JPH02292820A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02292820A
JPH02292820A JP11346589A JP11346589A JPH02292820A JP H02292820 A JPH02292820 A JP H02292820A JP 11346589 A JP11346589 A JP 11346589A JP 11346589 A JP11346589 A JP 11346589A JP H02292820 A JPH02292820 A JP H02292820A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
melting point
point metal
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11346589A
Other languages
Japanese (ja)
Inventor
Kimiko Nakamura
公子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11346589A priority Critical patent/JPH02292820A/en
Publication of JPH02292820A publication Critical patent/JPH02292820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent oxidation and exfoliation of high melting point metal in the process followed, or to prevent the growth of a silicon oxide film and the like on the interface between the high melting point metal and a polycrystalline silicon film by a method wherein, in the process in which an electrode consisting of two layers of polycrystalline silicon and high melting point metal is formed, a high melting point metal forming process is conducted after the diffusing process of a semiconductor device has been finished. CONSTITUTION:A process in which a polycrystalline silicon film 104 is formed on one main surface of a semiconductor substrate 101, a process in which the electrode consisting of polycrystalline silicon film 104 is formed by patterning the above-mentioned polycrystalline silicon film 104 using a photolithographic technique, a process in which an insulating film 112 is coated on the whole surface after the necessary diffusion process has been finished, a process in which the insulating film 112 on the electrode consisting of the above-mentioned polycrystalline silicon film 104 is removed using a photolithographic technique, and a process in which a high melting point metal film 114 is selectively grown on the electrode consisting of the above-mentioned polycrystalline silicon film 104, are conducted. For example, after a diffusion process has been finished, an oxide film 112 is formed on the whole surface, been and after the oxide films 105 and 112 on the gate electrode have removed, a tungsten film 114 is selectively grown on the gate electrode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法に関し、特に、多結晶シ
リコンと高融点金属の2層からなる電極を有する半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having an electrode made of two layers of polycrystalline silicon and a high melting point metal.

[従来の技術] 半導体装置の高密度化が進行するにつれて多結晶シリコ
ン電極が高抵抗をもつことによる弊害が顕在化し、この
電極の低抵抗化の必要性が高まってきている。低抵抗化
の手段としては、多結晶シリコンをシリサイドあるいは
高融点金属によって裏打ちすることが行われてきた.こ
のうち、シリサイドを用いた2層構造では多結晶シリコ
ン層のシート抵抗を1桁下げることができるのに対し、
高融点金属を用いた場合にはさらにもう1桁下げること
ができるので、電気的には高融点金属を用いた2層′!
R造の方が有利であることは明らかである. 従来、多結晶シリコンと高融点金属の2層からなる電極
を形成するには、全面に多結晶シリコンと高融点金属を
堆積した後、リソグラフィ技術を用いてバ・ターニング
を行い、レジストをマスクとして2層を同時にエッチン
グすることにより形成していた.そして、従来の製造方
法では、2J[遣の電極を形成した後にさらに拡散、酸
化あるいはエッチング等の処理を施して半導体装置を製
造してきた. [発明が解決しようとする問題点] 上述した従来の半導体装置は、多結晶シリコンと高融点
金属の2層からなる電極を形成した後、反応性イオンエ
ッチングや酸化性雰囲気中での熱処理など半導体装置形
成のための様々な工程を経るため、電極形成後の工程で
高融点金属が酸化されたり、剥離したりあるいは多結晶
シリコンとの界面に酸化シリコン膜が導入されたりする
という欠点がある.さらに、高融点金属による汚染の影
響も大きい. [問題点を解決するための手段] 本発明の半導体装置の製造方法は、多結晶シリコン膜を
堆積する工程と、フォトリソグラフィ技術を用いて前記
多結晶シリコン膜をバターニングして多結晶シリコン膜
からなる電極を形成する工程と、所要の拡散工程が終了
した後層間絶縁膜となる絶縁膜を被着する工程と、フォ
トリソグラフィ技術を用いて前記多結晶シリコン膜から
なる電極上の前記絶縁膜を除去する工程と、高融点金属
膜を前記多結晶シリコン膜からなる電極上に選択的に成
長させる工程とを有している。
[Prior Art] As the density of semiconductor devices progresses, the negative effects of high resistance of polycrystalline silicon electrodes become apparent, and the necessity of lowering the resistance of these electrodes is increasing. As a means of lowering resistance, polycrystalline silicon has been lined with silicide or high melting point metal. Among these, the sheet resistance of the polycrystalline silicon layer can be lowered by an order of magnitude in the two-layer structure using silicide, whereas
If a high melting point metal is used, it can be lowered by another order of magnitude, so electrically, two layers of high melting point metals are used!
It is clear that R construction is more advantageous. Conventionally, to form an electrode consisting of two layers of polycrystalline silicon and high-melting point metal, polycrystalline silicon and high-melting point metal were deposited on the entire surface, and then bar turning was performed using lithography technology, using a resist as a mask. It was formed by etching two layers simultaneously. In conventional manufacturing methods, semiconductor devices have been manufactured by performing further treatments such as diffusion, oxidation, or etching after forming the second electrode. [Problems to be Solved by the Invention] In the conventional semiconductor device described above, after forming an electrode made of two layers of polycrystalline silicon and a high melting point metal, the semiconductor device is subjected to reactive ion etching, heat treatment in an oxidizing atmosphere, etc. Since various steps are required to form the device, there are disadvantages in that the high melting point metal may be oxidized or peeled off in the steps after electrode formation, or a silicon oxide film may be introduced at the interface with polycrystalline silicon. Furthermore, the influence of contamination from high-melting point metals is also significant. [Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes a step of depositing a polycrystalline silicon film, and a step of patterning the polycrystalline silicon film using photolithography technology to form a polycrystalline silicon film. a step of forming an electrode made of the polycrystalline silicon film, a step of depositing an insulating film that will become an interlayer insulating film after the required diffusion process is completed, and a step of depositing the insulating film on the electrode made of the polycrystalline silicon film using photolithography technology. and selectively growing a high melting point metal film on the electrode made of the polycrystalline silicon film.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
. 第1図(a)〜(f)は、本発明の第1の実施例を示す
半導体装置の断面図である。まず、p型シリコン基板1
01上に熱酸化膜102による素子分離領域を形成した
後、熱酸化法によりゲート酸化膜103を形成する。次
に、全面にゲート電極を構成するための多結晶シリコン
膜104を気相成長法により膜厚1000〜5000人
程度に成長させ、リンの拡散を行った後、酸化膜105
を同じく気相成長法により膜厚1000〜3000人程
度に成長させる。次に、フォトレジスト106を塗布し
、露光・現像を行う[第1図(a)]。フォトレジスト
106をマスクとして、反応性イオンエッチングを用い
て、ゲート電極を形成する.次に、注入量l Q 12
〜l Q 14ci−2程度のPイオン107の注入を
行い、n型低濃度拡散領域108を形成する[第1図(
b)],次に、全面に酸化膜109を気相成長法により
膜厚1000〜50oO人程度に成長させ[第1図(C
)]、全面をエッチングすることによりゲート側壁のサ
イドウ才一ルを形成する.続いて、注入量1015〜1
016cm′−2程度のAsイオン110の注入を行い
、n型高濃度拡散領域111を形成する[第1図(d)
].次に、全面に気相成長法により酸化膜112を膜厚
1000〜30oO人程度に形成し、フォトレジスト1
13を塗布した後、露光・現像を行う[第1図(e)]
.フォトレジスト113をマスクとして反応性イオンエ
ッチングを用いてゲート電極上の酸化膜112、105
を除去する.次に、高融点金属膜114、例えばタング
ステン膜をゲート電極上に選択的に成長させる[第1図
(f)].以下、眉間絶縁膜を被着し、アルミニウム配
線を設ければ、nチャネルMOSトランジスタを形成す
ることできる。同様にして、pチャネルMOS}ランジ
スタも形成することができる。
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor device showing a first embodiment of the present invention. First, p-type silicon substrate 1
After forming an element isolation region using a thermal oxide film 102 on 01, a gate oxide film 103 is formed by a thermal oxidation method. Next, a polycrystalline silicon film 104 for forming a gate electrode is grown on the entire surface by vapor phase growth to a thickness of approximately 1000 to 5000 nm, and after phosphorus is diffused, an oxide film 105
is grown to a film thickness of about 1,000 to 3,000 layers using the same vapor phase growth method. Next, a photoresist 106 is applied, exposed and developed [FIG. 1(a)]. Using the photoresist 106 as a mask, a gate electrode is formed using reactive ion etching. Next, the injection amount l Q 12
P ions 107 of ~l Q 14ci-2 are implanted to form an n-type low concentration diffusion region 108 [see Fig. 1 (
b)], Next, an oxide film 109 is grown on the entire surface by a vapor phase growth method to a thickness of about 1000 to 50 μm [Fig.
)], form side holes on the gate sidewalls by etching the entire surface. Subsequently, injection amount 1015~1
As ions 110 of about 0.16 cm'-2 are implanted to form an n-type high concentration diffusion region 111 [FIG. 1(d)]
]. Next, an oxide film 112 is formed on the entire surface by vapor phase epitaxy to a thickness of about 1000 to 30 000 nm, and a photoresist 1
After coating No. 13, exposure and development are performed [Figure 1 (e)]
.. Oxide films 112 and 105 on the gate electrodes are etched using reactive ion etching using the photoresist 113 as a mask.
Remove. Next, a high melting point metal film 114, for example a tungsten film, is selectively grown on the gate electrode [FIG. 1(f)]. Thereafter, by depositing an insulating film between the eyebrows and providing aluminum wiring, an n-channel MOS transistor can be formed. Similarly, a p-channel MOS transistor can also be formed.

第2図<a)〜(d)は、本発明の第2の実施例の工程
順を示す半導体装置の断面図である。p型シリコン基板
201上にn+埋込み/!!202を形成した後、n一
型エビタキシャル層を形成し、エビタキシャル層のトラ
ンジスタ形成領域を囲んでp”型分離領域203を形成
する。半導体基板上に厚い熱酸化膜204を泗択的に形
成し、熱酸化膜204によって分離された領域にn型多
結晶シリコン膜206によってコレクタ電極、n +型
プラグ領域205を形成した後、フォトレジスト207
をマスクとして、注入量1 0 12〜1 0 14c
m−2程度のBイオン208の注入を行い、ベース領域
209を形成する[第2図(a)]。次に、全面に気相
成長法により酸化膜210を膜厚1000〜3000人
程度に成長させる。次に、フォトリソグラフィ技術によ
りエミッタ領域上の酸化膜210を除去し、シリコン表
面を露出させる。続いて、全面に多結晶シリコン膜21
1を気相成長法により、膜厚1000〜3000人程度
に成長させる.次に、注入量1015〜10”cra−
2程度のAsイオン212の注入を行い、熱処理を行っ
て基板にAsを押し込み、エミッタ領域213を形成す
る[第2図(b)コ. 次に、フォトリソグラフィ技術を用いてエミツタ電極を
形成し、全面に気相成長法により酸化膜214を膜厚1
0oO〜3000人程度に成長させる。次に、フォトレ
ジスト215を塗布し、これに露光・現像を施す[第2
図(c)].次に,フォトレジスト215をマスクとし
て、反応性イオンエッチングを行うことにより、エミツ
タ電極およびコレクタ電極上の酸化膜214、210を
除去する。次に、高融点金属膜216をエミツタ電極お
よびコレクタ電極上に選択的に成長させる[第2図(d
)].以下、眉間絶縁膜を被着し、アルミニウム配線を
設ければ、npnバイボーラトランジスタが形成できる
. 「発明の効果] 以上説明したように、本発明は、多結晶シリコンと高融
点金属の2層からなる電極を形成する工程のうち高融点
金属を形成する工程を半導体装置の拡散工程が終了した
後に行うものであるので、本発明によれば、高融点金属
の後工程での酸化、剥離あるいは多結晶シリコン膜との
界面における酸化シリコン膜の生成を防止することがで
きる。
FIGS. 2A to 2D are cross-sectional views of a semiconductor device showing the process order of a second embodiment of the present invention. n+ buried on p-type silicon substrate 201/! ! After forming 202, an n-type epitaxial layer is formed, and a p''-type isolation region 203 is formed surrounding the transistor forming region of the epitaxial layer.A thick thermal oxide film 204 is selectively formed on the semiconductor substrate. After forming a collector electrode and an n + type plug region 205 with an n-type polycrystalline silicon film 206 in a region separated by a thermal oxide film 204, a photoresist 207 is formed.
using as a mask, injection amount 1012-1014c
B ions 208 of about m-2 are implanted to form a base region 209 [FIG. 2(a)]. Next, an oxide film 210 is grown on the entire surface by a vapor phase growth method to a thickness of about 1000 to 3000 layers. Next, the oxide film 210 on the emitter region is removed by photolithography to expose the silicon surface. Subsequently, a polycrystalline silicon film 21 is formed on the entire surface.
1 is grown to a film thickness of about 1,000 to 3,000 layers using the vapor phase growth method. Next, the injection amount was 1015 to 10”cra-
After implanting about 2 As ions 212, heat treatment is performed to push As into the substrate to form an emitter region 213 [FIG. 2(b). Next, an emitter electrode is formed using photolithography technology, and an oxide film 214 is deposited to a thickness of 1 on the entire surface by vapor phase growth.
Grow from 0oO to around 3,000 people. Next, a photoresist 215 is applied, exposed and developed [Second
Figure (c)]. Next, using the photoresist 215 as a mask, reactive ion etching is performed to remove the oxide films 214 and 210 on the emitter and collector electrodes. Next, a high melting point metal film 216 is selectively grown on the emitter electrode and the collector electrode [Fig.
)]. Thereafter, by depositing an insulating film between the eyebrows and providing aluminum wiring, an npn bibolar transistor can be formed. "Effects of the Invention" As explained above, the present invention provides a process for forming an electrode consisting of two layers of polycrystalline silicon and a high melting point metal, in which the process of forming the high melting point metal is performed after the diffusion process of the semiconductor device is completed. Since this is carried out later, according to the present invention, oxidation and peeling of the high melting point metal in the subsequent process or the formation of a silicon oxide film at the interface with the polycrystalline silicon film can be prevented.

また、高融点金属による汚染を最小限に抑えることがで
きる。したがって、本発明によれば、多結晶シリコンを
用いた微小化プロセスの特長をいかしつつ、歩留まりの
低下を招くことなしに、電極の低抵抗化を達成すること
ができる.
Furthermore, contamination by high melting point metals can be minimized. Therefore, according to the present invention, it is possible to reduce the resistance of the electrode while taking advantage of the features of the miniaturization process using polycrystalline silicon without causing a decrease in yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 〜(f)、第2図(a)〜(d)は、そ
れぞれ、本発明の第1、第2の実施例の工程順を示す半
導体装置の断面図である.101・・・p型シリコン基
板、 102・・・熱酸化膜、 103・・・ゲート酸
化膜、 104・・・多結晶シリコン膜、 105・・
・酸化膜、 106・・・フォトレジスト、  107
・・・Pイオン、  108・・・n型低濃度拡散領域
、 109・・・酸化膜、 110・・・Asイオン、
 111・・・n型高濃度拡散領域、112・・・酸化
膜、  113・・・フォトレジスト、114・・・高
融点金属膜、 201・・・p型シリコン基板、 20
2・・・n+型埋込み層、 203・・・p“型分離領
域、 204・・・熱酸化膜、  205・・・n“型
ブラグ領域、 206・・・n型多結晶シリコン膜、 
207・・・フォトレジスト、  208・・・Bイオ
ン、 209・・・ベース領域、 210・・・酸化膜
、 211・・・多結晶シリコン膜、  212・・・
Asイオン、 213・・・エミッタ領域、 214・
・・酸化膜、 215・・・フォトレジスト、  21
6・・・高融点金属膜。 第1図
FIGS. 1(a) to (f) and FIGS. 2(a) to (d) are cross-sectional views of a semiconductor device showing the process order of the first and second embodiments of the present invention, respectively. 101...p-type silicon substrate, 102...thermal oxide film, 103...gate oxide film, 104...polycrystalline silicon film, 105...
・Oxide film, 106... Photoresist, 107
... P ion, 108 ... n-type low concentration diffusion region, 109 ... oxide film, 110 ... As ion,
111... N-type high concentration diffusion region, 112... Oxide film, 113... Photoresist, 114... High melting point metal film, 201... P-type silicon substrate, 20
2...n+ type buried layer, 203...p" type isolation region, 204...thermal oxide film, 205...n" type brag region, 206...n type polycrystalline silicon film,
207... Photoresist, 208... B ion, 209... Base region, 210... Oxide film, 211... Polycrystalline silicon film, 212...
As ion, 213... emitter region, 214.
...Oxide film, 215...Photoresist, 21
6...High melting point metal film. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面上に多結晶シリコン膜を形成する工
程と、フォトリソグラフィ技術を用いて前記多結晶シリ
コン膜をパターニングして多結晶シリコン膜からなる電
極を形成する工程と、所要の拡散工程が終了した後に全
面に絶縁膜を被着する工程と、フォトリソグラフィ技術
を用いて前記多結晶シリコン膜からなる電極上の前記絶
縁膜を除去する工程と、高融点金属膜を前記多結晶シリ
コン膜からなる電極上に選択的に成長させる工程とを具
備する半導体装置の製造方法。
A step of forming a polycrystalline silicon film on one main surface of a semiconductor substrate, a step of patterning the polycrystalline silicon film using photolithography technology to form an electrode made of the polycrystalline silicon film, and a necessary diffusion step. After that, a step of depositing an insulating film on the entire surface, a step of removing the insulating film on the electrode made of the polycrystalline silicon film using photolithography, and a step of replacing the high melting point metal film with the polycrystalline silicon film. A method for manufacturing a semiconductor device, comprising the step of selectively growing on an electrode made of.
JP11346589A 1989-05-02 1989-05-02 Manufacture of semiconductor device Pending JPH02292820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11346589A JPH02292820A (en) 1989-05-02 1989-05-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11346589A JPH02292820A (en) 1989-05-02 1989-05-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02292820A true JPH02292820A (en) 1990-12-04

Family

ID=14612932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11346589A Pending JPH02292820A (en) 1989-05-02 1989-05-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02292820A (en)

Similar Documents

Publication Publication Date Title
JPS6057952A (en) Manufacture of semiconductor device
JPH03129818A (en) Manufacture of semiconductor device
JP3658215B2 (en) Manufacturing method of semiconductor device
JPS63207177A (en) Manufacture of semiconductor device
JPS6242382B2 (en)
JPH02292820A (en) Manufacture of semiconductor device
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH0316150A (en) Manufacture of semiconductor element
JPS6220711B2 (en)
JPS6150371A (en) Semiconductor memory device and manufacture thereof
JPS5933271B2 (en) Manufacturing method of semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS589587B2 (en) Manufacturing method of semiconductor device
JP2517380B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6154661A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH0475346A (en) Manufacture of semiconductor device
JPH021922A (en) Manufacture of semiconductor device
JPS6089940A (en) Manufacture of semiconductor device
JPS58170012A (en) Manufacture of semiconductor device
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPS62131538A (en) Manufacture of semiconductor device
JPH03262155A (en) Manufacture of semiconductor device
JPS639381B2 (en)