JPH02291939A - Apparatus for measuring diffraction efficiency of diffraction grating - Google Patents

Apparatus for measuring diffraction efficiency of diffraction grating

Info

Publication number
JPH02291939A
JPH02291939A JP11287289A JP11287289A JPH02291939A JP H02291939 A JPH02291939 A JP H02291939A JP 11287289 A JP11287289 A JP 11287289A JP 11287289 A JP11287289 A JP 11287289A JP H02291939 A JPH02291939 A JP H02291939A
Authority
JP
Japan
Prior art keywords
mirror
diffraction grating
light
slide
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11287289A
Other languages
Japanese (ja)
Inventor
Nobuo Akitomo
秋友 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11287289A priority Critical patent/JPH02291939A/en
Publication of JPH02291939A publication Critical patent/JPH02291939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make it possible to measure the diffraction efficiency of a diffraction grating highly accurately by one operation by providing a slide mirror which is slidden along an optical axis, a rotary stage which supports the diffraction grating to be measured and is rotated, and a switching mirror. CONSTITUTION:A diffraction grating 3 to be measured is arranged on a rotary stage 10. The light from a light source is reflected with a slide mirror 2 and a switching mirror 4 through a fixed mirror 1 as shown with a continuous line. The light is adjusted and measured with a photoelectric detector 12 so that the light intensity becomes 100. Then, the mirror 2 is moved along the optical axis from the mirror 1. The light from the mirror 1 is reflected to the grating 3 at a position 2'. The grating 3 generates 0-order diffracted light 20, first-order diffracted light 21.... At this time, the first-order diffracted light 21 becomes the optical axis light 22. The light 22 is reflected at a position 4' and reaches the detector 12. The light intensity is measured as the diffraction efficiency. The light intensity is measured as the ratio between the light intensity which is measured through the path of the continuous line and the light intensity which is measured through the path of a dotted line. Since the lengths of the light paths are equal, the diffraction efficiency of the grating 3 can be measured highly accurately by one operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回折格子の回折効率を甜定する回折効率測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diffraction efficiency measuring device for determining the diffraction efficiency of a diffraction grating.

〔従来の技術〕[Conventional technology]

回折効率は回折格子の性能に関する重要な指標の一つで
あるが、従来一般に用いられている回折効率の求め方を
第2図を用いて説明する。ここで、回折効率とは,回折
格子の入射光に対する回折光の強さの比率を云う。
Diffraction efficiency is one of the important indicators regarding the performance of a diffraction grating, and a conventional method of determining diffraction efficiency that is generally used will be explained with reference to FIG. Here, the diffraction efficiency refers to the ratio of the intensity of the diffracted light to the incident light of the diffraction grating.

第2図において、5は入射スリット、1と11は固定ミ
ラー,6は切り替えコリメータミラ−3は被測定回折格
子、8は射出スリットで、これらにより所謂リトロー形
モノクロメータを構成している。切り替えコリメータミ
ラ−6はモノクロメータを構成する被測定格子3側に点
線で示したごとく位置したり、実線で示したごとく基準
ミラー側に位置するごとく切り替えられる。潤定におい
ては先ず切り替えコリメータ6を基準ミラー側にセット
する,入射スリット5を通過した光は固定ミラー1、切
り替えコリメータミラ−6を通過しノλ準ミラー7に投
射される。基準ミラーで反射された光は再度切り替えコ
リメータミラ−6、固定ミラー11,射出スリット8を
通過して光電検出器12で検出される,この時の光電検
出器12の出力を100とすると、切り替えコリメータ
ミラ−6を被測定回折格子3側に切り替え、被測定回折
格子3を回転させて各波長次数における光電検出器12
の出力の読みが回折効率であり%で表示される。
In FIG. 2, 5 is an entrance slit, 1 and 11 are fixed mirrors, 6 is a switching collimator mirror, 3 is a diffraction grating to be measured, 8 is an exit slit, and these constitute a so-called Littrow type monochromator. The switching collimator mirror 6 can be switched to be located on the side of the measured grating 3 constituting the monochromator, as shown by the dotted line, or on the reference mirror side, as shown by the solid line. In the determination, the switching collimator 6 is first set on the reference mirror side.The light passing through the entrance slit 5 passes through the fixed mirror 1, the switching collimator mirror 6, and is projected onto the λ quasi-mirror 7. The light reflected by the reference mirror passes through the switching collimator mirror 6, fixed mirror 11, and exit slit 8 again and is detected by the photoelectric detector 12.If the output of the photoelectric detector 12 at this time is 100, then the switching The collimator mirror 6 is switched to the side of the diffraction grating 3 to be measured, and the diffraction grating 3 to be measured is rotated to detect the photoelectric detector 12 at each wavelength order.
The output reading is the diffraction efficiency and is expressed in %.

このようにして測定された回折効率は基準ミラー7の反
射率を100%としたときの測定値であり相対回折効率
と呼ばれている。しかし実際にはこの基準ミラーの反射
率は100%と限らないので、別途当該基準ミラーの反
射率を副定しておかなければならない。
The diffraction efficiency measured in this manner is a measurement value when the reflectance of the reference mirror 7 is taken as 100%, and is called relative diffraction efficiency. However, in reality, the reflectance of this reference mirror is not necessarily 100%, so the reflectance of the reference mirror must be determined separately.

このような基準ミラーの反射率の測定法としては、例え
ば実開昭61−158844公報により知られる第3図
の例や第4図に示す例が知られている。
As a method for measuring the reflectance of such a reference mirror, the example shown in FIG. 3 and the example shown in FIG. 4 are known, for example, from Japanese Unexamined Utility Model Publication No. 61-158844.

第3図において切り替えミラー4が実線の位置にスライ
ドし固定ミラー1、11を通過した光が切り替えミラー
4より直接図のごとく光電検出器12に向かい、この時
の光電検出器12の出力を100とする。次に切り替え
ミラー4が点線の位置4′に回転及びスライドし固定ミ
ラー1、11を通過した光が被測定ミラー9で反射した
後、切り替えミラーの位置4′より九電検出器12に向
かうときの光電検出器12の出力を読めば基準ミ?ーの
反射率を測定できる。このような甜定法による測定法は
基準ミラーを使用しないので絶対反射率と呼ばれている
.しかし第3図の測定法は、切り替えミラー4の切り替
えにより光路長が変化するので精度の高い測定は望めな
い。
In FIG. 3, the switching mirror 4 slides to the position indicated by the solid line, and the light that has passed through the fixed mirrors 1 and 11 goes directly from the switching mirror 4 to the photoelectric detector 12 as shown in the figure, and the output of the photoelectric detector 12 at this time is 100 shall be. Next, the switching mirror 4 rotates and slides to the position 4' indicated by the dotted line, and after the light that has passed through the fixed mirrors 1 and 11 is reflected by the mirror 9 to be measured, it heads toward the Kyuden detector 12 from the switching mirror position 4'. If you read the output of the photoelectric detector 12, the standard Mi? can measure the reflectance of This measurement method based on the fixed method does not use a reference mirror, so it is called absolute reflectance. However, in the measurement method shown in FIG. 3, since the optical path length changes by switching the switching mirror 4, highly accurate measurement cannot be expected.

4図に示す基準ミラーの絶対反射率の測定法はスライド
ミラー2の位置を図の2、2′のごとく移動し光路が実
線と点線のごとく変化しても、光路長には変化がない。
In the method of measuring the absolute reflectance of the reference mirror shown in FIG. 4, even if the position of the slide mirror 2 is moved as shown in 2 and 2' in the figure and the optical path changes as shown by the solid line and dotted line, the optical path length remains unchanged.

すなわちスライドミラー2と切り替えミラー4を図のご
とく配置し光が実線のごとく進む場合と、スライドミラ
ー2を2′の位置、切り替えミラー4を4″の位置に図
のごとく配置し光が点線のごとく進む場合の光を光電検
出器12′■で測定しそれらの比をとれば絶対反射率が
求められる。
In other words, when the slide mirror 2 and switching mirror 4 are arranged as shown in the figure and the light travels as shown by the solid line, and when the slide mirror 2 is placed at the 2' position and the switching mirror 4 is placed at the 4'' position as shown in the figure, the light travels as shown by the dotted line. The absolute reflectance can be determined by measuring the light traveling as shown in FIG.

このように,従来における回折格子の回折効率の測定は
、予め上述のごとく第3図や第4図に示すごとき甜定装
置によりノ。(準ミラーの絶対反射率を測定した後、第
2図に示したごとき装置により回折効率を測定するよう
にしていたので2度の手間を踏むことになり非常に能率
が悪かった。
As described above, the conventional measurement of the diffraction efficiency of a diffraction grating is carried out in advance using a measuring device as shown in FIGS. 3 and 4, as described above. (After measuring the absolute reflectance of the quasi-mirror, the diffraction efficiency was measured using the apparatus shown in FIG. 2, which required two steps and was very inefficient.

〔発明が解決しようとする間麗点〕[The problem that the invention attempts to solve]

本発明は、このような問題を解決する能率の良い回折格
子の回折効率を測定する装置を提供することにある。
An object of the present invention is to provide an efficient apparatus for measuring the diffraction efficiency of a diffraction grating that solves these problems.

〔作用〕[Effect]

スライドミラーを第一のスライド位置に移動した時と,
第二のスライド位置に移動した時とで同一スライドミラ
ーを用いつつそれぞれの光路長は同一となるので回折格
子の回折効率を一回の操作でで品精度に測定できる。
When the sliding mirror is moved to the first sliding position,
Since the same slide mirror is used and the optical path length is the same when moving to the second slide position, the diffraction efficiency of the diffraction grating can be measured with high accuracy in a single operation.

〔実施例〕〔Example〕

本発明の実施例を第一図を用いて説明する。被測定回折
格子3は回転可能な回転ステージ10に設置され,測定
する回折格子3の回折光の次数に応じて回転されるよう
になっている。光源よりの光は固定ミラー1によって反
射された後、スライドミラー2、次いで切り替えミラー
4によって実線のごとく反射され光電検出器12に至り
、その光強度が100となるように光電検出器12にお
いて1A整されて測定される。次にスライドミラー2を
固定ミラー1からの光の光頓に沿って2′の位置に移動
し、2′の位置で固定ミラー1からの光を回折格子3に
点線のごとく反射させる。回折格子3はO次光2o、1
次光21・・・の回折光を発生する。回折格子3より切
り替えミラー4に至る光軸光22に選ばれる回折光は回
転ステージ10の回転角によって選択される.図におい
ては1次光21が光軸光となって切り替えミラー4の切
り替えられた位置4′にて反射され光電検出器12にい
たり,その光強度が回折効率として測定される.この光
強度は図の実線の経路をへて甜定した場合の光強度に対
し,点線の経路をへて測定した場合の光強度の比率とし
て測定されるので%表示される。
An embodiment of the present invention will be described using FIG. The diffraction grating 3 to be measured is placed on a rotatable rotation stage 10, and is rotated according to the order of the diffracted light of the diffraction grating 3 to be measured. The light from the light source is reflected by the fixed mirror 1, then reflected by the slide mirror 2 and then by the switching mirror 4 as shown by the solid line, and reaches the photoelectric detector 12. regulated and measured. Next, the slide mirror 2 is moved along the direction of the light from the fixed mirror 1 to a position 2', and at the position 2', the light from the fixed mirror 1 is reflected onto the diffraction grating 3 as shown by the dotted line. The diffraction grating 3 has O-order light 2o, 1
Diffracted light of the order light 21... is generated. The diffracted light selected as the optical axis light 22 from the diffraction grating 3 to the switching mirror 4 is selected depending on the rotation angle of the rotary stage 10. In the figure, the primary light 21 becomes the optical axis light, is reflected at the switched position 4' of the switching mirror 4, reaches the photoelectric detector 12, and its light intensity is measured as the diffraction efficiency. This light intensity is measured as the ratio of the light intensity when measured via the dotted line route to the light intensity when measured via the solid line route in the figure, and is therefore expressed as a percentage.

図においてスライドミラー2は、角度を変えず固定ミラ
ー1からの光軸にそってスライドするので、スライドミ
ラー2から切り替えミラー4に至る光の光軸とスライド
ミラー2の位置2′から回折格子3に至る光の光軸は並
行である。又固定ミラー1からの光軸と回折格子3から
切り替えミラー4の位置4′に至る回折光の光軸とは並
行である。
In the figure, the slide mirror 2 slides along the optical axis from the fixed mirror 1 without changing its angle, so the optical axis of the light from the slide mirror 2 to the switching mirror 4 and the position 2' of the slide mirror 2 to the diffraction grating 3. The optical axes of the light leading to are parallel. Further, the optical axis from the fixed mirror 1 and the optical axis of the diffracted light from the diffraction grating 3 to the position 4' of the switching mirror 4 are parallel.

なお、固定ミラー1は、本発明において必ずしも必要で
はなく、光源からの光が直接スライドミラー2又は2′
に導入されてもなんら本発明の効果には相違がない.本
発明の最善の実施例においては、スライドミラー2の2
′から2に至る光の光路長とスライドミラー2の2′か
ら回折格子3に至る反射光の光路長は、等しくなる。す
なわち、回折格子3から切り替えミラー4″をへて光な
検出器12にいたる回折光の光路長と、スライドミラー
2から切り替えミラー4をへて光電検出器12にいたる
反射光の光路長が等しい。この時光軸の経路2’ −2
−4と2’−3−4’で作る形は菱形である.回折格子
3からの回折光はその回折次数により拡散反射され、光
軸22に沿って切り替えミラー4′の方向に向かう回折
光は非常に弱いので光路長の違いに基付く光電検出器1
2に取り込む光のアンバランス量は回折効率の測定精度
に大きな影響をもたらす。従って、光路長3−4′−1
2と光路長2−4−12が等しい時に被測定回折格子の
回折効率の測定精度を最も高くすることが出来る. 本発明の応用例を第5図に示す。第1図に示す回折格子
の回折効率測定装置の光源にモノクロメータ31を接続
し測定すれば、各波長成分毎の回折効率を測定できる。
Note that the fixed mirror 1 is not necessarily necessary in the present invention, and the light from the light source is directly transmitted to the slide mirror 2 or 2'.
There is no difference in the effect of the present invention even if it is introduced in In the best embodiment of the present invention, two of the slide mirrors 2
The optical path length of the light from 2' to 2 and the optical path length of the reflected light from 2' of the slide mirror 2 to the diffraction grating 3 are equal. In other words, the optical path length of the diffracted light from the diffraction grating 3 through the switching mirror 4'' to the optical detector 12 is equal to the optical path length of the reflected light from the slide mirror 2 through the switching mirror 4 to the photoelectric detector 12. .At this time, the optical axis path 2' -2
The shape made by -4 and 2'-3-4' is a rhombus. The diffracted light from the diffraction grating 3 is diffusely reflected depending on its diffraction order, and the diffracted light directed toward the switching mirror 4' along the optical axis 22 is very weak, so the photoelectric detector 1 is used based on the difference in optical path length.
The amount of unbalance in the light taken into 2 has a large effect on the measurement accuracy of diffraction efficiency. Therefore, the optical path length is 3-4'-1
When 2 and the optical path length 2-4-12 are equal, the measurement accuracy of the diffraction efficiency of the diffraction grating to be measured can be maximized. An example of application of the present invention is shown in FIG. By connecting a monochromator 31 to the light source of the diffraction efficiency measuring device for a diffraction grating shown in FIG. 1, the diffraction efficiency of each wavelength component can be measured.

又、光源に白色光を用いれば,光源のトータルエネルギ
ーに対する特定波長の回折効率を求めることが出来る。
Furthermore, if white light is used as a light source, it is possible to determine the diffraction efficiency of a specific wavelength with respect to the total energy of the light source.

〔発明の効果〕〔Effect of the invention〕

発明の回折格子の回折効率測定装置は、光源からの光軸
に沿ってスライドするスライドミラーと、被測定回折格
子を支持し回転する回転ステージ及び切り替えミラーを
設け、前記スライドミラーの第一のスライド位置にて反
射した光源からの光を前記切り替えミラーにより光電検
出器に反射させた場合の光強度と、前記スライドミラー
の第2のスライド゛位置にて反射した光源からの光を前
記被訓定回祈格子により回折し、切り替えられた前記切
り替えミラーに導いた場合の光の比率をとる構成とした
ので回折格子の回折効率を一回の操作で高精度に測定で
きるという効果を有する。
The diffraction efficiency measuring device for a diffraction grating of the invention includes a slide mirror that slides along the optical axis from a light source, a rotation stage that supports and rotates the diffraction grating to be measured, and a switching mirror, and a first slide of the slide mirror. The light intensity when the light from the light source reflected at the position is reflected to the photoelectric detector by the switching mirror, and the light from the light source reflected at the second slide position of the slide mirror is determined by the trained target. Since the ratio of the light diffracted by the diffraction grating and guided to the switched switching mirror is taken, the diffraction efficiency of the diffraction grating can be measured with high precision in a single operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる回折格子の回折効率測定装置の一
実施例を示す.第2図は回折格子の回折効率測定装置の
従来例を示す。第3図及び第4図は回折格子の回折効率
謂定装置による前提になる測定装置のの従来例を示す。 第5図は本発明になる回折格子の回折効率81リ定装置
の一応用例を示す。 1、11・・・固定ミラー 2、2′・・・スライドミラー 3   ・・・被測定回折格子 4、4′・・・切り替えミラー 5、8 ・・・スリット 6   ・・・切り替えコリメータミラー7   ・・
・基準ミラー 9   ・・・被測定ミラー 10  ・・・回転ステージ 20  ・・・0次回折光 21  ・・・1次回折光 22  ・・・光軸光 ・・・回折効率測定装置 ・・・モノクロメータ 第1図 1.11・・・固定ミラー 3・・・・・・・・・回折格子 6・・・・・・・・・コリメータミラー7・・・・・・
・・・基準ミラー 図 率測定装置
Figure 1 shows an embodiment of the diffraction efficiency measuring device for a diffraction grating according to the present invention. FIG. 2 shows a conventional example of a diffraction efficiency measuring device for a diffraction grating. FIGS. 3 and 4 show a conventional example of a measuring device based on a device for measuring the diffraction efficiency of a diffraction grating. FIG. 5 shows an example of an application of the apparatus for determining the diffraction efficiency 81 of a diffraction grating according to the present invention. 1, 11...Fixed mirror 2, 2'...Sliding mirror 3...Diffraction grating to be measured 4, 4'...Switching mirror 5, 8...Slit 6...Switching collimator mirror 7・
・Reference mirror 9 ... Mirror to be measured 10 ... Rotation stage 20 ... 0th order diffracted light 21 ... 1st order diffracted light 22 ... Optical axis light ... Diffraction efficiency measuring device ... Monochromator No. 1 Figure 1.11... Fixed mirror 3... Diffraction grating 6... Collimator mirror 7...
...Reference mirror coverage measuring device

Claims (1)

【特許請求の範囲】 1、光源からの光軸に沿ってスライドし第1及び第2の
スライド位置に移動するスライドミラーと、該スライド
ミラーが前記第一のスライド位置にて反射した光源から
の光を光電検出器に反射させる切り替えミラーと、被測
定回折格子を載置して回転する回転ステージとからなり
、前記スライドミラーが前記第2のスライド位置にて反
射した光源からの光を前記被測定回折格子により回折し
た後、切り替えられた前記切り替えミラーにより反射し
前記光電検出器に導く構成としたことを特徴とする回折
格子の回折効率測定装置。 2、前記スライドミラーの前記第2のスライド位置から
前記第1のスライド位置までの光路長と前記第2のスラ
イド位置から前記被測定回折格子までの光路長が等しい
請求項第1項記載の回折格子の回折効率測定装置。 3、前記光源としてモノクロメータを配置し、前記回折
格子の各波長毎の回折効率を測定する請求項第1項記載
の回折格子の回折効率測定装置。 4、前記光源として白色光源を配置し前記回折格子から
のトータルエネルギーに対する特定波長成分の回折効率
を測定する請求項第1項記載の回折格子の回折効率測定
装置。 5、前記第2のスライド位置から前記第1のスライド位
置に至る光路と前記回折格子から前記切り替えミラーに
至る光路が並行であり、前記第2のスライド位置から前
記切り替えミラーに至る光路と前記第1のスライド位置
から前記回折格子に至る光路が並行な請求項第1項記載
の回折格子の回折効率測定装置。 6、前記第2のスライド位置から前記第1のスライド位
置に至る光路、前記回折格子から前記切り替えミラーに
至る光路、前記第2のスライド位置から前記切り替えミ
ラーに至る光路、及び前記第1のスライド位置から前記
回折格子に至る光路が菱形を形成する請求項第1項記載
の回折格子の回折効率測定装置。
[Claims] 1. A slide mirror that slides along the optical axis from the light source and moves to first and second slide positions, and a light source that is reflected by the slide mirror at the first slide position. It consists of a switching mirror that reflects light to a photoelectric detector, and a rotation stage that rotates on which a diffraction grating to be measured is mounted, and the slide mirror reflects light from the light source reflected at the second slide position to the target. A diffraction efficiency measurement device for a diffraction grating, characterized in that the diffraction grating is diffracted by a measurement diffraction grating, then reflected by the switched mirror and guided to the photoelectric detector. 2. Diffraction according to claim 1, wherein the optical path length from the second sliding position of the slide mirror to the first sliding position is equal to the optical path length from the second sliding position to the measured diffraction grating. Grating diffraction efficiency measuring device. 3. The diffraction efficiency measuring device for a diffraction grating according to claim 1, wherein a monochromator is arranged as the light source and the diffraction efficiency of each wavelength of the diffraction grating is measured. 4. The diffraction efficiency measuring device for a diffraction grating according to claim 1, wherein a white light source is arranged as the light source and the diffraction efficiency of a specific wavelength component with respect to the total energy from the diffraction grating is measured. 5. The optical path from the second slide position to the first slide position and the optical path from the diffraction grating to the switching mirror are parallel, and the optical path from the second slide position to the switching mirror and the optical path from the second slide position to the switching mirror are parallel. 2. The diffraction efficiency measuring device for a diffraction grating according to claim 1, wherein the optical paths from the first slide position to the diffraction grating are parallel. 6. An optical path from the second slide position to the first slide position, an optical path from the diffraction grating to the switching mirror, an optical path from the second slide position to the switching mirror, and the first slide. 2. The diffraction efficiency measuring device for a diffraction grating according to claim 1, wherein an optical path from a position to said diffraction grating forms a rhombus.
JP11287289A 1989-05-02 1989-05-02 Apparatus for measuring diffraction efficiency of diffraction grating Pending JPH02291939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11287289A JPH02291939A (en) 1989-05-02 1989-05-02 Apparatus for measuring diffraction efficiency of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11287289A JPH02291939A (en) 1989-05-02 1989-05-02 Apparatus for measuring diffraction efficiency of diffraction grating

Publications (1)

Publication Number Publication Date
JPH02291939A true JPH02291939A (en) 1990-12-03

Family

ID=14597639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11287289A Pending JPH02291939A (en) 1989-05-02 1989-05-02 Apparatus for measuring diffraction efficiency of diffraction grating

Country Status (1)

Country Link
JP (1) JPH02291939A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190621A (en) * 2009-02-16 2010-09-02 Shimadzu Corp Diffraction efficiency measuring device and diffraction efficiency measuring method
CN101957257A (en) * 2010-09-10 2011-01-26 中国科学院长春光学精密机械与物理研究所 Measurement method of diffraction efficiency of concave grating
CN101995327A (en) * 2010-09-10 2011-03-30 中国科学院长春光学精密机械与物理研究所 Optical path structure for concave grating diffraction efficiency tester
CN103226058A (en) * 2013-04-02 2013-07-31 中国科学院长春光学精密机械与物理研究所 Method for measuring grating diffraction efficiency based on compensation algorithm
CN103245488A (en) * 2013-04-02 2013-08-14 中国科学院长春光学精密机械与物理研究所 Broadband large size plane grating diffraction efficiency tester
CN113109030A (en) * 2021-04-09 2021-07-13 苏州长光华芯光电技术股份有限公司 Light path collimation debugging system and light path collimation debugging method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190621A (en) * 2009-02-16 2010-09-02 Shimadzu Corp Diffraction efficiency measuring device and diffraction efficiency measuring method
CN101957257A (en) * 2010-09-10 2011-01-26 中国科学院长春光学精密机械与物理研究所 Measurement method of diffraction efficiency of concave grating
CN101995327A (en) * 2010-09-10 2011-03-30 中国科学院长春光学精密机械与物理研究所 Optical path structure for concave grating diffraction efficiency tester
CN103226058A (en) * 2013-04-02 2013-07-31 中国科学院长春光学精密机械与物理研究所 Method for measuring grating diffraction efficiency based on compensation algorithm
CN103245488A (en) * 2013-04-02 2013-08-14 中国科学院长春光学精密机械与物理研究所 Broadband large size plane grating diffraction efficiency tester
CN113109030A (en) * 2021-04-09 2021-07-13 苏州长光华芯光电技术股份有限公司 Light path collimation debugging system and light path collimation debugging method
CN113109030B (en) * 2021-04-09 2023-08-22 苏州长光华芯光电技术股份有限公司 Light path collimation debugging system and light path collimation debugging method

Similar Documents

Publication Publication Date Title
US5038032A (en) Encoder incorporating a displaceable diffraction grating
JP4381671B2 (en) Displacement detector
US9546903B2 (en) Data knitting tandem dispersive range monochromator
JPH02291939A (en) Apparatus for measuring diffraction efficiency of diffraction grating
JPH02206745A (en) Highly stable interferometer for measuring refractive index
JPS58727A (en) Fourier transform spectrum device
JPS61155902A (en) Interference measuring apparatus
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JP3344328B2 (en) Optical analyzer
JPS62163921A (en) Rotary encoder
JPS59164926A (en) Interference spectrometer
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
JPS62819A (en) Spectrometric system
JPH07325096A (en) Speed meter and position information detecting device
SU1290063A1 (en) Method of determining changes of object angular coordinate in plane and device for effecting same
JPH0255726B2 (en)
JP2640892B2 (en) Measurement method of flying height of magnetic head
SU1562793A1 (en) Device for measuring absolute coefficients of mirror reflection
JPS6350704A (en) Apparatus for measuring film thickness
JPH0417367B2 (en)
JPH0416896Y2 (en)
SU1317338A1 (en) Device for measuring spectrum transmission factors of optical elements and systems
JPH10111114A (en) Groove shape measuring device
JPH02167413A (en) Interval measuring instrument
JPH02310434A (en) Spectrophotometer