JPH02294561A - Ignition timing control method for internal combustion engine - Google Patents

Ignition timing control method for internal combustion engine

Info

Publication number
JPH02294561A
JPH02294561A JP11539589A JP11539589A JPH02294561A JP H02294561 A JPH02294561 A JP H02294561A JP 11539589 A JP11539589 A JP 11539589A JP 11539589 A JP11539589 A JP 11539589A JP H02294561 A JPH02294561 A JP H02294561A
Authority
JP
Japan
Prior art keywords
correction term
internal combustion
combustion engine
advance angle
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11539589A
Other languages
Japanese (ja)
Other versions
JP2825524B2 (en
Inventor
Toru Ito
亨 伊藤
Seigo Tanaka
誠吾 田中
Tatsumasa Sugiyama
辰優 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP1115395A priority Critical patent/JP2825524B2/en
Publication of JPH02294561A publication Critical patent/JPH02294561A/en
Application granted granted Critical
Publication of JP2825524B2 publication Critical patent/JP2825524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To perform control of an advance angle to an optimum value responding to the state of an internal combustion engine by a method wherein by using the maximum delay angle correction item of a plurality of delay angle correction items containing a delay angle correction item for at least acceleration, an advance angle item is corrected to determine a final ignition advance angle. CONSTITUTION:In a control device 1, by effecting interpolating computation of the map of a memory 45 by means of a processing circuit 43, in relation to an advance angle item, a fundamental advance angle item ABSE is determined based on the rotation speed of an internal combustion engine and the state of a load and an advance angle correction item ACLD based on a cooling water temperature. In relation to a delay angle correction item, a delay angle correction item ATRN and a delay angle correction item ATRQ responding to the speed change motion of a transmission are respectively determined from the change rate per a unit time of an intake air pressure by a circuit 43. A delay angle correction item is selected from a total sum of all delay angle correction items during steady running in which the correction item ATRN is below a given value and a highest delay angle correction item is selected during acceleration in which it exceeds the given value. This method determines an ignition timing by means of a final ignition advance angle the advance angle item of which is corrected.

Description

【発明の詳細な説明】 l・礼買上の何゛用分野 本発明は、内燃機閃の点火時期を制御するための方法に
閏する. 1iC束の技術および発明が解決しようとするff!厘
内燃機関J】点火時期制御方法として,促宋から、内燃
機関の回転速度と負荷とに応じて基本点火進角、すなわ
ちMBT (旧nimun Spark For Be
stTorque)を予め定めておき,内燃機間の暖機
状態や空燃比の状態、あるいは冷却水温度などに応じて
、前記基本点火進角を補正して実際の点吠進角を求める
ようにした構成が用いられている.ここで、典型的な従
来技術では、実際に点火時M副陣に用いられる最終進角
値をAOPとし、内燃機関の回転速度や負荷状態などに
基づいて求められる基本進角項をABSEとし、冷却水
温度などに基づいて求められる進角補正項をACLDと
し、内燃機関の回転加速度に対応する遅角補正項をA 
T RNとし、ノツキングの発生に対応するが角補正項
をAKNKとし、変速機の変速動作に対応するが角補正
項をA T RQとするとき、前記最終進角値A O 
Pは、 ^OP−^BSEト^CL[l−(^TRN+^KNK
+^TFIQ>         ・・・(1)から求
められる. したがって、たとえば上り坂を加速して走行中に変31
!機の変速動作を行うなどして,前記遅角補正項ATR
N,AKNK,ATRQの全てが成立してしまう場なで
は、上述のようにして求められたn終進角値AOPを用
いて点火時期制師を行うと、過遅角となー)てしまい、
内燃機関の出力が大幅に低rしてしまう. 上述のような不具合を解消するための他の従来技術は、
特間昭59−201970で示される.この従来技術で
は、冷却水温度などの内燃機関の温度に関連する遅角量
と、内燃機閃の負荷の状態に対応する遅角量とを演算し
て求め、こうして求めl゛,れた2つJ)遅角旦のうち
、小さい方の値を前記I入本進角項ABSEから減算し
て、最終進角値,A. O Pを求めている.このため
過進角によるノツキングが発生しやすく、内燃機関に故
障が発生し易くなる. 本発明グ)目的は、過互角による内燃八関グ》出力の低
下を防止することがてーきるとともに、過進角による内
燃51関の信頼性の低下を防止して、内燃機関の状官に
応じたR適な進角制御を行うことができる内燃1浅閂の
点火時期υ1御方法を提供することて′ある. 課題を解決するための手段 本発明は、少なくとも加速に対する遅角補正項を3む複
数の遅角補正項のうち、最大のd角補正項を用いて、進
角項を補正して最終点火進角を求めることを特徴とする
内燃機関の点火時期制御方法で!)る. また本発明は、前記進角項は、内燃機関の回転速度や負
荷の状態などに基づいて求められる基本進角項ABSE
と、冷却氷温度などに基づいて求められる進角補正項A
CLDとを含み、前記遅角補正項は、内燃機関の回転加
速度に対応する補正項ATRNと、ノツキングの発生に
対応する補正項A K N Kと、変速機の変速動作に
対応する補正項A T R Qとを含むことを特徴とす
る内燃代閏の点火時期制御方法である. さらにまた本発明は、前記補正項ATRNが所定値以F
で,ちるときには、遅角補正項はすべての補正項A T
 R N , A K N K , A T R Qの
和から求め,補正項A T R Nが前記所定値より大
きいときには、遅角補正項は各補正項A T R N 
, A K N KA T R. Qのうち、最も大き
い補正項に選ぶことを特徴とする内燃機関の点火時期制
御方法である.作  用 本発明に従えば、内燃機関の点火時期は進角項を遅角補
正項で補正して求められる最終点火進角で定められる.
前記遅角浦正項は、複数の補正項から構成されており、
その補正項の中には少な・くとも加速に対応する補正項
が含まれている.このように内燃機関が加速状官である
かどうかを検出することによって、加速時における前記
複数の補正項の〕変動によるia利な互角制御を防止す
ることができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Application: The present invention relates to a method for controlling the ignition timing of an internal combustion engine flash. The 1iC bundle technology and invention seeks to solve the ff! As an ignition timing control method, from the early Song Dynasty, basic ignition advance, or MBT (formerly nimun Spark For Be
stTorque) is determined in advance, and the basic ignition advance angle is corrected to determine the actual ignition advance angle according to the warm-up state of the internal combustion engine, the air-fuel ratio state, the cooling water temperature, etc. is used. Here, in the typical conventional technology, the final advance value actually used for the M subfield at the time of ignition is set as AOP, and the basic advance angle term determined based on the rotational speed and load condition of the internal combustion engine is set as ABSE. ACLD is the advance angle correction term determined based on the cooling water temperature, etc., and A is the retardation correction term corresponding to the rotational acceleration of the internal combustion engine.
When T RN is the angle correction term corresponding to the occurrence of knocking, AKNK is the angle correction term, and ATRQ is the angle correction term corresponding to the gear shifting operation of the transmission, the final advance angle value A O
P is ^OP-^BSE to^CL[l-(^TRN+^KNK
+^TFIQ> ...obtained from (1). Therefore, for example, when accelerating uphill and driving, the
! The retardation correction term ATR is
In a place where all of N, AKNK, and ATRQ are satisfied, if the ignition timing is adjusted using the n final advance angle value AOP obtained as described above, it will result in over-retardation.
The output of the internal combustion engine will drop significantly. Other conventional techniques for solving the above-mentioned problems include:
Shown in special edition 1970-201970. In this conventional technology, the amount of retardation related to the temperature of the internal combustion engine, such as the cooling water temperature, and the amount of retardation corresponding to the load condition of the internal combustion engine flash are calculated and calculated, and the two thus calculated are calculated. J) Subtract the smaller value of the retard angles from the I input main advance angle term ABSE to obtain the final advance angle value, A. I'm looking for an OP. For this reason, knocking due to overadvancing is likely to occur, making the internal combustion engine more likely to fail. The purpose of the present invention is to prevent a decrease in the output of the internal combustion engine due to over-advancing, and to prevent a decrease in the reliability of the internal combustion engine due to over-advance, thereby improving the state of the internal combustion engine. An object of the present invention is to provide a method for controlling the ignition timing υ1 of an internal combustion engine, which can perform advance control appropriate for R according to the engine speed. Means for Solving the Problems The present invention corrects the advance angle by using the largest d-angle correction term among a plurality of retard correction terms including at least three retard correction terms for acceleration. An ignition timing control method for internal combustion engines that is characterized by finding the angle! ). Further, in the present invention, the advance angle term is a basic advance angle term ABSE determined based on the rotational speed of the internal combustion engine, load condition, etc.
and the advance angle correction term A, which is determined based on the cooling ice temperature, etc.
CLD, and the retard correction term includes a correction term ATRN corresponding to the rotational acceleration of the internal combustion engine, a correction term A KN K corresponding to the occurrence of knocking, and a correction term A corresponding to the shift operation of the transmission. This is an ignition timing control method for an internal combustion engine, characterized in that it includes T R Q. Furthermore, in the present invention, the correction term ATRN is less than or equal to a predetermined value.
So, when it stops, the retard angle correction term is equal to all the correction terms A T
It is calculated from the sum of R N , A K N K , and A T R Q, and when the correction term A T R N is larger than the predetermined value, the retard correction term is calculated from the sum of each correction term A T R N
, A K N K A T R. This is an ignition timing control method for an internal combustion engine characterized by selecting the largest correction term among Q. Function According to the present invention, the ignition timing of the internal combustion engine is determined by the final ignition advance angle obtained by correcting the advance angle term with the retardation correction term.
The retarded Uraso term is composed of a plurality of correction terms,
The correction terms include at least a correction term corresponding to acceleration. By detecting whether or not the internal combustion engine is in an acceleration state in this manner, it is possible to prevent ia advantageous equal control due to variations in the plurality of correction terms during acceleration.

また本発明に従えば、前記進角項は、内燃機関の回転速
度や負荷の状態などに基づいて求められる;5本進角項
ABSEと、冷却水温度などに基づいて求められる進角
補正項ACLDとを含んで構成さiLており、また前記
遅角補正項は、内燃機関の回転加速度に対応する補正項
ATRNと、ノッキングの発生に対応する補正項A K
 N Kと、変速機の変速動作に対応する補正項A T
 R Qとを含んで横成されている。
Further, according to the present invention, the advance angle term is determined based on the rotational speed of the internal combustion engine, the load condition, etc.; the advance angle term ABSE and the advance angle correction term determined based on the cooling water temperature, etc. ACLD, and the retard angle correction term includes a correction term ATRN corresponding to the rotational acceleration of the internal combustion engine, and a correction term AK corresponding to the occurrence of knocking.
N K and a correction term A T corresponding to the gear shifting operation of the transmission.
It is composed of R and Q.

さらにまた、たとえば前記遅角補正項は、補正項A T
 R Nが所定値以下であるときには、すべての補正項
A T R N , A K N K , A T R
 Qの和から求められ、補正項A T R Nが前記所
定値より大きいときには、すべての補正項A T R 
N , A K N KA T R Qのうち、最ら大
きい補正項が選ばれる.したが′〕で、前記補正項A 
T R Nが所定値以下で.lる定常走行時には、補正
項A K N Kと補正項A T R Qとの和から遅
角捕正量が求められ、したがって過進角となることがな
く、内燃機関のノツキングの発生を抑えて、内燃機関の
故障発生率を減少することができる.また前記補正項A
. T R Nが所定値より大きい加速時には、補正項
ATRNと補正項AKNKと補正項A T RQとのう
ち、最も大きい補正項が遅角補正項として用いられる.
したがって各補正項ATRN,AKNK,ATRQの協
働による過遅角を防止して,内燃八閃の出力低下を抑え
ることができる. 実施例 第1図は、本発明の一実施例の点火時期制御方法が用い
られる内燃機関の制御装置1とそれに関連する構成を示
すブロック図である.吸気口2から導入された燃焼用空
気は、エアクリーナ3で浄化され、吸気管4から該吸気
管4に介在されるスロットル弁5でその流入量が:A整
された後、サージタンク6に流入する.サージタンク6
から流出した燃焼用空気は、吸気管7に介在される燃料
噴射弁8から噴射される燃料と混きされ、吸気弁9を介
して内燃機関10の燃焼室11に供給される.燃h?.
室l1には点火プラグ12が設けられており、この燃焼
室1. 1からの燃焼排ガスは、排気弁13を/r L
で排出され、排気管1,1から三元触媒15を経て入一
(中に放出される. 而記吸気管−1には吸入空気の温度を検出する吸気温度
検出器21が設けられ、前記スロットル弁5にはスロッ
トル弁開度検出器22が澱けられ、サージタンク6には
吸気圧検出器23が設けられる。また萌記燃焼室11け
近には、冷却水温度検出’:;”:i 2−1と、たと
えば加速度センサなとで実現されるノツギング検出器3
7とが設けられている.lJt気管1・1において、三
元触媒15より上流側には酵素濃度検出器25が設けら
れ・、三元触媒15より下流側には排気温度検出器26
が設けられる.内燃機関10の回転速度および回転加速
度は、クランク角検出器27によー)で検出される.シ
1御装置lには、前記各検出器21〜27,37ととも
に、車速検出器28と、内燃機関10を始動させるスタ
ータモータ33が起動されているかどうかを検出するス
タート検出器29と、冷房機の使用などを検出する空調
検出器30と、該内燃機関10が搭載される自動車が自
動変速機fすきであるときには、その自動変速機の変速
段がニュートラル位置であるどうかを検出するニュート
ラル検出器31とからの検出結果が入力される.さらに
まなこの91御装置1は、バツテリ34によって電力f
1勢されており、該制郡装置1は前記各検出器21〜3
1.37の検出結果、および電圧検出320によって検
出されるバツテリ34の電源電圧などに基づいて、燃料
噴射量や点火時期などを演算し、前記燃料噴射弁8およ
び点火プラグ12などを制御する. 前記吸気管4にはまた、スロットル弁5の上流側と下流
側とをバイパスする側路35が形成されており、この側
路35には流量制御井36が設けられている.この流量
ル1師ブF36は、制御装置1からの出力に基づいて、
スロットル弁5がほぼ全閏であるアイUリング時の燃焼
用空気の流量を調整制陣する.制郡装置1はまた、内燃
機関10が運転されているときには、燃料ボンプ32を
駆動する. 第2図は、711 t311装置1の具体的構成を示す
ブロック図である.前記検出器20〜25の検出結果は
、入力インタフエイス回路41からアナログ/デジタル
変換器−12を介して、点火時期制御手段で.P)る7
3埋回路43に与えられる.また前記検出器22.27
〜31.37の検出結果は、入力インクフエイス回路4
4を介して、前記処理回路43に与えられる.処理回路
43内には、後述する各種の制御用マツアや学習値など
を記憶するためのメモリ45が設けられており、またこ
の処理回路.+ 3には、前記バツテリ34からの電力
が定電圧回路46を介して供給される. 処理回路43からの制御出力は、出力インタフエ(ス回
路47を介して導出され、前記燃fl 11Q射弁8に
}えられて燃料噴射量が制脚され、またイグナイタ、1
8を介して点火プラグ12に与えられて点火時期が制御
され、さらにまた前記流量制飾弁36に与えられてアイ
ドル時の側路35を介する流入空気流量が制御される.
前記排気温度検出2S26の検出結果は、制御装置l内
の排気温度検出回路4つに墜えられ、その検出結果が異
常に高温であるときには駆動回路50を介して警告灯5
1が点灯される. 上述のように構成された制御装itlにおいて、基本進
角項ABSEは、クランク角検出器27によって検出さ
れる内燃機関10の回転速度NEと、たとえば該回転速
度NEと吸気圧検出器23によ一)で検出される吸気圧
やスロットル弁閏度検出器22によー)て検出されるス
ロットル弁開度などとに水づいて求められる吸入空気流
JiQとから、処理回路43において、前記メモリ45
にストアされており,第3図で示される三次元マッグを
補開演算して求められる. また、内燃機関10の暖機運転時などでの進角補正項A
CLDは、冷却水温度検出器24によって検出される冷
却水温度T H ’wVから、処理回路43において、
メモリ45にストアされており、第4図に示されるグラ
フに基づいて求められる.すなわt)、たとえば冷却水
温度T H Wが−20℃辺下て゛あるときには、前記
進角補正項ACLDは、たヒえば1 0度クランク角(
以下、r” CAJという)で.P)り、前記−20℃
から冷却水温度TH〜Vが上昇してゆくに従って減少し
てゆき、80℃以上となると0とされる. さらにまた、処理回路43は、吸気圧検出器23によっ
て検出される吸気圧PMの予め定める即位時間当りの変
化串ΔP Mから、メモリ45にストアされており、第
5[2I(1)で示されるグラフに基づいて遅角補正項
ATRNを求め、該遅角補正項A T RNはたとえば
0〜10゜CAの範囲で変化する.この補正項ATRN
は第5図《2》で示されるように、たとえば内燃機関1
001点火毎に1゜CAずつ減少されてゆく. また処理回路43は、遅角補正項AKNKを、第6図で
示されるように、ノツキング検出器37によってノツキ
ングの発生を検知すると1”CAだけ加算し、予め定め
るたとえばQ.5sec間にノツキングの発生が検知さ
れないときには1゜CAだけ減算する. さらにまた夕5理回路43は、第7図(1)で示される
ニュートラル検出2S31からの出力に応答して、自動
変速機の変速段がニュートラル位置からドライブ位置に
変化されたことを検出すると、第7図(2)で示される
ように、遅角補正項ATRQを15・゜《:Aにセット
し、そのr責、たとえば1 0 0 rn se c 
苺に1゜CAずつ減少してゆく.このようにして求めら
れた各遅角補正項A T RN,AKNK,ATRQと
、スロットル弁閏度と、吸気圧P八1との閃係は第8図
で示される.すなわち、第8図(1)で示されるように
時刻t1においてスロットル弁5が開かれると、吸気圧
検出器23で検出される吸気圧PMはサージタンク6の
影響や、該吸気圧検出器23の応答遅れなどから第8図
(2)で示されるように変化する.こうして吸気圧PM
が上昇し、該吸気圧PMの時間変化率ΔPMが予め定め
る値ΔP M t h以上となった時刻t2で第8図(
3)で示されるように、遅角補正項A T R Nが前
記第5図(1)で示される該時間変化率ΔPMに応じた
値にセットされ、加速状君であることが検出されなくな
ると、前記第5[2I(2)で示されるように1点火周
期毎にl”cAずつ減少されて−行く. また遅角補正JiAKNKは、第8図(4)および前記
第6図で示されるようにノツキングが検出されるたびI
Ijに1”CAずつ増加してゆかれ、ノッキングが検出
されないときには0。5sec毎にl″CΔずつ減少さ
れる. さらにまた5時刻t3,t4においてニュートラル検出
器31によって、自動変速機の変速段がニューt・ラル
位置からドライブ位置に変化されたときには、この時刻
t3において遅角補正項ATRQは、第8図(5》およ
び前記第7図(2)で示されるように15゜CAとされ
る. 以下に、各遅角補正項A T R N . A K N
 K , AT R Qおよび最終進角値AOPを求め
るための具体的動作を説明する.第9図および第10図
は、遅角補正項ATRNを求めるための動作を説明する
ためのフローチャートである.吸気圧検出器2.3で検
出された吸気圧P Mは、アナログ/デジタル変換器4
2でデジタル変1負されて処理回路43に読込まれてお
り、ステップr+ 1では、この吸気圧PMの時間変化
宰ΔP Mが求められ、該時間変化率八PMが予め定め
る値△P M t bを超えているかどうか、すなわち
加速中で,p)るかどうか判断され、そうであるときに
はステップロ2で遅角補正項A T R Nに10゜C
 Aが代入されて他の動作に移る.前記ステップrt 
1において、吸気圧PMの時間変化率ΔP Mが予め定
める値ΔF” M t h以下であるときには、直接曲
の動作に移る.このステップrr 1 , r+ 2で
示される加速時における遅角補正項A T RNの設定
動{?は、たとえば2ms ecmの前記アナログ/′
デジタル変換動作のたび毎に行われる. 一方、内燃機関10の点火制1のたび毎に、ステップr
+ 3で前記が角補正項ATRNは1゜(?. Aだけ
減算されて更新され、池の動作に移る.このステップn
 3を繰返すことによって、前記第5図(2)で示され
るように遅角補正項ATRNは段房i的に減少してゆ・
で. 第1 1 1j+および第12121は、遅角補正項A
KNI《を求めるたy》の動作を説明するためのフロー
チャーl・で4P)る.ノツキング検出器37によって
内燃機関10の振動が検出されたときには、処理回路1
3はノック判定動作に移り、スデツプ『11lにおいて
、ノツキング検出器37の出力が予め定めるノック判定
レベル以上であるかどうかによってノツ;X・〉グが発
生したかどうか’l’l ’IRされる.このステップ
ロ1lにおいてノツキングの発生が検出されたとぎ・に
は、ステップロ12で前記遅角補正Tri A K N
 Kに1゜CAが加算されて更新され、池の動tVに移
る.またステツ7 n 1 1において、険出された振
動がノツキングでないと判断されたときには、直接他の
動作に移る. また、Q.5sectXにノツキング検出器37によっ
て振動が検出されないときには、ステップロl3で遅角
浦正項AKNKからl″CAが減算されて更新される.
ステップr皿14では、更新された遅角補正項AKNK
が0以上であるかどうか判断され、そうでないときには
ステップnl5で遅角補正項A K N Kが0にリセ
ツl・された後、他の動fヤに移る.前記ステップn 
1 4において、遅角補正項AKNKが0以上であると
きには、直接lK!!力動ft”に移る.こうして前記
第6図で示されるよ・)に変(ヒする遅角補正項A K
 N Kを求めることができる. 第13[’Jおよび第14[]は、遅角補正項A T 
RQを求めるための動11−を説明するためのフローチ
ャーl・である.ニュートラル検出器31の出力は処理
回路43によって予め定める周期で検出されており、ス
テツアr121では、変速機の変速段がニュートラル位
置からドライブ位置へ変速燥作が行われたかどうかが判
断さjL、そうであるときにはステップrt 2 2で
、前記遅角補正項A T RQに15゜CAが代入され
て他の動〔Eにびり、そうでないときには直接他の動f
ヤに移る.この遅角補正項AT RQは、100mes
ciにステップ023で1゜CΔだけ減算されて更新さ
れる.こうして萌記第7111(2)で示される遅角補
正項ATRQを求めることができる. 上述のようにして求められた各遅角補正項ATRN,A
KNK,ATRQを用いて、第15図で示される勤fI
によって実際の点火時3111 Ill Ijlに用い
らJしる最終進角v1AOPが演算される.ステップn
 3 1では、クランク角検出器27によって検出され
た内燃機関10の回転遠度NEと吸気圧検出器23によ
って検出された吸気圧P Mとに基づいて演算して求め
られる吸入空気流量Qと、前記回転速度NEとから、前
記第3図で示されるグラフに基づいて五本進角項ABS
Eが求められる.ステップf132では、冷却水温度検
出器24によって検出される冷却水温度T H Wがら
,前記第411で示されるグラフに基づいて進角補正項
ACLDが求められる.ステップr133では、前記ス
テップロ31で求めらiLf.2基本進角項ABSEと
、ステップロ32で求められた進角補正項ACLDとの
和が演算され、進角盟としてレジスタBにストアされる
. ステッグr134では、前記第9図および第1o図で示
される動作によー)て求められる遅角補正項ATRNが
所定値である0であるかどうかが判断され、そうである
とき、すなわち定常状態が継続されているときにはステ
ップrr 3 5に移り、各遅角補正項A T RN 
, A K N K , A T RQの和が求められ
、レジスタAにストアされる.ステップ036では、レ
ジスタBのストア内容からレジスタAのストア内容が減
算されて,最終進角値AOPが演算されて動fヤを終了
する. 前記ステップn34において遅角補正項A T RNが
0でないとき、すなわち加速状態または加速状態が終了
した直接であるときにはステップn37に移り、遅角補
正項A T R Nが遅角補正項AKNKより大きいか
どうかが判断され、そうであるときにはステップr13
8でd角補正項ATRNがレジスタAにストアされてス
テツ7” rr 4 0に移り、そうでないときにはス
テップロ39で遅角補正項AKNKがレジスタAにスト
アされてステップn40に移る. ステップ40では、レジスタAのストア内容がR角補正
項A T R Qより大きいかどうかが判断され,そう
で6しるときにはステップr141で、レジスタ八のス
1・ア内容が遅角補正項A T R Qに置換えられて
前記ステップ036に移り、そうでないときにはステッ
プロ40がら直接前記ステップr13Gに移る. このようにして、遅角補正項ATRNが零でない加速時
には、ステップrr 3 7〜ri41において、各が
角捕正rσA T rL N , A K N K ,
 A T RQ f)うち、最も大きいが角補正項が選
択された後、ステップr136で、レジスタBにストア
されている進角項から減算されて最終進角値AOPが演
算される.すなわち、 AOI’=ADSE1−ACLD −WAX (ATI
IN, AκNK,^TIIQ)    .( 2 )
こうして内燃機関10の定常運転時には、第9I2I〜
第14図で求められる各π角補正項A T n N ,
AKNK,ATRQの和によって遅角制御が行われ、加
速時などの内燃機関1oの過度状態では前記各遅角浦正
項A T R N , A K N K , A T 
R Qのうち、最も大きいが角補正項によって遅角制御
が行われる. したがって、変速器の変速段が第1速における加速時の
ように、各遅角補正の条件が成立しやすい場きにおける
必要以上の遅角$lI御を抑制して、内燃機関10の出
力の低下を防止することができる.また、定常走行時に
は過進角となることはなく、ノッキングの発生を抑えて
内燃81閃10の故障発生率を減少することができる.
さらにまた、第15図で示される点火時期制郡動fYで
は、遅角補正量に上限や下限を設定する方法に比べて比
較的簡単な演算処理動作で実現することができる.発明
の効果 以上のように本発明によれば、進角項を補正する遅角補
正項を、少なくとも加速に対応する補正項を含む複数の
補正項から椹成するようにしたので、内燃機関が加速状
態であるかどうかに対応して、加速時における前記複数
の補正項の急変動による過剰な遅角KA 99を防止す
ることができる.また本発明によれば、前記進角項は、
内燃機関の回転速度や負荷の状態などに基づいて求めら
れる基本進角項A[3SEと、冷却水温度などに基づい
て求められる進角補正項ACLDとを含んで楕成し、ま
た前記遅角補正項は、内燃機関の加速度に対応する補正
項ATRNと、ノッキングの発生に対応ずる浦正項AK
NKと、変速機の変速動作に対応する補正項ATRQと
を含んで横成し,さらにまた、たとえば前記遅角補正項
は、補正項AT RNが零であるときには、すべての補
正項ATR N , A K N K , A T R
Qの和がら求め、補正項A ”I” R Nが零でない
ときには,各補正項ATRN,AKNK,ATRQのう
ち、最も大きい補正項3選ぶようにしたので、定常走行
時には過進角となることがなく、ノッキングの発生を抑
えて内燃機関の故障発生率を減少することができる.ま
た加速時には各補正項A T RN , A K N 
K , A T RQの協働による過遅角を防止して、
内燃機関の出力低下を抑えることができる.
Furthermore, for example, the retardation correction term is a correction term A T
When R N is less than or equal to a predetermined value, all correction terms A T R N , A K N K , A T R
When the correction term A T R N is larger than the predetermined value, all the correction terms A T R
The largest correction term is selected from N, AKNKATRQ. However, the correction term A
When T R N is less than a predetermined value. During steady running, the retard angle correction amount is determined from the sum of the correction term A K N K and the correction term A TR Q, so that the angle does not become over-advanced and the occurrence of knocking in the internal combustion engine is suppressed. This can reduce the failure rate of internal combustion engines. Also, the correction term A
.. During acceleration where T R N is larger than a predetermined value, the largest correction term among the correction term ATRN, correction term AKNK, and correction term AT RQ is used as the retardation correction term.
Therefore, over-retardation due to the cooperation of each correction term ATRN, AKNK, and ATRQ can be prevented, and a decrease in output of internal combustion engines can be suppressed. Embodiment FIG. 1 is a block diagram showing a control device 1 for an internal combustion engine in which an ignition timing control method according to an embodiment of the present invention is used and its related configuration. Combustion air introduced from the intake port 2 is purified by an air cleaner 3, and after the inflow amount is adjusted by a throttle valve 5 interposed in the intake pipe 4, it flows into a surge tank 6. do. surge tank 6
The combustion air flowing out is mixed with fuel injected from a fuel injection valve 8 disposed in an intake pipe 7, and is supplied to a combustion chamber 11 of an internal combustion engine 10 via an intake valve 9. Moh? ..
A spark plug 12 is provided in the chamber l1, and this combustion chamber 1. The combustion exhaust gas from 1 passes through the exhaust valve 13 /r L
The intake air is discharged from the exhaust pipes 1, 1 through the three-way catalyst 15, and is then released into the air. The throttle valve 5 is provided with a throttle valve opening detector 22, and the surge tank 6 is provided with an intake pressure detector 23. Also, near the combustion chamber 11, a cooling water temperature sensor is provided. :i2-1 and a notching detector 3 realized by, for example, an acceleration sensor.
7 is provided. In the lJt trachea 1.1, an enzyme concentration detector 25 is provided upstream of the three-way catalyst 15, and an exhaust temperature detector 26 is provided downstream of the three-way catalyst 15.
will be established. The rotational speed and rotational acceleration of the internal combustion engine 10 are detected by a crank angle detector 27). In addition to the respective detectors 21 to 27, 37, the control device 1 includes a vehicle speed detector 28, a start detector 29 that detects whether a starter motor 33 that starts the internal combustion engine 10 is activated, and an air conditioner. an air conditioner detector 30 that detects the use of the engine, and a neutral detector that detects whether the gear of the automatic transmission is in the neutral position when the vehicle in which the internal combustion engine 10 is mounted has an automatic transmission f. The detection results from the device 31 are input. Furthermore, Manako's 91 control device 1 receives electric power f from the battery 34.
1, and the detection device 1 includes each of the detectors 21 to 3.
Based on the detection result of 1.37 and the power supply voltage of the battery 34 detected by the voltage detection 320, the fuel injection amount, ignition timing, etc. are calculated, and the fuel injection valve 8, spark plug 12, etc. are controlled. The intake pipe 4 is also formed with a side passage 35 that bypasses the upstream and downstream sides of the throttle valve 5, and this side passage 35 is provided with a flow rate control well 36. Based on the output from the control device 1, this flow rate loop F36
The throttle valve 5 adjusts and controls the flow rate of combustion air when the eye U-ring is almost fully engaged. The control device 1 also drives the fuel pump 32 when the internal combustion engine 10 is operating. FIG. 2 is a block diagram showing the specific configuration of the 711t311 device 1. The detection results of the detectors 20 to 25 are sent from the input interface circuit 41 to the ignition timing control means via the analog/digital converter 12. P)ru7
It is given to the 3-buried circuit 43. In addition, the detector 22.27
~31.37 detection results are input ink face circuit 4
4 to the processing circuit 43. The processing circuit 43 is provided with a memory 45 for storing various control maturities and learning values, which will be described later. +3 is supplied with power from the battery 34 via a constant voltage circuit 46. The control output from the processing circuit 43 is derived via the output interface circuit 47 and input to the fuel fl 11Q injector 8 to control the fuel injection amount.
8 to the spark plug 12 to control the ignition timing, and further to the flow rate control valve 36 to control the flow rate of incoming air through the side passage 35 during idling.
The detection result of the exhaust temperature detection 2S26 is sent to four exhaust temperature detection circuits in the control device 1, and when the detection result is abnormally high temperature, the warning light 5 is outputted via the drive circuit 50.
1 is lit. In the control system itl configured as described above, the basic advance angle ABSE is determined by the rotational speed NE of the internal combustion engine 10 detected by the crank angle detector 27 and, for example, by the rotational speed NE and the intake pressure detector 23. From the intake air flow JiQ determined based on the intake pressure detected in step 1) and the throttle valve opening detected by throttle valve leap detector 22,
It is stored in , and is obtained by performing supplementary calculations on the three-dimensional mag shown in Figure 3. Further, the advance angle correction term A during warm-up operation of the internal combustion engine 10, etc.
CLD is determined by the processing circuit 43 from the cooling water temperature T H 'wV detected by the cooling water temperature detector 24.
It is stored in the memory 45 and determined based on the graph shown in FIG. For example, when the cooling water temperature T H W is below -20°C, the advance angle correction term ACLD is set to 10 degrees crank angle (
Hereinafter referred to as r''CAJ).
It decreases as the cooling water temperature TH~V rises, and becomes 0 when it reaches 80°C or higher. Furthermore, the processing circuit 43 stores in the memory 45 from the predetermined variation ΔP M of the intake pressure PM detected by the intake pressure detector 23, and stores it in the memory 45, which is indicated by the fifth [2I(1)]. The retard correction term ATRN is determined based on the graph shown in FIG. This correction term ATRN
As shown in Fig. 5 <<2>>, for example, the internal combustion engine 1
It is decreased by 1°CA for every 001 ignition. Further, the processing circuit 43 adds 1"CA to the retard correction term AKNK when the knocking detector 37 detects the occurrence of knocking, as shown in FIG. When the occurrence is not detected, 1°CA is subtracted. Furthermore, in response to the output from the neutral detection 2S31 shown in FIG. 7(1), the shift stage of the automatic transmission is set to the neutral position. When it is detected that the position has been changed from the position to the drive position, as shown in FIG. 7(2), the retardation correction term ATRQ is set to 15. c.
It decreases by 1°CA for strawberries. The relationship between the retardation correction terms ATRN, AKNK, and ATRQ thus obtained, the throttle valve leap, and the intake pressure P81 is shown in FIG. That is, when the throttle valve 5 is opened at time t1 as shown in FIG. 8(1), the intake pressure PM detected by the intake pressure detector 23 is influenced by the surge tank 6 and This changes as shown in Figure 8 (2) due to the delay in response. In this way, the intake pressure PM
8 (Fig.
As shown in 3), the retardation correction term ATRN is set to a value corresponding to the time rate of change ΔPM shown in FIG. 5 (1), and the acceleration state is no longer detected. As shown in the above-mentioned No. 5 [2I (2), the retard angle correction JiAKNK is decreased by l''cA every ignition cycle. Whenever knocking is detected,
Ij is increased by 1"CA, and is decreased by l"CA every 0.5 seconds when knocking is not detected. Furthermore, when the gear position of the automatic transmission is changed from the neutral position to the drive position by the neutral detector 31 at times t3 and t4, the retardation correction term ATRQ at this time t3 is changed as shown in FIG. 5] and 15° CA as shown in FIG. 7 (2). Below, each retardation correction term A T R N . A K N
The specific operation for determining K, ATRQ, and the final advance angle value AOP will be explained. FIGS. 9 and 10 are flowcharts for explaining the operation for determining the retardation correction term ATRN. The intake pressure P M detected by the intake pressure detector 2.3 is converted to the analog/digital converter 4.
2, the digital value is subtracted by 1 and read into the processing circuit 43, and in step r+1, the time change rate ΔP M of this intake pressure PM is determined, and the time change rate 8 PM is determined as a predetermined value ΔP M t b), that is, during acceleration, p), and if so, step 2 sets the retardation correction term AT R N by 10°C.
A is assigned and the process moves on to other operations. Said step rt
1, when the time rate of change ΔP M of the intake pressure PM is less than the predetermined value ΔF'' M th , the process moves directly to the music movement. The setting behavior of A T RN {? is, for example, the analog /' of 2ms ecm
This is done every time there is a digital conversion operation. On the other hand, each time the ignition control 1 of the internal combustion engine 10 is performed, step r
+ 3, the angle correction term ATRN is subtracted by 1° (?. A and updated, and the process moves to the pond operation. This step
By repeating step 3, the retardation correction term ATRN decreases in steps i, as shown in FIG. 5(2).
in. The 1st 1 1j+ and the 12121st are the retardation correction terms A
4P) in the flowchart l to explain the operation of KNI《to find y》. When vibration of the internal combustion engine 10 is detected by the knocking detector 37, the processing circuit 1
Step 3 moves to the knock determination operation, and at step 11l, it is determined whether a knock has occurred or not depending on whether the output of the knocking detector 37 is equal to or higher than a predetermined knock determination level. .. As soon as the occurrence of knocking is detected in the stepper 1l, the retardation correction Tri A K N is performed in the stepper 12.
1°CA is added to K and updated, and the movement moves to tV of the pond. Further, in step 7 n 1 1, if it is determined that the vibrations that are emitted are not knocking, the process moves directly to another operation. Also, Q. When no vibration is detected by the knocking detector 37 at 5sectX, l''CA is subtracted from the retarded urasho term AKNK in the step controller l3 and updated.
In the step r disc 14, the updated retardation correction term AKNK
It is determined whether or not is greater than or equal to 0, and if not, the retard angle correction term A K N K is reset to 0 in step nl5, and then the process moves on to other moving parts. Said step n
14, when the retardation correction term AKNK is greater than or equal to 0, directly lK! ! Moving on to the force force ft, the retardation correction term A K changes to
NK can be found. The 13th ['J and the 14th [] are the retardation correction term A T
This is a flowchart 1 for explaining operation 11- for determining RQ. The output of the neutral detector 31 is detected at a predetermined period by the processing circuit 43, and the step r121 determines whether or not the gear position of the transmission has been shifted from the neutral position to the drive position. If so, in step rt22, 15°CA is substituted into the retardation correction term AT
Move to Ya. This retardation correction term AT RQ is 100 mes
In step 023, ci is subtracted by 1°CΔ and updated. In this way, the retardation correction term ATRQ shown in Moeki No. 7111(2) can be obtained. Each retardation correction term ATRN,A obtained as described above
Using KNK and ATRQ, the work fI shown in Fig. 15 is
The final advance angle v1AOP used for actual ignition is calculated by . step n
3.1, the intake air flow rate Q is calculated based on the rotation angle NE of the internal combustion engine 10 detected by the crank angle detector 27 and the intake pressure PM detected by the intake pressure detector 23; From the rotational speed NE, the five advance angle terms ABS are calculated based on the graph shown in FIG.
E is required. In step f132, an advance angle correction term ACLD is determined from the coolant temperature T H W detected by the coolant temperature detector 24 based on the graph shown in No. 411 above. In step r133, iLf. The sum of the two basic advance angle terms ABSE and the advance angle correction term ACLD obtained in the step controller 32 is calculated and stored in register B as an advance angle value. In the steg r134, it is determined whether the retardation correction term ATRN obtained by the operation shown in FIG. 9 and FIG. If it is being continued, the process moves to step rr35, and each retardation correction term A T RN
, A K N K , A T RQ is calculated and stored in register A. In step 036, the contents stored in register A are subtracted from the contents stored in register B, and the final advance value AOP is calculated, thereby ending the operation. When the retard correction term A T RN is not 0 in step n34, that is, when the acceleration state or the acceleration state is directly terminated, the process moves to step n37, and the retard correction term A T R N is larger than the retard correction term AKNK. If so, step r13
At step 8, the d-angle correction term ATRN is stored in register A and the process moves to step n40. Otherwise, at step 39, the retard angle correction term AKNK is stored in register A and the process moves to step n40. , it is determined whether the stored content of register A is larger than the R-angle correction term ATRQ, and if so, in step r141, the contents of register 8 S1 and A are retarded angle correction term ATRQ. If not, the process moves directly from step 40 to step r13G.In this way, during acceleration when the retardation correction term ATRN is not zero, each of steps rr37 to ri41 Angular correction rσA T rL N , A K N K ,
ATRQ f) After the largest angle correction term is selected, in step r136, it is subtracted from the lead angle term stored in register B to calculate the final lead angle value AOP. That is, AOI'=ADSE1-ACLD-WAX (ATI
IN, AκNK, ^TIIQ). (2)
In this way, during steady operation of the internal combustion engine 10, the 9th I2I~
Each π angle correction term A T n N , found in FIG.
Retard control is performed by the sum of AKNK and ATRQ, and in an excessive state of the internal combustion engine 1o such as during acceleration, each of the retard angles AT R N , A K N K , AT
Although the largest of RQ is the angle correction term, retard control is performed. Therefore, when the gear position of the transmission is in the first gear and acceleration is occurring, when the conditions for each retard angle correction are likely to be satisfied, excessive retard angle control is suppressed, and the output of the internal combustion engine 10 is suppressed. Decline can be prevented. In addition, during steady driving, the engine does not overadvance, suppressing the occurrence of knocking and reducing the failure rate of internal combustion 81 and flash 10.
Furthermore, the ignition timing control movement fY shown in FIG. 15 can be realized with relatively simple arithmetic processing operations compared to the method of setting an upper limit or a lower limit to the retardation correction amount. Effects of the Invention As described above, according to the present invention, the retardation correction term for correcting the advance term is formed from a plurality of correction terms including at least a correction term corresponding to acceleration, so that the internal combustion engine Depending on whether the vehicle is in an acceleration state or not, excessive retardation KA 99 due to sudden changes in the plurality of correction terms during acceleration can be prevented. Further, according to the present invention, the advance angle term is
It is an ellipse that includes a basic advance angle term A [3SE, which is determined based on the rotational speed of the internal combustion engine, the load state, etc., and an advance angle correction term ACLD, which is determined based on the cooling water temperature, etc., and the retard angle The correction terms are a correction term ATRN corresponding to the acceleration of the internal combustion engine and a Uraso term AK corresponding to the occurrence of knocking.
NK and a correction term ATRQ corresponding to the speed change operation of the transmission, and furthermore, for example, when the correction term ATRN is zero, the retard correction term includes all correction terms ATRN, A K N K , A T R
When the correction term A ``I'' R N is not zero, the largest correction term 3 is selected from among the correction terms ATRN, AKNK, and ATRQ, so that the angle will not be overadvanced during steady driving. This reduces the occurrence of knocking and reduces the failure rate of internal combustion engines. Also, during acceleration, each correction term AT RN , A K N
Preventing excessive retardation due to the cooperation of K and ATRQ,
It is possible to suppress the decrease in output of the internal combustion engine.

【図面の簡単な説明】[Brief explanation of drawings]

第10ffは本発明の一実施例の点火時期別1n方法が
用いられる内燃機関の制御装置1とそれに閏遠,する横
成を示すブロック図、第2図はυ1御装置1の具体的構
成を示すブロック図、第311は内燃機関10の回転速
度NEと吸入空気流IQと基本進角項ABSEとの関係
を示すグラフ、第4図は冷却水温度T 11 Wと進角
補正項A C L Dとの関係を示すグラフ、第5図は
遅角補正項A T RNの変化を示すグラフ、第6図は
遅角補正項AKNKの変化を示すグラフ、第7図は遅角
浦正項A T R Qの変fヒを示すグラフ,第8図は
スロッl−ル弁lm度および吸気圧P Mの変化と遅角
補正項ATRN.AKNK,ATRQとの関係を示すタ
イミングチャート、第9図〜第15図は点火時期υ11
坪動作を説明するためのフローチャートである. 1・・・制1n装置、10・・・内燃8!閏、20〜3
137・・・検出器、43・・一処理回路、45・・・
メモリ、48・・・イグナイタ 代理人  弁理士 西教 圭一郎 第 図 ΔPM 増 図 7:L 第 Q 第 図 他の匹理へ 第11 ■ 第107− 第12ロ 把の2IL理へ 第13 イぜLσフクT1チ1巴へ 第14 図 池の匙理へ
No. 10ff is a block diagram showing a control device 1 for an internal combustion engine in which the 1n method for each ignition timing according to an embodiment of the present invention is used, and a side structure that deviates therefrom, and FIG. 2 shows a specific configuration of the υ1 control device 1 311 is a graph showing the relationship between the rotational speed NE of the internal combustion engine 10, the intake air flow IQ, and the basic advance angle ABSE, and FIG. 4 is a graph showing the relationship between the cooling water temperature T 11 W and the advance angle correction term AC FIG. 5 is a graph showing the change in the retard correction term A T RN. FIG. 6 is a graph showing the change in the retard correction term AKNK. FIG. 7 is a graph showing the change in the retard correction term A T RN. FIG. 8 is a graph showing the variation of T R Q and the change in throttle valve lm degree and intake pressure PM, and the retardation correction term ATRN. Timing charts showing the relationship between AKNK and ATRQ, Figures 9 to 15 are ignition timing υ11
This is a flowchart for explaining the tsubo motion. 1... control 1n device, 10... internal combustion 8! Leap, 20-3
137...Detector, 43...One processing circuit, 45...
Memory, 48... Igniter agent Patent attorney Keiichiro Saikyo Figure ΔPM Increase Figure 7: L Figure 11 To other principles ■ 107- To the 2IL theory of 12th Lo 13 Ize Lσ To Fuku T1 Chi 1 Tomoe No. 14 To Zuike no Saji

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも加速に対する遅角補正項を含む複数の
遅角補正項のうち、最大の遅角補正項を用いて、進角項
を補正して最終点火進角を求めることを特徴とする内燃
機関の点火時期制御方法。
(1) Internal combustion characterized in that the final ignition advance angle is determined by correcting the advance term using the largest retardation correction term among a plurality of retardation correction terms including at least a retardation correction term for acceleration. Engine ignition timing control method.
(2)前記進角項は、内燃機関の回転速度や負荷の状態
などに基づいて求められる基本進角項ABSEと、冷却
水温度などに基づいて求められる進角補正項ACLDと
を含み、 前記遅角補正項は、内燃機関の回転加速度に対応する補
正項ATRNと、ノッキングの発生に対応する補正項A
KNKと、変速機の変速動作に対応する補正項ATRQ
とを含むことを特徴とする請求項第1項記載の内燃機関
の点火時期制御方法。
(2) The advance angle term includes a basic advance angle ABSE that is determined based on the rotational speed of the internal combustion engine, the load condition, etc., and an advance angle correction term ACLD that is determined based on the cooling water temperature, etc. The retardation correction term includes a correction term ATRN corresponding to the rotational acceleration of the internal combustion engine, and a correction term A corresponding to the occurrence of knocking.
KNK and the correction term ATRQ corresponding to the gear shifting operation of the transmission.
2. The ignition timing control method for an internal combustion engine according to claim 1, further comprising:
(3)前記補正項ATRNが所定値以下であるときには
、遅角補正項はすべての補正項ATRN、AKNK、A
TRQの和から求め、補正項ATRNが前記所定値より
大きいときには、遅角補正項は各補正項ATRN、AK
NK、ATRQのうち、最も大きい補正項に選ぶことを
特徴とする請求項第2項記載の内燃機関の点火時期制御
方法。
(3) When the correction term ATRN is less than or equal to a predetermined value, the retard correction term includes all correction terms ATRN, AKNK, and A.
When the correction term ATRN is larger than the predetermined value, the retard correction term is calculated from the sum of the correction terms ATRN and AK.
3. The ignition timing control method for an internal combustion engine according to claim 2, wherein the largest correction term is selected from among NK and ATRQ.
JP1115395A 1989-05-08 1989-05-08 Ignition timing control method for internal combustion engine Expired - Lifetime JP2825524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115395A JP2825524B2 (en) 1989-05-08 1989-05-08 Ignition timing control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115395A JP2825524B2 (en) 1989-05-08 1989-05-08 Ignition timing control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH02294561A true JPH02294561A (en) 1990-12-05
JP2825524B2 JP2825524B2 (en) 1998-11-18

Family

ID=14661497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115395A Expired - Lifetime JP2825524B2 (en) 1989-05-08 1989-05-08 Ignition timing control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2825524B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321750A (en) * 1991-04-22 1992-11-11 Hitachi Ltd Control apparatus for automatic transmission
KR100320489B1 (en) * 1996-02-16 2002-06-26 나까무라히로까즈 Apparatus and method for ignition timing of a cylinder-injection flame-ignition internal combustion engine
JP2009275588A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Internal combustion engine controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793681A (en) * 1980-12-04 1982-06-10 Nissan Motor Co Ltd Knock-avoiding device
JPS6123874A (en) * 1984-07-11 1986-02-01 Fuji Heavy Ind Ltd Ignition-timing controller for internal-combustion engine
JPS63302179A (en) * 1987-06-01 1988-12-09 Nissan Motor Co Ltd Ignition timing control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793681A (en) * 1980-12-04 1982-06-10 Nissan Motor Co Ltd Knock-avoiding device
JPS6123874A (en) * 1984-07-11 1986-02-01 Fuji Heavy Ind Ltd Ignition-timing controller for internal-combustion engine
JPS63302179A (en) * 1987-06-01 1988-12-09 Nissan Motor Co Ltd Ignition timing control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321750A (en) * 1991-04-22 1992-11-11 Hitachi Ltd Control apparatus for automatic transmission
KR100320489B1 (en) * 1996-02-16 2002-06-26 나까무라히로까즈 Apparatus and method for ignition timing of a cylinder-injection flame-ignition internal combustion engine
JP2009275588A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Internal combustion engine controller
JP4583477B2 (en) * 2008-05-14 2010-11-17 三菱電機株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2825524B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4391253A (en) Electronically controlling, fuel injection method
JPH0363654B2 (en)
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPS62159771A (en) Ignition timing control method for internal combustion engine
KR100194174B1 (en) Fuel injection control device of internal combustion engine
JPS6267258A (en) Driving control method for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH02294561A (en) Ignition timing control method for internal combustion engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPH0680306B2 (en) Ignition timing control device for internal combustion engine
JPH0316498B2 (en)
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2934253B2 (en) Knocking control device for internal combustion engine
JPH041437A (en) Fuel injection quantity controller for internal combustion engine
JP3123438B2 (en) Exhaust gas purification device for internal combustion engine
JPS6181579A (en) Discrimination system of motor fuel
JPS5963327A (en) Method of controlling fuel injection in engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPS6045753A (en) Fuel controller of internal-combustion engine
JPS63186941A (en) Fuel supply stop control device for internal combustion engine
JPH0267446A (en) Torque fluctuation quantity detecting device for internal combustion engine
JPS60240843A (en) Control device of idle speed in engine
JPS6183470A (en) Control device of throttle valve in engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11