JPH0228930A - Wiring pattern - Google Patents

Wiring pattern

Info

Publication number
JPH0228930A
JPH0228930A JP18005888A JP18005888A JPH0228930A JP H0228930 A JPH0228930 A JP H0228930A JP 18005888 A JP18005888 A JP 18005888A JP 18005888 A JP18005888 A JP 18005888A JP H0228930 A JPH0228930 A JP H0228930A
Authority
JP
Japan
Prior art keywords
potential
wiring
line width
wiring pattern
lower potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18005888A
Other languages
Japanese (ja)
Inventor
Masaki Hiroi
正樹 廣居
Yutaka Sano
豊 佐野
Koji Mori
孝二 森
Mamoru Ishida
守 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP18005888A priority Critical patent/JPH0228930A/en
Publication of JPH0228930A publication Critical patent/JPH0228930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent disconnection and to improve reliability by making line widths of a wiring pattern at a lower potential are larger than ones at a higher potential. CONSTITUTION:A wiring pattern 3 in which the line width of a lower potential is larger than that of a higher potential is provided. According to such a pattern 3, a disconnection does not occur even after an electromigration generated upon movement of a wiring material from a lower potential to a higher potential since the supply of the material is large near the position L of lower potential. An arrow shows the electromigration movement. When the line width of the higher potential is excessively thin than that of the lower potential, the moved material is raised to be possibly disconnected. Accordingly, the ratio of the line width of higher voltage to lower voltage is desirably ranged A:B at 1:1.1-1:10 and more preferably A:B=1.1.5-1.2 approximately.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜トランジスタ駆動密着型センサないしは
LSI全般における配線パターンに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to wiring patterns in thin film transistor driven contact type sensors or LSIs in general.

従来の技術 従来、この種のデバイス等の配線においては、AQWi
!線等のエレクトロマイグレーションによる断線等の故
障が問題となっている。「エレクトロマイグレーション
」とは、高温にさらされた導体を形成する原子が直流電
流を担っている電子から直接的な運動エネルギーの交換
を受けて移動する現象をいう。二〇二しクトロマイグレ
ーションにより、配線材料が部分的に別の個所に移動す
る結果、材料(物質)が取り去られた個所では断線を生
じ、蓄積個所では短絡を生ずることがある。
Conventional technology Conventionally, in the wiring of this type of device, etc., AQWi
! Failures such as disconnection due to electromigration of wires and the like have become a problem. "Electromigration" refers to a phenomenon in which atoms forming a conductor exposed to high temperatures move through direct exchange of kinetic energy from electrons carrying direct current. 202. Due to ctromigration, wiring material partially moves to another location, resulting in disconnections at locations where material (substance) is removed and short circuits at locations where material is accumulated.

よって、この種のデバイスではエレクトロマイグレーシ
ョン対策が必要である。この点、従来の対策は、文献r
fiLsIプロセスデータ・ハンドブック(■サイエン
スフォーラム)」中の「メタライゼーションの信頼性(
1) −二しクトロマイグレーションー」において記載
されているように、材質の選定、デポ条件、アニール条
件などの膜質の改善により、配線の耐久性向上を図るよ
うにしている。
Therefore, this type of device requires countermeasures against electromigration. In this regard, the conventional countermeasure is
``Reliability of metallization (
As described in 1) -Second Cutromigration-, we are trying to improve the durability of wiring by improving film quality such as material selection, deposition conditions, annealing conditions, etc.

発明が解決しようとする問題点 このような膜質を変える方式によると、配線抵抗、コン
タクト不良といった新たな問題を生じ、配線の信頼性に
欠ける。
Problems to be Solved by the Invention According to such a method of changing the film quality, new problems such as wiring resistance and poor contact arise, resulting in a lack of reliability in the wiring.

問題点を解決するための手段 配線パターンにつき、電位の低い方の線幅を電位の高い
方の線幅より太くする。
Means for Solving the Problems In the wiring pattern, the line width of the lower potential line is made thicker than the line width of the higher potential side.

作用 配線におけるエレクトロマイグレーションの故障を考え
た場合、配線材料が電位の低い方から電位の高い方に移
動し、電位の低い方の個所で断線を生ずることが多い。
When considering electromigration failures in working wiring, the wiring material often moves from the lower potential to the higher potential, causing disconnection at the lower potential location.

この際、電位の低い方の線幅が太めであるので、電位の
低い方から電位の高い方への配線材料の移動があったと
しても、電位の低い方の個所が断線に至ることはない。
At this time, since the line width at the lower potential side is thicker, even if the wiring material moves from the lower potential side to the higher potential side, the lower potential point will not break. .

実施例 本発明の第一の実施例を第1図に基づいて説明する。本
実施例は、エレクトロマイグレーション対策として従来
の膜質改善に代えて、配線パターン形状に着目し、その
パターン形状を改善したものである。
Embodiment A first embodiment of the present invention will be explained based on FIG. In this embodiment, as a countermeasure against electromigration, instead of conventional film quality improvement, attention is paid to the wiring pattern shape, and the pattern shape is improved.

まず、第6図及び第7図を参照して従来方式を検討する
。従来は、膜質はともかく、配線パターン1の線幅は図
示のように平行状に形成されている。ここに、エレクト
ロマイグレーションの故障としては、例えばAQ等の配
線材料は、・電位の低い方から電位の高い方に移動し、
エレクトロマイグレーション後の結果として、第7図に
示すように配線パターン1中の電位の低い方の個所で断
線2を生じることが多い。
First, the conventional method will be discussed with reference to FIGS. 6 and 7. Conventionally, regardless of the film quality, the line width of the wiring pattern 1 is formed in parallel as shown in the figure. Here, as a failure due to electromigration, for example, wiring materials such as AQ move from the side with a lower potential to the side with a higher potential,
As a result of electromigration, as shown in FIG. 7, a disconnection 2 often occurs at a location in the wiring pattern 1 where the potential is lower.

そこで、本実施例では第1図(a)に示すように電位の
低い方の線幅を電位の高い方の線幅よりも太くした配線
パターン3とするものである。このような配線パターン
3によれば、電位の低い方から電位の高い方に配線材料
の移動を生じた第1図(b)のようなエレクトロマイグ
レーション後であっても、電位の低い方の個所り付近で
は材料の供給が多いため断線に至ることはない。第1図
(b)中の矢印はエレクトロマイグレーション移動を示
す。
Therefore, in this embodiment, as shown in FIG. 1(a), the wiring pattern 3 is made such that the line width of the lower potential side is wider than the line width of the higher potential side. According to such a wiring pattern 3, even after electromigration as shown in FIG. 1(b) in which the wiring material moves from the lower potential to the higher potential, the lower potential location Since there is a large supply of material near the area, disconnection will not occur. The arrows in FIG. 1(b) indicate electromigration movement.

もっとも、電位の低い方に対して電位の高い方の線幅を
あまり細くすると、移動してきた配線材料が、第7図か
らも判るように、盛り上がり、そこで断線する可能性も
ある。よって、電圧の高い方の線幅Aと電圧の低い方の
線幅Bとの比、A:Bはl:1.1〜1:10程度の範
囲、より好ましくはA:B=1 : l、5〜1:2程
度とするのがよい。
However, if the line width of the higher potential line is made too thin than that of the lower potential line, as can be seen from FIG. 7, the transferred wiring material may swell up and break the line there. Therefore, the ratio of the line width A at higher voltage to the line width B at lower voltage, A:B, is in the range of about l:1.1 to 1:10, more preferably A:B=1:l. , the ratio is preferably about 5 to 1:2.

つづいて、本発明の第二の実施例を第2図及び第8図に
より説明する。まず、第8図に示すように配線パターン
4の太さが極端に変わる個所Mでは、材料の移動のしや
すさが変わる。この結果として、配線パターン4中の線
幅の細い個所で断線しやすくなる。図示例は、線幅の太
い方が電位の低い方に位置する場合である。本実施例で
は、このような配線太さの変わる配線パターン4におい
て、太さが変わる個所Mを第2図に示すように曲率半径
Rにて円弧状部5なる形状に形成し、かどとなる部分を
減らし、材料の移動のしやすさを第2図の矢印に示すよ
うに均一化したものである。
Next, a second embodiment of the present invention will be described with reference to FIGS. 2 and 8. First, as shown in FIG. 8, at a location M where the thickness of the wiring pattern 4 changes drastically, the ease with which the material moves changes. As a result, wire breaks are likely to occur at locations in the wiring pattern 4 where the line width is narrow. In the illustrated example, the line with the thicker line width is located at the lower potential. In this embodiment, in the wiring pattern 4 where the wiring thickness changes, the portion M where the thickness changes is formed into an arcuate portion 5 with a radius of curvature R as shown in FIG. The number of parts is reduced and the ease of material movement is made uniform as shown by the arrows in Figure 2.

なお、円弧状部5に対する中心の位置、半径Rの大きさ
は任意であり、かどの部分が円弧状となっていればよく
、さらには円弧状に限らず、滑らか湾曲形状であればよ
い。また1本実施例では両側に円弧状部5を形成したが
、少なくとも一方に形成してあればよい。
The position of the center of the arcuate portion 5 and the size of the radius R are arbitrary, as long as the corner portions are arcuate, and the shape is not limited to the arcuate shape, but may be any smoothly curved shape. Further, in this embodiment, the arcuate portions 5 are formed on both sides, but they may be formed on at least one side.

第3図は変形例を示し、配線パターン4の太さの変わる
個所Mのかど部分を階段状部6なる形状として、材料の
移動しやすさを均一化したものである。この場合も階段
状部6の幅寸法C,Dや段数は任意であり、かど部が階
段状となっていればよい。一方のみでもよい。
FIG. 3 shows a modified example, in which the corner portion of the wiring pattern 4 where the thickness changes is formed into a stepped portion 6 to equalize the ease of movement of the material. In this case as well, the width dimensions C and D and the number of steps of the stepped portion 6 are arbitrary, as long as the corner portions are stepped. It may be only one side.

第4図は異なる変形例を示し、配線パターン4の太さの
変わる個所Mのかど部をテーパ状部7なる形状として、
材料の移動しやすさを均一化したものである。このテー
パ状部7の寸法E、Fは任意である。
FIG. 4 shows a different modification, in which the corner part of the part M where the thickness of the wiring pattern 4 changes is shaped into a tapered part 7,
It equalizes the ease of movement of materials. The dimensions E and F of this tapered portion 7 are arbitrary.

第5図はさらに異なる変形例を示し、配線パターン4の
太さの変わる個所Mのかど部を階段形状とテーパ形状と
を組合せた階段テーパ状部8なる形状として、材料の移
動しやすさを均一化したものである。この場合の階段テ
ーパ状部8の段数、形状等については第5図(a )(
b )(c )に例示する如く適宜パターンとすればよ
い。
FIG. 5 shows a further modified example, in which the corners of the portions M where the thickness of the wiring pattern 4 changes are shaped into a stepped tapered portion 8, which is a combination of a stepped shape and a tapered shape, to make it easier for the material to move. It is a homogenized version. The number of steps, shape, etc. of the stepped tapered portion 8 in this case are shown in Fig. 5(a) (
b) An appropriate pattern may be used as exemplified in (c).

発明の効果 本発明は、上述したように電位の高低による配線材料の
移動方向に着目し、電位の低い方の線幅を電位の高い方
の線幅よりも太くしたので、配線材料の移動があっても
電位の低い方の個所では材料の供給が十分であり、断線
に至ることがなく、耐久性のよいものとなり、かつ、配
線膜質自体は通常通りでよいので配線以降等の問題もな
く、信頼性の高いものとなる。
Effects of the Invention As mentioned above, the present invention focuses on the direction in which wiring material moves depending on the level of potential, and makes the line width of the lower potential line thicker than the line width of the higher potential side, so that the movement of the wiring material is reduced. Even if there is, the supply of material is sufficient at the lower potential point, there will be no disconnection, and the product will be durable, and the wiring film quality itself may be the same as usual, so there will be no problems after wiring. , it becomes highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示し、第1図(a)は
エレクトロマイグレーション前の平面図、第1図(b)
はエレクトロマイグレーション後の平面図、第2図は本
発明の第二の実施例を示す平面図、第3図は変形例を示
す平面図、第4図は異なる変形例を示す平面図、第5図
はさらに異なる変形例を示す平面図、第6図は従来例を
示すエレクトロマイグレーション前の平面図、第7図は
そのエレクトロマイグレーション後を示し、第7図(a
)は平面図、第7図(b)はその断面図、第8図は従来
例を示す平面図である。
FIG. 1 shows a first embodiment of the present invention, FIG. 1(a) is a plan view before electromigration, and FIG. 1(b) is a plan view before electromigration.
is a plan view after electromigration, FIG. 2 is a plan view showing the second embodiment of the present invention, FIG. 3 is a plan view showing a modified example, FIG. 4 is a plan view showing a different modified example, and FIG. 6 is a plan view showing a conventional example before electromigration, FIG. 7 is a plan view after electromigration, and FIG.
) is a plan view, FIG. 7(b) is a sectional view thereof, and FIG. 8 is a plan view showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 電位の低い方の線幅を電位の高い方の線幅より太くした
ことを特徴とする配線パターン。
A wiring pattern characterized in that the line width of the lower potential line is wider than the line width of the higher potential line.
JP18005888A 1988-07-19 1988-07-19 Wiring pattern Pending JPH0228930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18005888A JPH0228930A (en) 1988-07-19 1988-07-19 Wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18005888A JPH0228930A (en) 1988-07-19 1988-07-19 Wiring pattern

Publications (1)

Publication Number Publication Date
JPH0228930A true JPH0228930A (en) 1990-01-31

Family

ID=16076746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18005888A Pending JPH0228930A (en) 1988-07-19 1988-07-19 Wiring pattern

Country Status (1)

Country Link
JP (1) JPH0228930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
US7435108B1 (en) 1999-07-30 2008-10-14 Formfactor, Inc. Variable width resilient conductive contact structures
JP2017199820A (en) * 2016-04-28 2017-11-02 日立オートモティブシステムズ株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
US7435108B1 (en) 1999-07-30 2008-10-14 Formfactor, Inc. Variable width resilient conductive contact structures
JP2017199820A (en) * 2016-04-28 2017-11-02 日立オートモティブシステムズ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
IT1255411B (en) SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD
US5410161A (en) Semiconductor device equipped with characteristic checking element
JPH02133958A (en) Semiconductor device
US6448651B1 (en) Semiconductor device having a multi-level metallization and its fabricating method
KR20080030237A (en) Metal layer structure of semiconductor device
JPH0228930A (en) Wiring pattern
US7041563B2 (en) Semiconductor device having a shallow trench isolation and method of fabricating the same
KR880009414A (en) Ferromagnetic magnetoresistive element and manufacturing method thereof
JPS63318141A (en) Semiconductor device
US4308592A (en) Patterned kill of magnetoresistive layer in bubble domain chip
JP3151791B2 (en) Monitor pattern of critical dimension control device and method of using the same
JP3017179B1 (en) Semiconductor integrated circuit device, method of manufacturing the same, and mask
US6525417B2 (en) Integrated circuits having reduced step height by using dummy conductive lines
JP2693750B2 (en) Semiconductor device
KR0126886B1 (en) Contact mask design method
JPH0722301A (en) Semiconductor manufacturing device
JP2650133B2 (en) Semiconductor integrated circuit device
KR100197122B1 (en) Method for forming metal wiring in semiconductor device
JP2594719B2 (en) Semiconductor device
KR100301819B1 (en) Method for forming mask of semiconductor device
JP2534496B2 (en) Method for manufacturing semiconductor device
JPS60208845A (en) Wiring method of semiconductor device
JPS6048072B2 (en) Thin film conductor pattern
JPH01747A (en) Manufacturing method of semiconductor device
JPS62285460A (en) Protective circuit for input