JPH02294407A - Hot isostatic pressing method - Google Patents

Hot isostatic pressing method

Info

Publication number
JPH02294407A
JPH02294407A JP11665189A JP11665189A JPH02294407A JP H02294407 A JPH02294407 A JP H02294407A JP 11665189 A JP11665189 A JP 11665189A JP 11665189 A JP11665189 A JP 11665189A JP H02294407 A JPH02294407 A JP H02294407A
Authority
JP
Japan
Prior art keywords
capsule
valve
valve box
processing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11665189A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Yasuo Manabe
康夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11665189A priority Critical patent/JPH02294407A/en
Publication of JPH02294407A publication Critical patent/JPH02294407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high density sintered product with good product yield by directing a valve box for vacuum sealing downward after packing raw material powder in a capsule under vacuum, fitting this to a supporting tool having heat insulating material and sintering at thigh temp and high pressure at the time of sintering metal powder, etc., with a hot isostatic pressing apparatus. CONSTITUTION:The treating material 4 of metal powder, etc., is charged into the cylindrical capsule 1 made of mild steel, etc., and on this, difficult-to-sintering ceramic powder 5 of BN, etc., and a net-like filter 6 made of stainless steel are set. To opening end at upper part thereof, the cylindrical valve box 7 is fitted and the inner part in the capsule is evacuated and sealed. Bundle 19 of the capsules 1 is charged into a high pressure vessel 13 with directing the valve box 20 downward, and the valve box part at the lower part of the bundle is stably fixed to the supporting tool 21 including the heat insulating material 22. High pressure gas is introduced from a gas introducing hole 14 in an upper cover 15 of the high pressure vessel 13 and also heated with heaters 18a, 18b, and the capsule bundle 19 is pressurized at high temp. and high pressure to sinter the treating material 4 in the capsule 1 and the high density sintered product is manufactured with good yield.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、高温下で高圧のガス圧力を作用させて、金属
やセラミックスの、粉末やボーラスな成形体などの処理
材を高密度に焼結するに用いる、いわゆる熱間静水圧加
圧法(H I P法)に関するものである。さらに詳し
くは、上記に挙げたような処理材を、金属やガラス等の
気体透過性のないカプセル内に真空封入した後、HIP
処理をおこなう、いわゆるカプセルHIP法に関するも
のである. 〔従来の技術] まず、HIP装置の概要について説明する.第8図は、
一殼的なHIP装置の構造を示す概念図である.同図は
、高圧容器(49)と、高圧ガス通路(50)を有し、
高圧容器(49)の上部開口部を密封する上!(51)
と、高圧容器(49)の下部関口部を密封する下It(
52)とにより形成される高圧室内に、断熱15(53
)によりその下部を除き囲撓され、かつ、下蓋(52)
の上部に載置された処理体(55)と断熱ji (53
)の間に、断熱層(53)の内面に沿って上下二段に配
設された上部ヒータ(54a)および下部ヒータ(54
b)を有するHIP装置を示している.処理体(55)
は、高圧ガス通路(50)を通して導かれる高圧の圧媒
ガスにより、数千κgf/d程度の高圧下におかれると
ともに、上部ヒータ(54a)および下部ヒータ(54
b)により加熱され、数千℃程度の高温下におかれるの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention applies high gas pressure at high temperatures to sinter processed materials such as metal or ceramic powder or bolus compacts to a high density. This is related to the so-called hot isostatic pressing method (HIP method) used for bonding.More specifically, the above-mentioned treated materials are placed in a gas-impermeable capsule such as metal or glass. After vacuum sealing, HIP
This is related to the so-called capsule HIP method. [Prior Art] First, an overview of the HIP device will be explained. Figure 8 shows
It is a conceptual diagram showing the structure of a complete HIP device. The figure has a high pressure container (49) and a high pressure gas passage (50),
Top to seal the upper opening of the high pressure container (49)! (51)
and the lower It(
Heat insulation 15 (53) is installed in the high pressure chamber formed by
), except for its lower part, and is surrounded by a lower lid (52).
The processing body (55) and the heat insulation ji (53
), an upper heater (54a) and a lower heater (54
b) shows a HIP device with Processing body (55)
is placed under a high pressure of approximately several thousand κgf/d by high pressure medium gas guided through the high pressure gas passage (50), and the upper heater (54a) and lower heater (54
It is heated by b) and placed at a high temperature of several thousand degrees Celsius.

ここで、H I P処理用の圧力媒体としてはアルゴン
あるいは窒素等のガスが用いられる。これらのガスの特
徴として、高温高圧下においても熱伝導率が低く粘性係
数も低い流体であることと、温度によって極めて大きな
密度差を生じるということがある.このため、HIP装
置の高圧室内で、高圧のガスを加熱すると、温度差によ
り激しい自然対流を生じて高圧室上部に高温のガスが溜
まりやすいとともに、その上部に溜まった熱が高圧室下
部につたわりにくいため、高圧室内で、上部が高温で下
部が低温という上下方向の温度分布を生じやすい.この
ような温度分布が生じると、HIP処理条件が高圧室内
の上部と下部で異なることとなるので、製品の均一性を
保てなくなる.従来から、このような温度分布を軽減す
るため、さまざまな発明がなされている.例えば、ヒー
タを上部と下部に分け、両ヒータによる加熱を独立に制
御し、高圧室内の温度を一様に保つ方法が特開昭63−
197876号公報に提示されているが、HIP装置の
高圧室のうち、最下部近傍は、温度が低く使用できない
でいるのが現状である. 次に、}IIP処理に用いる処理体について、第9図を
用いて説明する. 第9図は、特公昭52−26482号公報に提示された
処理体の断面図である.まず、第9図の各部の構成を説
明すると、カプセルは、円筒状のカプセル胴部(56)
と、カプセル胴部(56)の下部開口部に溶接部(60
)で溶接された底部(57)と、カプセル胴部(56)
の上部開口部に溶接部(59)で溶接された、中央に穴
を有する蓋部(58)とからなり、その内部に処理材(
6l)を充填する.また、カプセルには、貫通孔(63
)を有し、外周部にネジがきられた円筒状の脱気管(6
2)が蓋部(58)に固設されており、蓋部(58)中
央部の穴により、脱気管(62)の貫通孔(63)は、
カプセル内部と通じている.該脱気管(62)の上部に
は、カプセル内部と図示していない真空ボンブを連結す
るための、有底筒状の連結ユニット(64)が、ワッシ
ャ(66)を挟んで、その開口部を脱気管(62)の貫
通孔(63)に向かい合わせて載置されており、該連結
ユニット(64)は、ナット(65)により脱気管(6
2)と連結されている.また、連結ユニッl− (64
)の外周部には、連結管(67)が同設されており、該
連結管(67)を通して連結ユニット(64)の開口部
は外部と連通している。連結ユニット(64)は、この
連結管(67)を介して真空ポンプに連通されるものと
されている.また、連結ユニット(64)の上部には、
内部にピストン(69)を有するシリンダ(68)が設
置されており、該ピストン(69)の棒部の先端は、連
結ユニット(64)の上部に設けられた穴を貫通し、連
結ユニット(64)と脱気管(62)とにより形成され
た空間に達している.このピストン{69}の棒部の先
端部には、マグネット等からなるホルダ(70)が装着
されており、このホルダ(70)の下部に、脱気管(6
2)の貫通孔(63)と嵌合する封止弁(7l)を磁力
により吊り下げており、封止弁(7l)はホルダ(70
)に対し着脱自在である.次に、第9図の各部の動作を
工程順に説明すると、まず、カプセルの上部開口部に脱
気管(62)を取付け、次いで、処理材(61)をカプ
セル内に充填し、連結ユニット(64)をナント(65
)によりワッシャ(66)を介して脱気管(62)に連
結した後、連結管(67)に真空ポンプを連結する。こ
れにより、真空ポンプは、連結管(67)、連結ユニッ
ト(64)および脱気管(62)の貫通孔(63)を介
してカプセル内部と連通される。また、このとき、ワッ
シャ(66)と、前記連結ユニット(64)の上部穴部
のシール手段とにより真空引き時の気密性が保持されて
いる.この状態で、真空ボンブを作動させて、カプセル
内部を真空引きするのである。真空引き完了後、シリン
ダ(68)を作動させてピストン(69)を下方に押し
下げ、封止弁(71)を脱気管(62)の貫通孔(63
)に嵌入させ、カプセル内に処理材(6l)を真空封入
する.封入後、ホルダ(70)のマグネットの磁力を切
って封止弁(7l)をピストン(69)から切り離すと
ともに、ナット(65)を緩めて連結ユニット(64)
を脱気管(62)から取り外す。このとき、カプセルは
、その内部に処理材(6l)が充填され、その開口部が
封止弁(7l)で封止された状態となっている(このよ
うに、処理材を内部に真空封入した状態のカプセルを、
封止部も含めて、以下処理体と呼ぶ).なお、特公昭5
2−26482号公報には明示されていないが、後述の
ように、密封手段として封止弁(71)のメタル対メタ
ルシールでは不十分なので、連結ユニッ} (64)を
脱気管(62)から取り外した後、封止弁(71)と脱
気管(62)とを溶接するのが一般的である.この後、
処理体をHIP装置内に封止弁部分を上にした状態で配
置し、HIP処理をするのである. HIP装置の下部が相対的に低温であることを利用して
処理体をHIP装置内に封止弁部分を下にした状態で配
置しHIP処理をおこなう従来例としては、第10図に
示すような方法が知られている.第lθ図は、特公昭5
7−31550号公報に捉示された例を示す断面図であ
る。同回は、高圧容器(80)と、高圧ガス通路(8l
)を有し、高圧容器(80)の上部開口部を密封する上
蓋(82)と、下蓋(83)を貫通するノズルを有し、
高圧容器(80)の下部開口部を密封する下蓋(83)
とにより形成される高圧室内に、断熱層(85)とヒー
タ(86)を内装し、さらに、このヒータ(86)の内
側に、一端に筒状の通気管(88)を有し、内部に処理
材(87)を封入したカプセル(84)を、前記下蓋(
83)のノズルを通して該通気管(88)の先端部を高
圧室外に出した状態で配置し、該通気管(88)の先端
部に安全弁(89)を装着した状態を示す図である。
Here, a gas such as argon or nitrogen is used as the pressure medium for the HIP process. Characteristics of these gases include that they are fluids with low thermal conductivity and low viscosity coefficients even under high temperature and high pressure, and that they have extremely large density differences depending on temperature. For this reason, when high-pressure gas is heated in the high-pressure chamber of a HIP device, intense natural convection occurs due to the temperature difference, and high-temperature gas tends to accumulate in the upper part of the high-pressure chamber, and the heat accumulated in the upper part flows to the lower part of the high-pressure chamber. Because it is difficult to decompose, it tends to create a vertical temperature distribution in a high-pressure chamber, with high temperatures at the top and low temperatures at the bottom. If such a temperature distribution occurs, the HIP processing conditions will be different between the upper and lower parts of the high-pressure chamber, making it impossible to maintain product uniformity. Various inventions have been made to reduce such temperature distribution. For example, Japanese Patent Application Laid-Open No. 63-1999 proposed a method of dividing the heater into upper and lower parts and controlling the heating by both heaters independently to maintain a uniform temperature in the high-pressure chamber.
Although disclosed in Japanese Patent No. 197876, the temperature near the bottom of the high-pressure chamber of the HIP device is currently too low to use. Next, the processing body used in the }IIP process will be explained using FIG. 9. FIG. 9 is a sectional view of the processing body disclosed in Japanese Patent Publication No. 52-26482. First, to explain the configuration of each part in Fig. 9, the capsule has a cylindrical capsule body (56).
and a welded part (60) at the lower opening of the capsule body (56).
) welded bottom (57) and capsule body (56)
It consists of a lid part (58) with a hole in the center, which is welded to the upper opening part of the lid part (59) with a weld part (59), and the treated material (
6l). In addition, the capsule has a through hole (63
) and has a threaded outer periphery.
2) is fixed to the lid (58), and the through hole (63) of the degassing pipe (62) is formed by the hole in the center of the lid (58).
It communicates with the inside of the capsule. At the top of the deaeration pipe (62), a bottomed cylindrical connection unit (64) for connecting the inside of the capsule and a vacuum bomb (not shown) is installed, with a washer (66) in between, and the opening of the connection unit (64). The connection unit (64) is placed facing the through hole (63) of the deaeration pipe (62), and the connection unit (64) is connected to the deaeration pipe (6) by a nut (65).
2) is connected. In addition, the connection unit l- (64
) is provided with a connecting pipe (67), and the opening of the connecting unit (64) communicates with the outside through the connecting pipe (67). The connection unit (64) is communicated with the vacuum pump via this connection pipe (67). In addition, at the top of the connection unit (64),
A cylinder (68) having a piston (69) inside is installed, and the tip of the rod of the piston (69) passes through a hole provided in the upper part of the connection unit (64). ) and the degassing pipe (62). A holder (70) made of a magnet or the like is attached to the tip of the rod of this piston {69}, and a degassing pipe (6
The sealing valve (7l) that fits into the through hole (63) of 2) is suspended by magnetic force, and the sealing valve (7l) is attached to the holder (70
) can be attached and detached at will. Next, to explain the operation of each part in FIG. ) to Nantes (65
) is connected to the degassing pipe (62) via the washer (66), and then a vacuum pump is connected to the connecting pipe (67). Thereby, the vacuum pump is communicated with the inside of the capsule via the connecting pipe (67), the connecting unit (64), and the through hole (63) of the degassing pipe (62). Further, at this time, airtightness is maintained during evacuation by the washer (66) and the sealing means in the upper hole of the connection unit (64). In this state, the vacuum bomb is activated to evacuate the inside of the capsule. After the evacuation is completed, the cylinder (68) is operated to push the piston (69) downward, and the sealing valve (71) is inserted into the through hole (63) of the degassing pipe (62).
) and vacuum seal the processing material (6 liters) inside the capsule. After sealing, the magnetic force of the magnet of the holder (70) is cut off to separate the sealing valve (7l) from the piston (69), and the nut (65) is loosened to remove the connection unit (64).
from the degassing pipe (62). At this time, the capsule is filled with the processing material (6 liters) and its opening is sealed with a sealing valve (7 liters) (in this way, the processing material is vacuum sealed inside the capsule). The capsule in the state of
(hereinafter referred to as the treated body, including the sealing part). In addition, the special public
Although it is not explicitly stated in Publication No. 2-26482, as described later, the metal-to-metal seal of the sealing valve (71) is insufficient as a sealing means, so the connection unit (64) is connected from the degassing pipe (62). After removal, the sealing valve (71) and degassing pipe (62) are generally welded together. After this,
The processing body is placed in the HIP device with the sealing valve portion facing upward, and HIP processing is performed. A conventional example of performing HIP processing by placing the processing body inside the HIP device with the sealing valve portion facing down, taking advantage of the fact that the lower part of the HIP device is relatively low temperature, is as shown in Fig. 10. There are known methods. Figure lθ is the Tokko Kosho 5
7-31550 is a cross-sectional view showing an example disclosed in Publication No. 7-31550. In this episode, we will introduce the high pressure container (80) and the high pressure gas passage (8l).
), and has an upper lid (82) that seals the upper opening of the high-pressure container (80), and a nozzle that penetrates the lower lid (83),
A lower lid (83) that seals the lower opening of the high-pressure container (80)
In the high pressure chamber formed by The capsule (84) containing the treatment material (87) is inserted into the lower lid (
83) with the tip of the vent pipe (88) exposed outside the high-pressure chamber through the nozzle of the vent pipe (88), and a safety valve (89) attached to the tip of the vent pipe (88).

処理材(87)は、高圧ガス通路(8l)を通して導か
れる高圧の圧媒ガスにより、数千Kgf/c一程度の高
圧下におかれるとともに、ヒータ(86)により加熱さ
れ、数千℃程度の高温下におかれ、HIP処理がおこな
われる。この従来例たる発明の目的は、その加熱の途上
で、処理材(87)から発生する物理吸着ガスおよび化
学吸着ガスを通気管(88)から抜くことで、通常別個
におこなう、処理材をカプセルに封入する工程とHIP
処理工程とを連続的におこなうことにある.ここで、通
気管(88)をHIP装置下部の低温部に配するのは、
下m (83)のノズル部分において、比較的低温の圧
媒ガスをシールすれば足りるので、そのシールが比較的
容易であるためである。
The processing material (87) is placed under a high pressure of approximately several thousand kgf/c by a high pressure medium gas guided through a high pressure gas passage (8l), and is heated by a heater (86) to a temperature of approximately several thousand degrees Celsius. The HIP process is performed under high temperature conditions. The purpose of this conventional invention is to remove the physically adsorbed gas and chemically adsorbed gas generated from the processing material (87) from the vent pipe (88) during heating, thereby encapsulating the processing material, which is normally done separately. The process of enclosing and HIP
The purpose is to perform the processing steps continuously. Here, the reason why the ventilation pipe (88) is placed in the low temperature section at the bottom of the HIP device is as follows.
This is because it is relatively easy to seal the nozzle portion of the lower m (83) because it is sufficient to seal the relatively low temperature pressure medium gas.

〔発明が解決しようとする課題] HIP装置内においては、前述のように上部が高温、下
部が低温という温度差が生しるため、高圧室の最下部近
傍は単なる無駄な空間でしかなかった. また、処理体をカプセルに封入する方法として特公昭5
2−26482号公報に捷示された第9図に示す従来技
術には、次のようなシールに関する問題がある.すなわ
ち、この従来技術では、脱気管(62)と連結ユニット
(64)とは着脱自在にシールする必要があるため、ワ
ッシャ(66)を用いてシールしていたのであるが、シ
ールの確実性という点で問題があった.また、封止弁(
71)と脱気管(62)との間のシールも、単に封止弁
(71)を脱気管(62)に嵌入させてシールするだけ
であり、シールの確実性に欠ける.シールの確実性を上
げるために、シール部材としてOリングや接着剤等を併
用するか、封止弁(7l)と脱気管(62)を溶接する
必要があるが、このうち、0リングや接着剤等のシール
部材(特に、−71に多く用いられている樹脂系の0リ
ングや樹脂系の接着則)は、HIP処理時の高温により
熱分解されるので、HIP処理用カプセルには使用でき
なかった.さらに、従来においては、封止弁部分が処理
体に突起状に残ることから、封止弁部分を上にして処理
体をHIP装置の高圧室内に配置しなければ処理体を安
定した状態に保持できなかった。この結果として、HI
P装置の高圧室の上部のより高温の場所に、封止弁部分
が置かれることとなり、樹脂系の0リングや樹脂系の接
着剤の適用が、より困難なものとなっていた.このため
、従来は、密封手段として熔接を併用していたのである
が、封止弁(7l)の封止部分を溶接することそれ自体
が容易でないという問題に加えて、処理材によっては溶
接熱の影響を受けて所定の性質が得られないという問題
、あるいは、溶接を用いると、封止弁部分の再使用がで
きないという問題もあった.特に、封止弁部分は、上記
のように精密加工を要する部分で、これを使い捨てにす
ることは、I{IP処理の経済性の面から問題であった
[Problem to be solved by the invention] As mentioned above, inside the HIP device, there is a temperature difference between high temperature at the top and low temperature at the bottom, so the area near the bottom of the high pressure chamber was just a wasted space. .. In addition, as a method of encapsulating the processed material in capsules,
The prior art shown in FIG. 9 and summarized in Japanese Patent No. 2-26482 has the following problems with the seal. In other words, in this prior art, the deaeration pipe (62) and the connection unit (64) must be removably sealed, so a washer (66) is used to seal them. There was a problem with that. In addition, the sealing valve (
The seal between 71) and the degassing pipe (62) is also achieved by simply fitting the sealing valve (71) into the degassing pipe (62), and the seal is not reliable. In order to increase the reliability of the seal, it is necessary to use an O-ring or adhesive as a sealing member, or to weld the sealing valve (7l) and degassing pipe (62). Sealing materials such as adhesives (especially resin-based O-rings and resin-based adhesion rules often used in -71) are thermally decomposed by the high temperature during HIP processing, so they cannot be used in HIP processing capsules. There wasn't. Furthermore, in the past, since the sealing valve part remained in the form of a protrusion on the processing body, the processing body had to be placed in the high-pressure chamber of the HIP device with the sealing valve part facing upward to maintain the processing body in a stable state. could not. As a result of this, HI
The sealing valve part was placed in a higher temperature area above the high-pressure chamber of the P device, making it more difficult to apply resin-based O-rings and resin-based adhesives. For this reason, welding has traditionally been used as a sealing means, but in addition to the problem that it is not easy to weld the sealing part of the sealing valve (7l), depending on the material being treated, welding There was also the problem that the specified properties could not be obtained due to the influence of the sealing valve, and the problem that the sealing valve part could not be reused if welding was used. In particular, the sealing valve part requires precision machining as described above, and making it disposable is problematic from the economic standpoint of IP processing.

HIP装置の下部の低温部を利用するため、HIP装置
の中で処理体を逆さまに保持する従来例としては、特公
昭57−31550号公報に記載された方法がある。第
10図はこの従来例を示すH I P装置の断面図であ
る。この従来例は、密封されたカプセル内に収容した処
理材をHIP処理しようという発想ではなく、カプセル
内を積極的にH I P装置の外部と連通させ、}{I
P処理時にガスの排出あるいは置換をおこなおうとする
もので、そのため、カプセルの一端を系外まで下蓋を貫
通させて導出する必要がある。また、密封したカプセル
を用いてHIP処理をするというよりは、系外の弁によ
りカプセル内部の状態を調整するというものであり、発
想が基本的にことなっている.そのため、この従来技術
には次のような問題がある。
As a conventional example of holding a processing object upside down in a HIP apparatus in order to utilize the low temperature section at the lower part of the HIP apparatus, there is a method described in Japanese Patent Publication No. 57-31550. FIG. 10 is a sectional view of a HIP device showing this conventional example. This conventional example is not based on the idea of performing HIP processing on the processing material housed in a sealed capsule, but instead actively communicates the inside of the capsule with the outside of the HIP device.
The purpose is to discharge or replace gas during P processing, and therefore it is necessary to lead one end of the capsule out of the system by passing through the lower lid. Furthermore, rather than performing HIP processing using a sealed capsule, the condition inside the capsule is adjusted using a valve outside the system, which is a fundamentally different idea. Therefore, this conventional technique has the following problems.

すなわち、HIP装置高圧室内部は、数千Kgf/c+
1の高圧であるに対し、HIP装置外は大気圧であり、
両者間には、極めて大きな圧力差がある。
In other words, the inside of the HIP equipment high pressure chamber is several thousand Kgf/c+
1, while the pressure outside the HIP device is atmospheric pressure.
There is an extremely large pressure difference between the two.

このため、HIP装置の内外を連通ずる薄肉の通気管(
88)の材質選定が困難であるだけでなく、該通気管(
88)は圧力差により変形するので、HIP装置の下蓋
(83)のノズルと通気管(88)の気密を確保するの
が困難で、圧媒ガスに漏れが生じ易く、安全性と施工性
の点で問題があった。
For this reason, a thin-walled ventilation pipe (
Not only is it difficult to select the material for the vent pipe (
88) deforms due to pressure difference, it is difficult to ensure airtightness between the nozzle of the lower cover (83) of the HIP device and the ventilation pipe (88), and leakage of pressure medium gas is likely to occur, resulting in safety and workability. There was a problem with this.

本発明は、かかる従来技術の問題点に鑑み、処理材をカ
プセル内に真空封入する時、およびIIP処理時にシー
ル部材を用いて確実にシールでき、かつ封止弁部分の再
使用が可能な経済的なHIP処理方法を従供することを
目的とする.〔課題を解決するための手段〕 本発明は、上記従来技術の課題を解決するためになされ
たものであって、特許請求範囲第一項記載の発明の特徴
は、一端が開口するカプセル内に処理材を充填し、該開
口部を通じて真空脱気し、次いで該開口部を密封して処
理体を製作した後、該処理体の密封部を下にして熱間静
水圧加圧装置に供して、熱間静水圧加圧装置の下部の低
温部に設けられた断熱材を有する支持具により前記密封
部を囲撓して支持した状態で熱間静水圧加圧処理をおこ
なうことにある. また、特許請求範囲第二項記載の発明の特徴は一端が開
口するカプセル内に処理材を充填した後、一端がカプセ
ル内に他端が大気に開口する連通孔を有する筒状であっ
て、前記連通孔の一部に弁座部が形成されるとともに、
該弁座部よりも反カプセル側に設けられ、前記述通孔と
外部の真空ポンプとを連通ずる脱気孔が形成された弁箱
と、該弁箱の大気側開口部より連通孔内に進退自在に嵌
合し、その先端が前記弁座部に対応する形状を呈する開
閉弁とを有するとともに、前記弁箱の連通孔の大気開口
部と開閉弁との間に第一のシール部材を、また前記弁座
部および/または開閉弁の先端部に第二のシール部材を
、それぞれ装着して、弁箱の反開閉弁側先端部を前記カ
プセル開口部に第三のシール部材を介して密封嵌合し、
前記開閉弁の先端部と前記弁座との間に間隙を保った状
態でカプセル内を前記脱気孔に連結された真空ポンプに
より真空引きした後、前記開閉弁を進入させて前記弁座
に当接させて、前記第二のシール部材により前記連通孔
を密封して処理体を製作した後、前記弁箱部分を下にし
て熱間静水圧加圧装置に供して、熱間静水圧加圧装置の
下部の低温部に設けられた断熱材を存する支持具により
前記弁箱部分を囲撓して支持した状態で熱間静水圧加圧
処理をおこなうことにある。
In view of the problems of the prior art, the present invention provides an economical solution that enables reliable sealing using a sealing member when vacuum sealing a processing material in a capsule and during IIP processing, and allows reuse of the sealing valve part. The purpose is to provide a standard HIP processing method. [Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems of the prior art. After filling the treatment material and vacuum degassing through the opening, and then sealing the opening to produce a treatment body, the treatment body is subjected to a hot isostatic pressurization device with the sealed portion facing down. The hot isostatic pressing process is carried out in a state in which the sealed part is supported by a supporting member having a heat insulating material provided in the lower low temperature part of the hot isostatic pressing apparatus. Further, the feature of the invention described in claim 2 is that after filling the processing material into a capsule having an open end, the capsule has a cylindrical shape with a communicating hole in which one end is inside the capsule and the other end is open to the atmosphere. A valve seat portion is formed in a part of the communication hole, and
A valve box is provided on the opposite side of the capsule from the valve seat portion and has a deaeration hole that communicates the above-mentioned through hole with an external vacuum pump, and a valve box that moves forward and backward into the communication hole through the atmosphere side opening of the valve box. an on-off valve that is freely fitted and whose tip has a shape corresponding to the valve seat, and a first sealing member between the atmospheric opening of the communication hole of the valve box and the on-off valve; Further, a second sealing member is attached to the valve seat portion and/or the tip of the on-off valve, respectively, and the tip of the valve box on the side opposite to the on-off valve is sealed to the capsule opening via the third sealing member. mated,
After the inside of the capsule is evacuated with a vacuum pump connected to the degassing hole while maintaining a gap between the tip of the on-off valve and the valve seat, the on-off valve is advanced to hit the valve seat. After making a treatment body by sealing the communicating hole with the second sealing member, the body is subjected to hot isostatic pressurization with the valve box portion facing down, and hot isostatic pressurization is performed. The hot isostatic pressurization process is carried out in a state in which the valve box portion is supported while being bent by a support having a heat insulating material provided in the lower low temperature part of the apparatus.

〔作用〕[Effect]

特許請求範囲第一項記載の発明では、処理材を充填後、
真空密封して完成された処理体を、密封部分(特許請求
範囲第二項においては弁箱部分)を下にした状態で、H
IP装置高圧室下部に配置された支持具により支持する
.従って、弁箱部分には、開閉弁や脱気孔等があり複雑
な形状をしているにもかかわらず、密封部分を下にした
状態でもHIP装置の高圧室内に安定な状態で配置する
ことができる。
In the invention described in claim 1, after filling the treatment material,
The completed vacuum-sealed processing body is placed in the H
The IP device is supported by a support placed at the bottom of the high-pressure chamber. Therefore, even though the valve box part has an on-off valve, deaeration hole, etc. and has a complicated shape, it cannot be placed stably in the high-pressure chamber of the HIP device even with the sealed part facing down. can.

この後、HIP処理時に、処理体は数千゜C、数千Kg
f/cjの高温高圧下におかれる。このとき、密封部分
の温度は、HIP装置の高圧室下部が上部に比し相対的
に低温であることに加えて、支持具の有する断熱材に囲
撓されているので、相対的に低温であるHIP装置の高
圧室下部よりもさらに低温となる。このため、HIP処
理時の高温下においても、シール部材が過熱により熱分
解することがなく、処理体の気密性を保持できる。
After this, during HIP processing, the treated body is heated to several thousand degrees Celsius and weighs several thousand kg.
It is placed under high temperature and pressure of f/cj. At this time, the temperature of the sealed part is not only that the lower part of the high pressure chamber of the HIP device is relatively lower than the upper part, but also because it is surrounded by the heat insulating material of the support. The temperature is even lower than the lower part of the high pressure chamber of some HIP devices. Therefore, even at high temperatures during HIP processing, the sealing member does not thermally decompose due to overheating, and the airtightness of the processing body can be maintained.

さらに、HIP処理後には、第一のシール部材の部分で
、密封部分をカプセルから容昌に取り外すことができる
とともに、HIP処理時の高温にさらされることがない
ので熱変形することがなく、密封部分の再使用が可能で
あるとともに、シール部材として樹脂系の0リングや樹
脂系の接着剤の使用も可能となる. 特許請求範囲第一項記載の発明は、まず、カプセル内に
、カプセルの開口部から金属やセラミックスの、粉末や
ボーラスな成形体などの処理材を充填する.次いで、こ
のカプセルの開口部に、弁箱を第三のシール部材を介し
て密封嵌合する。このとき、第三のシール部材は、カプ
セルの開口部と弁箱との間の気密性を保持する役割を果
たす。
Furthermore, after the HIP process, the first seal member can be easily removed from the capsule, and since it is not exposed to high temperatures during the HIP process, it will not be thermally deformed and the seal will be sealed. Parts can be reused, and resin-based O-rings and resin-based adhesives can also be used as sealing members. In the invention described in claim 1, first, a processing material such as a metal or ceramic powder or a bolus molded body is filled into a capsule from the opening of the capsule. Next, the valve box is hermetically fitted into the opening of the capsule via the third sealing member. At this time, the third sealing member plays the role of maintaining airtightness between the opening of the capsule and the valve box.

この後、開閉弁を開けた状態で弁箱の脱気孔に真空ポン
プを連結する.これにより、カプセル内部は、脱気孔お
よび連通孔により真空ポンプと連通される.この状態で
、真空ポンプを作動させてカプセル内を真空引きする.
このとき、第一のシール部材は、弁箱の連通孔の大気開
口部と開閉弁との間の気密性を保持する役割を果たす。
After this, connect the vacuum pump to the deaeration hole in the valve box with the on-off valve open. Thereby, the inside of the capsule is communicated with the vacuum pump through the deaeration hole and the communication hole. In this state, operate the vacuum pump to evacuate the inside of the capsule.
At this time, the first sealing member plays a role of maintaining airtightness between the opening to the atmosphere of the communication hole of the valve box and the on-off valve.

真空引き後、弁箱の開閉弁の先端部を連通孔の弁座部に
当接させて、弁箱の連通孔を、第二のシール部材を介し
て封止する.この封止により、処理材は、カプセル内に
完全に密封されることになり、処理体として完成する。
After evacuation, the tip of the on-off valve of the valve box is brought into contact with the valve seat of the communication hole, and the communication hole of the valve box is sealed via the second sealing member. By this sealing, the processing material is completely sealed within the capsule, and the processing body is completed.

このとき、第二のシール部材は、弁箱の弁座部部分の連
通孔と開閉弁との間の気密性を保持する役割を果たす。
At this time, the second seal member plays a role of maintaining airtightness between the communication hole in the valve seat portion of the valve box and the on-off valve.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第6図を用いて説明する。 Embodiments of the present invention will be described using FIGS. 1 to 6.

第2図a〜第2図Cおよび第1図は、本発明の実施例を
工程順に示すもので、第2図aは、本発明に使用される
カプセルの構造の一例を示す断面図である. この例では、カプセルは、金属製の円筒状のカブセル胴
部(1)と、カプセル胴部(1)の下部開口部を密封す
る同じく金属製の円盤状の底板(2)とがらなり、カプ
セル胴部(1)と底板(2)は溶接部(3)で溶接され
ている. なお、本発明に用いる金属製のカプセルの材料としては
、軟鋼、ステンレス鋼、Mo、白金などがあり、処理材
との反応性や処理温度により選択する. 第2図bは、カプセルに、カプセル胴部(1)の内径よ
り少しその内径を小さく成形した円柱状の処理材(4)
を充填し、次に、処理材(4)の上部に、BN、BNと
AIの混合体、SiiNa等の難焼結性セラミック粉末
(5)を充填し、さらに、その上部に、ステンレス鋼網
等のフィルタ(6)を装填した状態におけるカプセルの
断面図である. ここで、難焼結性セラミック粉末(5)は、処理材(4
)を充填した高温にさらされる部分と、弁箱周辺の低温
のまま保持される部分との間のスペーサの役割を持ち、
フィルタ(6)は、難焼結性セラミック粉・末(5)や
処理材(4)の粉末が、真空引き時に、真空ポンプに吸
入されないようにするという役割を持つ. 第2図Cは、カプセル内に処理材(4)を真空封入後の
状態における処理体の断面図であり、第3図は、真空引
き時の弁箱部分の拡大断面図である.この例では、弁箱
(7)は、その先端部外・径が,本体部に比して小径と
された円筒状であり、その小径部の外周に沿って環設さ
れた樹脂系の0リングAOω(特許請求の範囲第二項記
載の第三のシール部材に対応)を介して、該先端小径部
がカプセル胴部(1)に密封嵌合されている. また、円筒状の弁箱(7)は連通孔Dを有し、該連通孔
Dは、その先端小径部内では、本体部内よりその径が小
さくなっており、本体部内で滑らかに径が変化している
(この滑らかに径が変化している部分を、弁座部と呼ぶ
).さらに、弁箱(7)は、その外周方向から、本体部
内の径の大なる部分の連通孔Dに向けて、横孔として脱
気孔(9)を有している.この弁箱(7)の本体部の連
通孔Dの反カプセル側の開口部には、該孔の内周に沿っ
て環設された樹脂系のOリングBOD(特許請求の範囲
第二項記載の第一のシール部材に対応)を介して、ネジ
部(7a)を有するボルト状の開閉弁(8)がネジ込ま
れて、進退自在である. また、開閉弁(8)の先端は、円錐台状となっており、
その錐部の外周に沿って環状設された樹脂系の0リング
CG3(特許請求の範囲第二項記載の第二のシール部材
に対応)を介して、弁箱(7)の連通孔Dの弁座部と係
合している. 次に、各部の作用を工程順に説明する.まず、真空引き
時には、第3図に示すように、まだ、開閉弁(8)がネ
ジ込まれておらず、脱気孔(9)、弁n (73の本体
部の連通孔Dおよび先端部の連通孔Dは連通している.
この脱気孔(9)に真空ポンプを連結し、脱気孔(9)
および連通孔Dを通路とし、カプセル内部を真空引きす
るのである. このとき、OリングAOωはカプセル胴部(1)と弁箱
(7)の間の気密性を保持し、0リングB01)は開閉
弁(8)と弁箱(7)の本体部内の連通孔Dとの間の気
密性を保持する. 真空引き完了後、開閉弁(8)をネジ回して、その先端
部の円錐台部分を、0リングCG2+を介して弁座部に
係合させる. このとき、0リングCG2>は、開閉弁(8)と弁箱(
7)の先端部の連通孔Dとの間の気密性を保持し、カプ
セル内部を真空ポンプに連通させる通路を遮断する.か
くして、カプセル内部に処理材(4)が真空封入される
. 第1図は、複数の処理体の束09を、Hl1装置内に、
その弁箱(至)部分を下にして支持した状態を示す図で
ある. 同図のHIP装置の構造を説明すると、高圧容器0■と
、高圧ガス通路(ロ)を有し、高圧容器031の上部開
口部を密封する上蓋0ωと、高圧容器0クの下部開口部
を密封する下蓋Oeとにより高圧室が形成されている.
この高圧室内には、倒立コップ状の断熱層0クが設置さ
れ、さらに、該断熱層θ′I)の内側に沿って、上下二
段に、上部ヒータ(18a)と下部ヒータ(18b)が
配設されている.一方、下蓋061の上には、下部に外
側に向いたフランジ部を有する円筒状のカプセル支持具
!211が、該フランジ部を下蓋Oeに対向させて設置
されている.また、この支持具QDの円筒部の内面には
、断熱材(2乃が貼付されている。
Figures 2a to 2C and Figure 1 show embodiments of the present invention in the order of steps, and Figure 2a is a sectional view showing an example of the structure of a capsule used in the present invention. .. In this example, the capsule consists of a cylindrical capsule body (1) made of metal and a disc-shaped bottom plate (2) also made of metal that seals the lower opening of the capsule body (1). Part (1) and bottom plate (2) are welded together at weld part (3). The material for the metal capsule used in the present invention includes mild steel, stainless steel, Mo, platinum, etc., and is selected depending on the reactivity with the processing material and the processing temperature. Figure 2b shows a cylindrical treated material (4) molded into a capsule with an inner diameter slightly smaller than the inner diameter of the capsule body (1).
Next, the top of the treated material (4) is filled with a hard-to-sinter ceramic powder (5) such as BN, a mixture of BN and AI, SiiNa, etc., and then a stainless steel mesh is placed on top of it. FIG. 2 is a cross-sectional view of a capsule loaded with a filter (6) such as the above. Here, the hard-to-sinter ceramic powder (5) is the treated material (4).
), which acts as a spacer between the part that is exposed to high temperatures and the part that is kept at a low temperature around the valve box.
The filter (6) has the role of preventing the difficult-to-sinter ceramic powder (5) and the powder of the processing material (4) from being sucked into the vacuum pump during vacuuming. FIG. 2C is a sectional view of the processing body after vacuum sealing the processing material (4) in the capsule, and FIG. 3 is an enlarged sectional view of the valve box portion when vacuum is drawn. In this example, the valve box (7) has a cylindrical shape in which the outer diameter of the tip part is smaller than that of the main body, and a resin-based zero ring is provided along the outer periphery of the small diameter part. The small diameter tip portion is hermetically fitted to the capsule body (1) via a ring AOω (corresponding to the third sealing member recited in claim 2). Further, the cylindrical valve box (7) has a communication hole D, and the diameter of the communication hole D is smaller in the small diameter portion at the tip than in the main body, and the diameter changes smoothly within the main body. (This part where the diameter changes smoothly is called the valve seat.) Further, the valve box (7) has a deaeration hole (9) as a horizontal hole extending from the outer circumferential direction toward the communication hole D in the larger diameter portion of the main body. At the opening on the opposite side of the capsule of the communication hole D in the main body of the valve box (7), a resin O-ring BOD (as described in claim 2) is provided along the inner circumference of the hole. A bolt-shaped on-off valve (8) having a threaded portion (7a) is screwed in through the first sealing member (corresponding to the first sealing member), and is movable forward and backward. In addition, the tip of the on-off valve (8) is shaped like a truncated cone,
The communication hole D of the valve body (7) is connected via a resin-based O-ring CG3 (corresponding to the second seal member described in claim 2) provided annularly along the outer periphery of the conical part. It engages with the valve seat. Next, the function of each part will be explained in order of process. First, when vacuuming, as shown in Fig. 3, the on-off valve (8) is not screwed in yet, and the deaeration hole (9), the communication hole D of the main body of valve n (73), and the Communication hole D is in communication.
A vacuum pump is connected to this deaeration hole (9), and a vacuum pump is connected to the deaeration hole (9).
The communication hole D is used as a passage to evacuate the inside of the capsule. At this time, the O-ring AOω maintains airtightness between the capsule body (1) and the valve box (7), and the O-ring B01) serves as a communication hole between the on-off valve (8) and the main body of the valve box (7). Maintain airtightness with D. After completing the evacuation, turn the on-off valve (8) to engage the truncated conical portion of the tip with the valve seat via the O-ring CG2+. At this time, the 0 ring CG2> is connected to the on-off valve (8) and the valve box (
7) Maintain airtightness between the capsule and the communication hole D at the tip, and block the passage that communicates the inside of the capsule with the vacuum pump. In this way, the processing material (4) is vacuum sealed inside the capsule. FIG. 1 shows a bundle 09 of a plurality of processing bodies in a H11 device.
This figure shows the state in which the valve body is supported with its end portion facing down. To explain the structure of the HIP device in the same figure, there is a high pressure container 0■, an upper lid 0ω that has a high pressure gas passage (b) and seals the upper opening of the high pressure container 031, and a lower opening of the high pressure container 031. A high pressure chamber is formed by the lower lid Oe which is sealed.
Inside this high-pressure chamber, an inverted cup-shaped heat insulating layer 0 is installed, and an upper heater (18a) and a lower heater (18b) are arranged in upper and lower two stages along the inside of the insulating layer θ'I). It is arranged. On the other hand, on the lower lid 061 is a cylindrical capsule support that has an outward facing flange at the bottom! 211 is installed with the flange facing the lower cover Oe. Further, a heat insulating material (2) is attached to the inner surface of the cylindrical portion of this support QD.

次に、第1図の各部の作用を工程順に説明すると、まず
、複数の処理体の束09を、その弁箱121部分を下に
して、支持具QDの断熱材03の内側にセットする.こ
のとき、複数の処理体の束09の外周の形状とほぼ同じ
形状に断熱材(2δを成形しておけば、複数の処理体の
束0$を安定な状態で支持することができる. このようにして、複数の処理体の束09)を支持後、高
圧ガス通路0滲を通して、高圧室内に高圧ガスを送り込
むとともに、上部ヒータ(18a)と下部ヒータ(18
b)により加熱し、高圧室内を高温高圧の状態にし、H
IP処理をするのである。
Next, the operation of each part in FIG. 1 will be explained in order of process. First, a bundle 09 of a plurality of processing bodies is set inside the heat insulating material 03 of the support QD with its valve box 121 facing down. At this time, if the heat insulating material (2δ) is molded into almost the same shape as the outer periphery of the bundle 09 of the plurality of processing objects, the bundle 09 of the plurality of processing objects can be supported in a stable state. After supporting the bundle 09 of a plurality of processing bodies in this way, high pressure gas is sent into the high pressure chamber through the high pressure gas passage 0, and the upper heater (18a) and the lower heater (18
b) to bring the inside of the high pressure chamber into a high temperature and high pressure state, and
It performs IP processing.

このとき、弁箱121部分の温度は、高圧室の下部が上
部に比し相対的に低温であることに加えて、断熱11G
?)で囲樟されているので、シール部材たる樹脂系の0
リングが過熱により熱分解されない稈度の低温に保たれ
る。
At this time, the temperature of the valve box 121 is determined by the fact that the lower part of the high pressure chamber is relatively lower than the upper part, and also
? ), so the resin-based sealing material 0
The culm is kept at a low temperature so that the ring is not thermally decomposed by overheating.

第4図は、本発明のカプセルの他の実施例を示す断面閏
である。
FIG. 4 is a cross-sectional view of another embodiment of the capsule of the present invention.

同図において、カプセルは、円筒状のカプセル胴部Q1
と、カプセル胴部12mの下部開口部を密封する底板な
4lと、カプセル胴部0の上部開口部を密封する蓋Q9
とからなる。また、蓋(251の中心部には、円形の穴
が設け設けられている.この穴には、この穴の径よりや
や小さい外径を有する円筒状の脱気管(2[9が挿着さ
れている。
In the figure, the capsule has a cylindrical capsule body Q1.
, a bottom plate 4l that seals the lower opening of the capsule body 12m, and a lid Q9 that seals the upper opening of the capsule body 0.
It consists of In addition, a circular hole is provided in the center of the lid (251).A cylindrical deaeration pipe (2 [9) having an outer diameter slightly smaller than the diameter of this hole is inserted into this hole. ing.

なお、カプセル胴部12m、底板a4l,1(ハ)およ
び脱気管019は、全て薄い金属板でできており、カプ
セル胴部I2lと底板(24iは溶接部婦で、カプセル
胴部0と蓋四は溶接部amで、M四と脱気管Q旧よ溶接
部Q1で各々溶接されている。
The capsule body 12m, the bottom plate a4l, 1 (c), and the degassing pipe 019 are all made of thin metal plates, and the capsule body I2l and the bottom plate (24i are welded parts), and the capsule body 0 and the lid 4 are made of thin metal plates. is welded part am, and M4 and degassing pipe Q old are welded at welded part Q1, respectively.

このカプセル内に粉末の処理材(30)を充填後、第2
図の実施例と同様に弁箱(31)を脱気管(26)の端
部に密封嵌合し、処理材(30)をカプセル内に真空封
入する. この実施例では、第2図の実施例の場合に比して、大容
量の処理材を一度に処理できるという長所がある. ここで、本発明のシール部材に用いる樹脂系の0リング
の材質としては、シリコンゴム、フン素ゴム、ポリテト
ラフ口口エチレンなど耐熱性の高いものが好ましいが、
耐熱性は、70″C〜80″Cであれば使用可能なので
、NBRなどでも良い.第5図は、本発明のカプセルの
他の実施例であり、ガラス製のカプセルを用いる場合の
カプセル断面図である. 同図において、ガラスカプセル(32)は、円?i状の
胴部の両端に半球殻状のフタ部を凸部として有する形状
をしており、その一方の半球殻状のフタ部の頂部に胴部
より小径の円筒状の脱気管部(33)が形成されている
.このガラスカプセル(32)の脱気管部(33)がな
い方の半球部には、その半球部を充填するスペーサ(3
4)が、脱気管部(33)がある方の半球部には、その
半球部を充填し、がっ、その中心に胴部と脱気管部(3
3)を連通ずる貫通孔を有するスペーサ(35)が各々
設けられており、この二つのスペーサ(34) (35
)およびガラスカプセル(32)の胴部により形成され
る空間に、処理材(36)が充填されている.また、脱
気管部(33)の内周に沿って、同じく円筒状の金属製
サポー} (37)が配設されている.さらに、このガ
ラスカプセル(32)の脱気管部(33)には、難焼結
性セラミック粉末(38)、および、その上にフィルタ
(38a)が充填されているとともに、その開口部には
、弁箱(39)が密封嵌合されている. 弁箱(39)は、第2図の例と同様に、開閉弁(40)
と、脱気孔(4l)と、樹脂系のOリングB (42)
とを有している.ただし、この実施例では、シール部材
として、樹脂系の0リングAと樹脂系のOリングCを用
いる代わりに、その部分に樹脂系の接着剤を用いて密封
している。すなわち、予め、弁箱(39)の先端部の外
周と、開閉弁(40)の先端の円錐台部分とに接着剤を
塗布しておいて、真空封入処理するのである。本発明の
シール部材に用いる樹脂系の接着剤としては、エボシキ
系樹脂がハンドリング性の点から良好である. カプセルの材質として金属を用いる第2図および第4図
の場合においても、ガラスを用いる第5図の場合におい
ても、シール部材で密封すべき場所は、第3図の0リン
グA、0リングBおよび0リングCが設けられている三
箇所である.0リングAおよび0リングCが設けられて
いる場所には、0リングを用いても、接着剤を用いても
良い。
After filling the powder processing material (30) into this capsule, the second
As in the embodiment shown in the figure, the valve box (31) is hermetically fitted to the end of the degassing pipe (26), and the processing material (30) is vacuum-sealed into the capsule. This embodiment has an advantage over the embodiment shown in FIG. 2 in that a large amount of processing material can be processed at one time. Here, the material of the resin O-ring used in the sealing member of the present invention is preferably one with high heat resistance such as silicone rubber, fluorine rubber, polytetrafluoroethylene, etc.
As for the heat resistance, it can be used as long as it is between 70''C and 80''C, so NBR etc. may also be used. FIG. 5 shows another embodiment of the capsule of the present invention, and is a sectional view of the capsule when a glass capsule is used. In the same figure, the glass capsule (32) is a circle? The i-shaped body has a hemispherical shell-like lid part as a convex part at both ends, and a cylindrical degassing pipe part (33 ) is formed. A spacer (3
4) Fill the hemisphere with the degassing pipe part (33), and place the body and degassing pipe part (33) in the center.
A spacer (35) having a through hole communicating with the two spacers (34) (35) is provided respectively.
) and the body of the glass capsule (32) is filled with a processing material (36). Further, a cylindrical metal support (37) is arranged along the inner circumference of the deaeration pipe section (33). Further, the degassing pipe part (33) of the glass capsule (32) is filled with a hard-to-sinter ceramic powder (38) and a filter (38a) thereon, and the opening thereof is filled with: The valve box (39) is sealed and fitted. The valve box (39) has an on-off valve (40) as in the example shown in FIG.
, deaeration hole (4l), and resin O-ring B (42)
It has However, in this embodiment, instead of using the resin-based O-ring A and the resin-based O-ring C as the sealing members, a resin-based adhesive is used to seal the parts. That is, an adhesive is applied in advance to the outer periphery of the tip of the valve box (39) and to the truncated conical portion of the tip of the on-off valve (40), and then vacuum sealing is performed. As the resin-based adhesive used in the sealing member of the present invention, eboshiki-based resin is favorable from the viewpoint of handling properties. In the cases of FIGS. 2 and 4 in which metal is used as the capsule material, and in the case of FIG. 5 in which glass is used, the locations to be sealed with sealing members are 0-ring A and 0-ring B in FIG. 3. These are the three locations where O-ring C is installed. O-rings may be used or adhesive may be used in the locations where O-rings A and O-rings C are provided.

ただし、0リングBが設けられている場所には、真空引
き後に開閉弁を動かす必要があることから、Oリングを
用いる必要がある。
However, since it is necessary to move the on-off valve after evacuation, it is necessary to use an O-ring at the location where the O-ring B is provided.

次に、HIP処理装置内の支持具について、第6図と第
7図を用いて説明する. 第6図は、他の支持具の実施例であって、第4図に示す
カプセルを支持するための支持具を示す断面図である.
同図において、第1図または第4図と同番号のものは、
同図と同じものであるので説明を省略する. 同図において、その底板部の中心に孔を有する有底筒状
の基台(43)が、その開口部を下蓋0ωの上部に対向
させて固設されている。この基台(43)の底坂部の上
部には、その中心部に貫通孔を有する円柱状の断熱材(
44)が、その貫通孔を基台(43)の穴に連通させて
載設されている. この例においては、断熱材(44)の上部にカプセルの
蓋(25)部を載置することで処理体を安定な状態に支
持するとともに、断熱材(44)により、カプセルの脱
気管(26)部から先の部分を低温に保つ。
Next, the support inside the HIP processing equipment will be explained using FIGS. 6 and 7. FIG. 6 is a cross-sectional view of another embodiment of a support device for supporting the capsule shown in FIG. 4.
In the figure, the same numbers as in Figure 1 or Figure 4 are:
Since this is the same as in the same figure, the explanation will be omitted. In the figure, a bottomed cylindrical base (43) having a hole at the center of its bottom plate is fixed with its opening facing the upper part of the lower lid 0ω. At the top of the bottom slope of this base (43), there is a cylindrical heat insulating material (
44) is mounted with its through hole communicating with the hole in the base (43). In this example, the lid (25) of the capsule is placed on top of the heat insulating material (44) to support the processing body in a stable state, and the heat insulating material (44) also supports the degassing pipe (25) of the capsule. ) Keep the part beyond the part at a low temperature.

この例では、断熱材(44)そのものがカプセルを支持
する支持具でもあるのである。また、このとき、弁箱(
31)部分は、基台(43)と下蓋Oeの間に形成され
た空間に配置されている.この例では、空間を断熱材と
して用いているのである.なお、第1図および第6図に
おける断熱材の材質は、アルミナの煉瓦が、温度差に対
して割れにくいので好ましい. 第7図は、別の支持具の実施例であって、第2図に示す
カプセルを、充填容易な断熱材で断熱保護する場合を示
す断面図である.同図において、第1図と同番号のもの
は、同図と同じものであるので説明を省略する. 同図において、下106J上には、その下部に外側に向
いたフランジ部を有する円筒状の支持具(45)が、該
フランジ部を下蓋Q61に対向させて設置されており、
この支持具(45)の内側に、複数の処理体(46)を
、その弁箱(47)を下に向けて配置し、この処理体(
46)と支持具(45)の間の空間に充填容易な断熱材
(48)が充填されている。この場合の断熱材としては
、セラミックファイバ等を用いる.また、セラミックフ
ァイバの替わりに、粒径が0.1〜3mmのセラミック
粉末や粒を用いても良い.この実施例のように、充填容
易な断熱材を用いると、第1図のように断熱材を処理体
の形状に合わせて成形する必要がないという長所がある
.次に、具体的な実施例について、以下に説明する,T
i−AIが1対lの金属間化合物粉末(平均粒径約20
0μm)を、第2図aに示した形状の純チタン製カプセ
ル(肉厚2+*m、長さ200l、外径22ms)に充
填し、次いで、難焼結性セラミック材としてBNを充填
し、さらに、ステンレス製鋼m 400メッシェをフィ
ルタとして置き、第2図Cと同じ構造の、フッ素ゴム製
の0リングを有する弁箱を密着装着し、真空ホースを介
して真空ポンプに連結した. この状態で、カプセルの処理材を封入している方の端部
約20軸鴇を約300℃に過熱しつつ、真空引きを行い
、真空ポンプ側の真空ゲージで真空度が約10−2to
rrになった時点で封止弁を閉じ、真空ポンプを切り離
して処理体を製作した.この後、処理体を、第1図に示
したHIP装置中に入れ、l050゜C、1500Kg
f/c+1で、一時間HIP処理を行った.このとき、
弁箱部分の温度は、約50゜Cで、0リングが熱分解さ
れないに十分低い温度であった. 減圧・降温後、処理体をHIP装置から取り出したとこ
ろ、0リングは熱分解されておらず、きれいにHIP処
理がおこなわれていることを確認した.この後、弁箱を
手で取り外し、チタンカプセルを旋盤で除去し、焼結体
の密度を測定した結果、3.08g/cjで、真密度ま
で焼結されていることを確認した. 次に、第二の具体的な実施例について、以下に説明する
.アルミナ粉末(All603G)を、CIP法により
圧力2000Kgf/c−で、直径15am、長さ15
0enの円柱形状に成形した.このときの成形体の相対
密度は、約58%であった. この成形体を、第2図bに示したような形態で、軟鋼製
のカプセル中に配置した.充填用の難焼結性セラミック
粉末には、BN粉末をCIP法で一旦、5000Kgf
/c−の圧力で成形して再粉砕し、篩いにより、約50
−1000μ曽に分級したものを用いた.この後、第1
図に示した手順により、I{IP処理をおこなった. HIP処理は、1350゜C , 1500Kgf/c
シで一時間保持とした,HIP処理後、HIP装置から
処理体を取り出し、弁箱を取り外した.この後、カプセ
ルからアルミナ焼結体を取り出し、密度を測定した結果
、3.98g/cjで、ほぼ真密度になっていることを
確認した. (発明の効果) 本発明によれば、HIP装置内の下部の低温部に、断熱
材で囲撓して弁箱を配置することで、取り扱いが容易か
つ一般に多用されている樹脂系の0リングまたは/およ
び樹脂系の接着剤等をシール部材として用いることが可
能となり、処理材をカプセル内に真空封入する時、およ
びHIP処理時に確実かつ容易にシールができ、HIP
処理の工程の単純化および製品の歩留りの向上に寄与で
きる.また、HIP処理後、弁箱部分を容易にカプセル
から取り外すことができ、かつ弁箱部分がv!.変形す
ることもないので、弁箱部分の再使用もできる。以上の
ことから、HIP処理にかかるコストを大幅に下げるこ
とができ、HIP処理技術の適用範囲を広げることがで
きる.
In this example, the insulation material (44) itself is also a support for supporting the capsule. Also, at this time, the valve box (
31) is arranged in the space formed between the base (43) and the lower lid Oe. In this example, the space is used as insulation. It should be noted that the material of the heat insulating material in FIGS. 1 and 6 is preferably alumina brick because it is resistant to cracking due to temperature differences. FIG. 7 is a cross-sectional view of another embodiment of the support device, in which the capsule shown in FIG. 2 is thermally protected by an easily filled insulating material. In this figure, the parts with the same numbers as those in FIG. 1 are the same as in the same figure, so their explanation will be omitted. In the same figure, a cylindrical support (45) having an outwardly facing flange at its lower part is installed on the lower 106J, with the flange facing the lower lid Q61,
A plurality of processing bodies (46) are arranged inside this support (45) with their valve boxes (47) facing downward, and these processing bodies (
The space between the support (46) and the support (45) is filled with an easily filled heat insulating material (48). In this case, use ceramic fiber etc. as the heat insulating material. Further, instead of ceramic fibers, ceramic powder or grains having a particle size of 0.1 to 3 mm may be used. Using a heat insulating material that is easy to fill, as in this embodiment, has the advantage that there is no need to mold the heat insulating material to match the shape of the object as shown in FIG. Next, a specific example will be explained below.
Intermetallic compound powder with i-AI of 1:1 (average particle size approximately 20
0 μm) was filled into a pure titanium capsule (wall thickness 2+*m, length 200 l, outer diameter 22 ms) having the shape shown in Fig. 2a, and then BN was filled as a hard-to-sinter ceramic material. Furthermore, a stainless steel M400 mesh was placed as a filter, a valve box having the same structure as in Figure 2C and having an O-ring made of fluorocarbon rubber was tightly attached, and the valve box was connected to a vacuum pump via a vacuum hose. In this state, the end of the capsule containing the treatment material, about 20 mm, is heated to about 300°C and vacuumed, and the vacuum gauge on the vacuum pump side shows that the degree of vacuum is about 10-2 to
When the temperature reached rr, the sealing valve was closed, the vacuum pump was disconnected, and the processing body was fabricated. After that, the processed body was placed in the HIP device shown in Fig. 1, and heated at 1050°C and 1500 kg.
HIP treatment was performed for one hour at f/c+1. At this time,
The temperature of the valve body was approximately 50°C, which was low enough to prevent the O-ring from being thermally decomposed. After the pressure was reduced and the temperature was lowered, the treated body was removed from the HIP device, and it was confirmed that the O-ring had not been thermally decomposed and that the HIP treatment had been performed properly. Thereafter, the valve box was removed by hand, the titanium capsule was removed using a lathe, and the density of the sintered body was measured, and the result was 3.08 g/cj, which confirmed that the sintered body had been sintered to its true density. Next, a second specific example will be described below. Alumina powder (All603G) was processed by the CIP method at a pressure of 2000 Kgf/c- to a diameter of 15 am and a length of 15 mm.
It was molded into a cylindrical shape of 0en. The relative density of the compact at this time was approximately 58%. This molded body was placed in a mild steel capsule in the form shown in Figure 2b. For the hard-to-sinter ceramic powder used for filling, BN powder is heated to 5000 kgf using the CIP method.
/c- pressure, re-grind, and sieve approximately 50
-1000μ so was used. After this, the first
I{IP processing was performed according to the procedure shown in the figure. HIP processing is 1350°C, 1500Kgf/c
After the HIP treatment, the body was removed from the HIP device and the valve box was removed. After this, the alumina sintered body was taken out from the capsule and its density was measured, and it was found to be 3.98 g/cj, which is almost the true density. (Effects of the Invention) According to the present invention, by arranging the valve box surrounded by a heat insulating material in the lower low-temperature part of the HIP device, a resin-based O-ring which is easy to handle and is commonly used can be used. It is now possible to use resin-based adhesives, etc. as a sealing member, and it is possible to seal reliably and easily when vacuum sealing the processing material in the capsule and during HIP processing.
This can contribute to simplifying the processing process and improving product yield. Furthermore, after the HIP treatment, the valve box part can be easily removed from the capsule, and the valve box part can be easily removed from the capsule. .. Since it does not deform, the valve box can be reused. From the above, the cost of HIP processing can be significantly reduced and the scope of application of HIP processing technology can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図は、本発明の実施例を示すちりで、第
1図は処理体を内部に支持したHIP装置の正断面図、
第2図aはカプセルの正断面図、第2図bは処理材充填
後のカプセルの正断面図、第2図Cは真空封入後の処理
体の正断面図、第3図は真空封入前の弁箱部分の拡大正
断面図、第4図はカプセルの他の実施例を示す一部断面
正面図、第5図はカプセルのまた他の実施例を示す正面
図、第6図は他の支持具の実施例を示す正断面図、第7
図はまた他の支持具の実施例を示す正面図、第8回は一
般的なHIP装置の構造を示す概念図、第9回は従来の
カプセルの正断面図、第10図は従来例を示す正断面回
である。 (4)一処理材、 (7)、(至)一弁箱、 (8)−開閉弁、 0ω一第三の樹脂系のOリングA、 (l1)−一第一の樹脂系のOリングB、0クー第二の
樹脂系のOリングC、 09一処理体、 ロυ一支持具、 I23−断熱材. 特許出願人  株式会社 神戸製鋼所 代 理 人  弁理士  金丸 章一 第1図 第2図a 第2図b 第7図 第6図 第8図 bど 第9図 第10図
1 to 6 show examples of the present invention, and FIG. 1 is a front cross-sectional view of a HIP device that supports a processing body inside;
Figure 2a is a front sectional view of the capsule, Figure 2b is a front sectional view of the capsule after filling with processing material, Figure 2C is a front sectional view of the processing body after vacuum encapsulation, and Figure 3 is before vacuum encapsulation. 4 is a partially sectional front view showing another embodiment of the capsule, FIG. 5 is a front view showing another embodiment of the capsule, and FIG. 6 is a front view showing another embodiment of the capsule. Front sectional view showing an example of the support device, No. 7
The figures also show a front view showing an example of another support device, the 8th figure is a conceptual diagram showing the structure of a general HIP device, the 9th figure is a front sectional view of a conventional capsule, and the 10th figure is a conventional example. This is the normal cross section shown. (4) One treated material, (7), (To) One valve box, (8) - Opening/closing valve, 0ω - Third resin O-ring A, (l1) - First resin O-ring B, 0 second resin O-ring C, 09 - treated body, RO υ - support, I23 - heat insulating material. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Shoichi Kanemaru Figure 1 Figure 2 a Figure 2 b Figure 7 Figure 6 Figure 8 b, Figure 9 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)一端が開口するカプセル内に処理材を充填し、該
開口部を通じて真空脱気し、次いで該開口部を密封して
処理体を製作した後、該処理体の密封部を下にして熱間
静水圧加圧装置に供して、熱間静水圧加圧装置の下部の
低温部に設けられた断熱材を有する支持具により前記密
封部を囲撓して支持した状態で熱間静水圧加圧処理をお
こなうことを特徴とする熱間静水圧加圧方法。
(1) Fill a processing material into a capsule with an open end, perform vacuum degassing through the opening, then seal the opening to produce a processing body, and then place the processing body with the sealed part facing down. The hot isostatic pressure is applied to a hot isostatic pressurizing device in a state where the sealed portion is bent and supported by a support having a heat insulating material provided in the lower low temperature part of the hot isostatic pressurizing device. A hot isostatic pressing method characterized by pressure treatment.
(2)一端が開口するカプセル内に処理材を充填した後
、一端がカプセル内に他端が大気に開口する連通孔を有
する筒状であって、前記連通孔の一部に弁座部が形成さ
れるとともに、該弁座部よりも反カプセル側に設けられ
、前記連通孔と外部の真空ポンプとを連通する脱気孔が
形成された弁箱と、該弁箱の大気側開口部より連通孔内
に進退自在に嵌合し、その先端が前記弁座部に対応する
形状を呈する開閉弁とを有するとともに、前記弁箱の連
通孔の大気開口部と開閉弁との間に第一のシール部材を
、また前記弁座部および/または開閉弁の先端部に第二
のシール部材を、それぞれ装着して、弁箱の反開閉弁側
先端部を前記カプセル開口部に第三のシール部材を介し
て密封嵌合し、前記開閉弁の先端部と前記弁座との間に
間隙を保った状態でカプセル内を前記脱気孔に連結され
た真空ポンプにより真空引きした後、前記開閉弁を進入
させて前記弁座に当接させて、前記第二のシール部材に
より前記連通孔を密封して処理体を製作することを特徴
とする特許請求範囲第一項記載の熱間静水圧加圧方法。
(2) After filling a processing material into a capsule with an open end, the capsule has a cylindrical shape with a communicating hole in which one end is in the capsule and the other end is open to the atmosphere, and a valve seat is provided in a part of the communicating hole. A valve box is formed, and is provided on the side opposite to the capsule from the valve seat part, and is connected to a valve box in which a deaeration hole is formed, which communicates the communication hole with an external vacuum pump, through an atmosphere-side opening of the valve box. an on-off valve that fits into the hole so as to be able to move forward and backward, and whose tip has a shape corresponding to the valve seat; A sealing member and a second sealing member are respectively attached to the valve seat portion and/or the tip of the on-off valve, and a third sealing member is attached to the tip of the valve box on the opposite side of the on-off valve to the capsule opening. After evacuating the inside of the capsule with a vacuum pump connected to the degassing hole while maintaining a gap between the tip of the on-off valve and the valve seat, the on-off valve is closed. Hot isostatic pressurization according to claim 1, characterized in that the treatment body is manufactured by entering the valve seat and making it contact with the valve seat, and sealing the communication hole with the second sealing member. Method.
JP11665189A 1989-05-09 1989-05-09 Hot isostatic pressing method Pending JPH02294407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11665189A JPH02294407A (en) 1989-05-09 1989-05-09 Hot isostatic pressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11665189A JPH02294407A (en) 1989-05-09 1989-05-09 Hot isostatic pressing method

Publications (1)

Publication Number Publication Date
JPH02294407A true JPH02294407A (en) 1990-12-05

Family

ID=14692509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11665189A Pending JPH02294407A (en) 1989-05-09 1989-05-09 Hot isostatic pressing method

Country Status (1)

Country Link
JP (1) JPH02294407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493167A (en) * 2014-11-20 2015-04-08 中国航空工业集团公司北京航空材料研究院 Method for forming powder high-temperature alloy annular member
CN112045188A (en) * 2020-09-04 2020-12-08 中国航发北京航空材料研究院 Horizontal extrusion mold core for powder high-temperature alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493167A (en) * 2014-11-20 2015-04-08 中国航空工业集团公司北京航空材料研究院 Method for forming powder high-temperature alloy annular member
CN112045188A (en) * 2020-09-04 2020-12-08 中国航发北京航空材料研究院 Horizontal extrusion mold core for powder high-temperature alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR920006676B1 (en) Method for encapsulating material to be processed by hot or warm isostatic pressing
JP3955340B2 (en) High-temperature and high-pressure gas processing equipment
CA1112015A (en) Sputtering target fabrication method
US5137663A (en) Process and container for encapsulation of workpieces for high pressure processing
US5518771A (en) Method and apparatus for subjecting a workpiece to elevated pressure
JPS6241282B2 (en)
US6080341A (en) Process for making an indium-tin-oxide shaped body
US5165591A (en) Diffusion bonding
JPS641283B2 (en)
JPH02294407A (en) Hot isostatic pressing method
US5798126A (en) Sealing device for high pressure vessel
JPS5867804A (en) Method and apparatus for forming anti-wear film
US4980126A (en) Process for HIP canning of composites
CN113732284A (en) Target material hot isostatic pressing forming method and equipment
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
WO2024111479A1 (en) Isostatic pressurization device
JPS58115033A (en) Sintering method of porous glass material
JPH0533010A (en) Pressure sintering furnace and method
JPH02195299A (en) Last strage container for highly radioactive waste radiating heat
JPH0442718Y2 (en)
JPH0610283B2 (en) Method and device for confirming capsule integrity during hot isostatic pressing
JPS62142703A (en) Hot hydrostatic pressing method
US4183595A (en) Apparatus for filling glass tubing with pure gas
EP0628990A1 (en) Heat treatment apparatus
JPS63206404A (en) Deaerating and hermetic sealing device of capsule container for hot isostatic pressurization treatment