7 at approximately 5 atmospheres. (For example, the operating pressure of the fluid may be 15 and 8 atm, or 20 and 10 atm, but the higher the pressure ratio, the higher the efficiency, but the greater the vibration.) When the suction valve 1 is closed, the fluid inside the refrigerator is After being sealed at approximately 15 atmospheres, when the discharge valve 7 opens, the fluid remaining in the buffer tank 10, the pulse tube 5, the space in the regenerator 2, etc. is simultaneously discharged from the discharge valve 7, and the compressor Due to the work of adiabatically compressing the fluid in the pipe that returns to a low pressure, the fluid especially before and after the refrigeration section 3 expands, and a low temperature is obtained.

第2図の基本図では、第1図の原型に対し逆止弁2個と
バッファータンク1個を加えた事が基本的な機器構成の
特長で、吸入用の逆止弁8は、吸入弁1が開き冷凍機の
内部圧力がある圧力になるまで開かないので(例えば、
冷凍機内の流体の圧力が1気圧で、弁7が閉じていて弁
1が開き15気圧の流体が入り出すと冷凍機内の圧力が
少しずつ上昇して15気圧になると逆止弁8が開く。こ
の間を圧力上昇時間と云い、弁1が閉で弁7が開で逆止
弁itが開くまでの時間を下降時間と云う)、この圧力
上昇時間の間に流体が放熱器6での放熱の滞留時間が第
1図の構造よりも長くなり、その分の放熱量が増える。
In the basic diagram in Figure 2, the basic feature of the equipment configuration is that two check valves and one buffer tank have been added to the prototype in Figure 1. 1 opens and does not open until the internal pressure of the refrigerator reaches a certain pressure (for example,
When the pressure of the fluid inside the refrigerator is 1 atm and valve 7 is closed and valve 1 is opened and fluid at 15 atm enters and enters, the pressure inside the refrigerator increases little by little and when it reaches 15 atm, the check valve 8 opens. This period is called the pressure rise time, and the time from when valve 1 closes and valve 7 opens until the check valve IT opens is called the fall time).During this pressure rise time, the fluid releases heat in the radiator 6. The residence time is longer than in the structure shown in FIG. 1, and the amount of heat dissipated increases accordingly.

更に吐出弁7が開きある圧力に下がると逆止弁11が開
くので、この下降時間においてバッファータンクIO内
の流体が滞留して放熱しているので、弁8の効果と同様
に、第1図の構造より放熱量が増加する。
Furthermore, when the discharge valve 7 opens and the pressure drops to a certain level, the check valve 11 opens, and during this falling time, the fluid in the buffer tank IO stays and radiates heat. The amount of heat dissipated increases compared to the structure of

即ち放熱量の大小は、第1図で説明したごとく冷凍量と
ほぼ等価と考えられるので、冷凍量は各段に増え、例え
ば入力が1キロワツトで’17にの冷凍温度で約1ワツ
トであったのが、本第2図の構造では、約4ワツトに増
加した。
In other words, the amount of heat dissipated is considered to be almost equivalent to the amount of refrigeration as explained in Figure 1, so the amount of refrigeration increases at each step.For example, when the input is 1 kilowatt, the refrigeration temperature in '17 is about 1 watt. However, in the structure shown in Figure 2, the power consumption increased to approximately 4 watts.

尚、弁1.7の二つを、一つの電動や機械的に駆動され
るロータリー弁にすることも可能である。
It is also possible to replace the two valves 1.7 with one electrically or mechanically driven rotary valve.

第3図は本発明の主たる実施例で、吸入弁1と吐出弁7
を取り去り、更に圧縮機の代わりに図示しないが、クラ
ンクシャフト、カムなどによる機械的往復動やリニアー
モータにより往復動するピストン12で圧縮空間15内
の流体を圧縮・膨張させるような構造とした事が特長で
ある。
FIG. 3 shows a main embodiment of the present invention, showing a suction valve 1 and a discharge valve 7.
was removed, and instead of the compressor, although not shown, a piston 12 reciprocated mechanically by a crankshaft, a cam, etc. or by a linear motor was used to compress and expand the fluid in the compression space 15. is a feature.

尚、この圧縮空間内には圧力がほぼ20気圧の作動流体
が予かしめ封入されている。
Note that a working fluid having a pressure of approximately 20 atmospheres is pre-caulked and sealed in this compression space.

ピストン12は、誘導型や同期型のりニア−モーターの
ロータ一部21と連結し固定され、ステイタ−14との
電磁作用で往復動される。尚、図示しないが、この機構
にはホットトランジスター、その他を用いて電磁ピスト
ン(12と21による)の位置検出制御がされている。
The piston 12 is connected and fixed to a rotor part 21 of an induction type or synchronous type linear motor, and is reciprocated by electromagnetic action with a stator 14. Although not shown, this mechanism uses hot transistors and others to detect and control the position of the electromagnetic piston (12 and 21).

また、電磁機構は同期型でも誘導型の何れでも本発明は
実施可能である。
Further, the present invention can be implemented with either a synchronous type or an induction type electromagnetic mechanism.

18はピストン・ローターの位置決めやピストン12を
スムースに往復動させる為の流体やメカニカルスプリン
グによるピストン制御機構であり、膨張仕事を受けるこ
とによる発熱は、内部に残留する流体やこの機構と接触
する材料を介して熱伝導により冷凍機外部に放熱される
18 is a piston control mechanism using fluid and mechanical springs for positioning the piston and rotor and for smoothly reciprocating the piston 12, and the heat generated by the expansion work is caused by the fluid remaining inside and the materials that come into contact with this mechanism. Heat is radiated to the outside of the refrigerator through heat conduction.

20はビスントンリング、19は流体溜、22は流体供
給弁、1Bは放熱器で大気や他の被冷却流体17に放熱
する。ここまでの機器が第2図の構造と変わるところで
ある。低温の発生機構は、ピストン12がパルス的に上
死点に向かうと圧縮空間15の流体及びパルス管5内の
流体は、それぞれ断熱的に圧縮され放熱器1Bと6で圧
縮熱を放出する。この時、圧縮空間15の流体は蓄冷器
2で冷され、パルス管5内に入り、パルス管5内の流体
は断熱的に圧縮されて放熱器6で放熱し、ある圧力にな
ると開く逆止弁8よりバッファータンクIO内に入る。
20 is a Biston ring, 19 is a fluid reservoir, 22 is a fluid supply valve, and 1B is a radiator that radiates heat to the atmosphere or other fluid 17 to be cooled. The structure of the equipment up to this point is different from that shown in Figure 2. The low temperature generation mechanism is such that when the piston 12 moves toward the top dead center in a pulsed manner, the fluid in the compression space 15 and the fluid in the pulse tube 5 are adiabatically compressed, and the heat of compression is released by the radiators 1B and 6. At this time, the fluid in the compression space 15 is cooled in the regenerator 2 and enters the pulse tube 5, and the fluid in the pulse tube 5 is adiabatically compressed and radiates heat in the radiator 6, and a check valve opens when a certain pressure is reached. It enters the buffer tank IO through valve 8.

次にピストン12が下死点にパルス的に向かうと、圧縮
空間15の圧力が急に低下するので、逆止弁11が開き
バッファータンク10内の流体が圧縮空間15に戻る。
Next, when the piston 12 moves toward the bottom dead center in a pulsed manner, the pressure in the compression space 15 suddenly drops, so the check valve 11 opens and the fluid in the buffer tank 10 returns to the compression space 15.

この時バッファータンク10内と圧縮空間15内の流体
圧力との位相がずれる事により低温が得られる。即ち膨
張仕事をする。
At this time, the fluid pressures in the buffer tank 10 and the compression space 15 are out of phase, so that a low temperature is obtained. In other words, it does expansion work.

放熱量に関しては、第2図の構造とほぼ同じであるが、
この方式では、ピストン12の往復動作をリニアーモー
ターを使用する事によりサイン的に、或いは矩形波的に
駆動する事が可能であり、駆動周波数にもよるが機械振
動が多少増えても矩形波的に駆動すると5〜6ワツトの
冷凍量が得られる。
Regarding the amount of heat dissipation, the structure is almost the same as the one shown in Figure 2, but
With this method, the reciprocating motion of the piston 12 can be driven in a sine-like manner or in a square wave manner by using a linear motor, and although it depends on the driving frequency, it is possible to drive the reciprocating movement of the piston 12 in a square wave manner even if the mechanical vibration increases somewhat. When driven to 5 to 6 watts, a freezing amount of 5 to 6 watts can be obtained.

第4図は本発明の第3図の基本構造を元に改良した他の
実施例であり、バッファータンク10の代わりに圧縮ピ
ストンの反圧縮空間側に可変容積のバッファー空間10
−1とパルス管5を二つに分離した5−1と5−2を更
に、流量調整弁23.24を設けたことである。効率向
上からの大きな特長は、圧縮ピストン12がパルス的に
上死点に向かうと圧縮空間15やその他からのパルス的
に圧縮された流体が逆止弁8、放熱器6−11流量調整
弁23を通り可変容積のバッファー空間10−1に入る
が、同時に圧縮ピストン12を押し上げる仕事をするの
で、圧縮ピストン12が流体を圧縮する動力は20〜3
0%減ることである。
FIG. 4 shows another embodiment of the present invention which is improved based on the basic structure shown in FIG.
-1 and 5-1 and 5-2, which are separated into two pulse tubes 5, are further provided with flow rate regulating valves 23 and 24. A major feature of improved efficiency is that when the compression piston 12 moves toward the top dead center in a pulsed manner, the fluid compressed in a pulsed manner from the compression space 15 and other parts is transferred to the check valve 8, the radiator 6-11, and the flow rate adjustment valve 23. through the buffer space 10-1 of variable volume, but at the same time it does the work of pushing up the compression piston 12, so the power with which the compression piston 12 compresses the fluid is 20 to 3
It is a 0% decrease.

次に圧縮ピストン12が下死点に向かうと、バッファー
空間l0−1の流体が放熱器6−2、流量調整弁24を
通り逆止弁11よりパルス管5−2を通じて冷凍部3、
蓄冷器2、放熱器18より圧縮空間15に戻る。
Next, when the compression piston 12 moves toward the bottom dead center, the fluid in the buffer space 10-1 passes through the radiator 6-2, the flow rate adjustment valve 24, the check valve 11, the pulse tube 5-2, and the refrigeration section 3.
It returns to the compression space 15 from the regenerator 2 and the radiator 18.

さらにこの二つの流体の行程変化において、流量調整弁
23.24により流体流量が制御出来るので、所要冷凍
温度において最大になる冷凍量を得る事が出来る。実験
では77Kにおいて最高8ワツトを得た。
Furthermore, in changing the strokes of these two fluids, the fluid flow rates can be controlled by the flow rate regulating valves 23 and 24, so that the maximum amount of refrigeration can be obtained at the required refrigeration temperature. In experiments, a maximum of 8 watts was obtained at 77K.

尚、弁25はピストン制御機構18と共に、流体溜■9
の圧力及びピストン12の背圧の調整を自動的に行って
ピストン12をスムースに往復動作をするための機能を
持つ。
In addition, the valve 25 is connected to the piston control mechanism 18 as well as the fluid reservoir 9.
The piston 12 has a function of automatically adjusting the pressure of the piston 12 and the back pressure of the piston 12 to smoothly reciprocate the piston 12.

即ち、弁25を介して可変空間1O−1に入る作動流体
の一部を流体溜19に分離挿入することにより、流体圧
がローター下部21の下面に作用し、圧縮ピストンの仕
事量を更に減少することが出来る。
That is, by separating and inserting a part of the working fluid that enters the variable space 1O-1 through the valve 25 into the fluid reservoir 19, fluid pressure acts on the lower surface of the rotor lower part 21, further reducing the amount of work of the compression piston. You can.

又、作動流体を可変空間to−1及び流体溜19に吸排
出させることにより、ピストン12及びロータ一部21
に対する冷却効果を期待することが出来る。
Also, by sucking and discharging the working fluid into the variable space to-1 and the fluid reservoir 19, the piston 12 and the rotor part 21
A cooling effect can be expected.

第5図は、第4図の構造を元にして改良した更に他の実
施例の構造説明図で、1本又は複数の中央パルス管5−
3を軸中心にして、その同心円状に金属メツシュの数百
枚の積層その他の材料で構成された蓄冷器2−1を設け
た事が大きな特長で、第4図より単純化された構造であ
る。8−3は集約熱交換器であるが、逆止弁8の前に接
続しても、後でも良いが、後に接続すると断熱圧縮によ
る流体熱が弁を加熱して劣化を早める。
FIG. 5 is a structural explanatory diagram of still another embodiment improved based on the structure of FIG. 4, in which one or more central pulse tubes 5-
The main feature is that the regenerator 2-1, which is composed of several hundred layers of metal mesh and other materials, is installed in a concentric circle around axis 3, and the structure is simpler than that shown in Fig. 4. be. The central heat exchanger 8-3 may be connected before or after the check valve 8, but if it is connected after, the fluid heat due to adiabatic compression will heat the valve and accelerate its deterioration.

又、集約熱交換器B−3、放熱器IB−2は一体化した
放熱器にすることが可能であり、更に流量調整弁23は
逆止弁8の前に接続しても後でも良いが、所要冷凍温度
を変える事が必要のない場合では、逆止弁のCV値を一
定とし開閉圧力も正確に調整出来るようになれば設置し
なくとも良い。
In addition, the intensive heat exchanger B-3 and the radiator IB-2 can be integrated into an integrated radiator, and the flow rate adjustment valve 23 may be connected before or after the check valve 8. In cases where it is not necessary to change the required refrigeration temperature, the check valve does not need to be installed if the CV value of the check valve is kept constant and the opening/closing pressure can be adjusted accurately.

本方式では、冷凍出力8〜10ワツトが容易に得られた
With this method, a refrigeration output of 8 to 10 watts was easily obtained.

尚、本発明の実施例の第2図〜第5図の蓄冷器及びパル
ス管は真空断熱されており、放熱器6゜1f−1,8−
2の放熱量が充分数れる場合は、放熱器18゜18−1
.18−2を単純で簡単な構造の空冷型か、或いは取り
除いて流体の圧力損失を無くすような構造にしても本発
明のパルス管式冷凍機の構造においては低温生成が可能
である。
Note that the regenerator and pulse tube of the embodiment of the present invention shown in FIGS.
If the amount of heat radiation in step 2 is sufficient, the heat sink 18゜18-1
.. The structure of the pulse tube refrigerator of the present invention enables low temperature generation even if 18-2 is a simple air-cooled structure or is removed to eliminate fluid pressure loss.

[発明の効果] 上記に述べたごとく、本発明は従来のパルス管式冷凍機
の部品数が少なく軽量コンパクトで且つ信頼性が高い長
所を損なうことなく、冷凍効率を極めて向上させること
が出来、効率のよい低温生成を可能とした。従って、従
来に増して軽量コンバトク化が可能となり、より安価な
冷凍機の提供が期待できる。
[Effects of the Invention] As described above, the present invention can significantly improve the refrigeration efficiency without sacrificing the advantages of the conventional pulse tube refrigerator, which has a small number of parts, is lightweight, compact, and has high reliability. This enabled efficient low-temperature generation. Therefore, it is possible to make the refrigerator lighter than before, and it is expected that a cheaper refrigerator will be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のパルス管式冷凍機の構造説明図、第2図
は本発明のパルス管式冷凍機の基本的構造説明図、第3
図は本発明の主たる実施例の構造説明図、第4図は本発
明の他の実施例の構造説明図、第5図は本発明の更に他
の実施例の構造説明図を示す。 図中矢印は流体の流れ方向を示す。 1・・・吸入弁、2・・・蓄冷器、3・・・冷凍部、4
・・・パルス管部分、5−1・・・流入側パルス管、5
−2・・・排出側パルス管、5−3・・・中央パルス管
、6・・・熱交換器、6−1・・・流入側熱交換器、6
−2・・・排出側熱交換器、8−3・・・集約熱交換器
、7・・・吐出弁、8・・・流入側逆止弁、9・・・流
量制御弁(図示せず)、IO・・バッファータンク、1
0−1・・・可変容量バッファ空間、11・・・排出側
逆止弁、12・・・ピストン、13・・・リニアモータ
ーのローター、14・・・ステイタ−115・・・圧縮
空間、18・・・放熱器、17・・・被冷却流体、18
・・・スプリング、19・・・流体溜、20・・・ピス
トンリング、21・・・リニア毛−グーのローター下部
、22・・・流体供給弁、23・・・流入側流量調整弁
、24・・・排出側流量調整弁、25・・・弁。
Fig. 1 is a structural explanatory diagram of a conventional pulse tube refrigerator, Fig. 2 is a basic structural diagram of the pulse tube refrigerator of the present invention, and Fig. 3 is a structural explanatory diagram of a conventional pulse tube refrigerator.
4 is a structural explanatory diagram of a main embodiment of the present invention, FIG. 4 is a structural explanatory diagram of another embodiment of the present invention, and FIG. 5 is a structural explanatory diagram of still another embodiment of the present invention. Arrows in the figure indicate the direction of fluid flow. 1... Suction valve, 2... Regenerator, 3... Refrigeration section, 4
...Pulse tube part, 5-1...Inflow side pulse tube, 5
-2... Discharge side pulse tube, 5-3... Central pulse tube, 6... Heat exchanger, 6-1... Inflow side heat exchanger, 6
-2...Discharge side heat exchanger, 8-3...Intensive heat exchanger, 7...Discharge valve, 8...Inflow side check valve, 9...Flow rate control valve (not shown) ), IO... buffer tank, 1
0-1... Variable capacity buffer space, 11... Discharge side check valve, 12... Piston, 13... Rotor of linear motor, 14... Stator-115... Compression space, 18 ...Radiator, 17...Fluid to be cooled, 18
... Spring, 19 ... Fluid reservoir, 20 ... Piston ring, 21 ... Linear hair-goo rotor lower part, 22 ... Fluid supply valve, 23 ... Inflow side flow rate adjustment valve, 24 ...Discharge side flow rate adjustment valve, 25...valve.

Claims (3)

【特許請求の範囲】[Claims] (1)蓄冷器、熱交換器、パルス管、冷凍部等から構成
されるパルス管式冷凍機において、 パルス管冷凍機に内蔵された圧縮機の圧縮空間15より
の作動流体を、放熱器18を介して蓄冷器2に入れ冷却
し、更に前記冷凍部3、パルス管5などを通過させた後
、ほぼ常温部にある熱交換器6で放熱させ、流入側逆止
弁8と流量調整弁9又はその何れか一方を介してバッフ
ァータンク10に流入した後、再び排出用逆止弁11と
流量調整弁又はその何れか一方を介してパルス管5を通
過させて冷凍部3で被冷却体を冷却し、更に前記蓄冷器
2で加熱した後、放熱器18を介して前記圧縮空間15
に戻すことを特徴とするパルス管式冷凍機。
(1) In a pulse tube refrigerator consisting of a regenerator, a heat exchanger, a pulse tube, a refrigeration section, etc., the working fluid from the compression space 15 of the compressor built into the pulse tube refrigerator is transferred to the radiator 18. After passing through the refrigeration section 3, pulse tube 5, etc., the heat is radiated by the heat exchanger 6 in the room temperature section, and the inflow side check valve 8 and flow rate adjustment valve are cooled. After flowing into the buffer tank 10 via the discharge check valve 11 and/or the flow rate adjustment valve, the object to be cooled is passed through the pulse tube 5 again through the discharge check valve 11 and/or the flow rate adjustment valve. After cooling and further heating in the regenerator 2, the compressed space 15 is heated via the radiator 18.
A pulse tube refrigerator characterized by the ability to return to
(2)前記バッファータンクが前記圧縮機の可変容量バ
ッファ空間により少くとも構成されることを特徴とする
請求項1記載のパルス管式冷凍機。
(2) The pulse tube refrigerator according to claim 1, wherein the buffer tank is constituted by at least a variable capacity buffer space of the compressor.
(3)前記1本又は複数のパルス管が複数の蓄冷器に取
り囲まれるごとく配設されたことを特徴とする請求項2
記載のパルス管式冷凍機。
(3) Claim 2 characterized in that the one or more pulse tubes are arranged so as to be surrounded by a plurality of regenerators.
The pulse tube refrigerator described.
JP1117269A 1989-05-12 1989-05-12 Pulse tube refrigerator Expired - Lifetime JP2706980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1117269A JP2706980B2 (en) 1989-05-12 1989-05-12 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117269A JP2706980B2 (en) 1989-05-12 1989-05-12 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH02298764A true JPH02298764A (en) 1990-12-11
JP2706980B2 JP2706980B2 (en) 1998-01-28

Family

ID=14707577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117269A Expired - Lifetime JP2706980B2 (en) 1989-05-12 1989-05-12 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP2706980B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522576A (en) * 2010-03-15 2013-06-13 スミトモ クライオジーニクス オブ アメリカ インコーポレイテッド Cryogenic expansion engine with balanced gas pressure
EP3144470A1 (en) * 2015-07-23 2017-03-22 Korea Institute of Machinery & Materials Linear expander and cryogenic refrigeration system including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522576A (en) * 2010-03-15 2013-06-13 スミトモ クライオジーニクス オブ アメリカ インコーポレイテッド Cryogenic expansion engine with balanced gas pressure
EP3144470A1 (en) * 2015-07-23 2017-03-22 Korea Institute of Machinery & Materials Linear expander and cryogenic refrigeration system including the same
US10852040B2 (en) 2015-07-23 2020-12-01 Korea Institute Of Machinery & Materials Linear expander and cryogenic refrigeration system including the same

Also Published As

Publication number Publication date
JP2706980B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP2902159B2 (en) Pulse tube refrigerator
US9494107B2 (en) Thermodynamic machine
JP6695338B2 (en) Device in a thermal cycle for converting heat to electrical energy
KR20120129950A (en) Gas balanced cryogenic expansion engine
CN107940790A (en) A kind of mixing circulation Cryo Refrigerator
US5927080A (en) Vibration-actuated pump for a stirling-cycle refrigerator
JP3806185B2 (en) Thermal storage type refrigerator with fluid control mechanism and pulse tube type refrigerator with fluid control mechanism
US20070234719A1 (en) Energy conversion device and operation method thereof
US5609034A (en) Cooling system
US4622813A (en) Stirling cycle engine and heat pump
US5867991A (en) Ferroelectric Stirling-cycle refrigerator
US6983609B2 (en) Heat driven acoustic orifice type pulse tube cryocooler
EP0162868B1 (en) Stirling cycle engine and heat pump
US4235078A (en) Cryogenic equipment for very low temperatures
JPH02298764A (en) Pulse tube type refrigerator
CN103216966A (en) Free piston type pulse tube refrigerator
US7296408B2 (en) Heat engine
JPH06137697A (en) Heat-driven type refrigerator
CN1175225C (en) Space cryogenic refrigerator with combined radiation refrigeration and pulse tube refrigeration
CN115031434B (en) Regenerative refrigeration system and mechanism of thermoacoustic self-circulation heat exchanger
CN110986415A (en) Double-effect Stirling device and operation control method thereof
JPH1194382A (en) Pulse tube refrigerator
JP2577244B2 (en) Pulse refrigerator
JP2828937B2 (en) Heat exchanger for gas compression / expansion machine and method for manufacturing the same
JP2000018742A (en) Cooling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12