JPH02288275A - Superconducting coil device - Google Patents
Superconducting coil deviceInfo
- Publication number
- JPH02288275A JPH02288275A JP1109712A JP10971289A JPH02288275A JP H02288275 A JPH02288275 A JP H02288275A JP 1109712 A JP1109712 A JP 1109712A JP 10971289 A JP10971289 A JP 10971289A JP H02288275 A JPH02288275 A JP H02288275A
- Authority
- JP
- Japan
- Prior art keywords
- outer tank
- rod
- load
- superconducting coil
- fittings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000003507 refrigerant Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract 2
- 238000010168 coupling process Methods 0.000 abstract 2
- 238000005859 coupling reaction Methods 0.000 abstract 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008384 inner phase Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、液体ヘリウム等を使用して極低温下で通電
する超電導コイル装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting coil device that uses liquid helium or the like to conduct electricity at extremely low temperatures.
〔従来の技術」
第3図は例えば実開昭61−9809号公報に記載され
たこの種従来の超電導コイル装置を示す側面図、第4図
は第3図のIV−1t/線の拡大断面図である。[Prior art] Fig. 3 is a side view showing a conventional superconducting coil device of this kind described in, for example, Japanese Utility Model Application Publication No. 61-9809, and Fig. 4 is an enlarged cross section taken along line IV-1t/ in Fig. 3. It is a diagram.
図において、(1)は超電導コイルで、液体冷媒として
の液体ヘリウム(2)とともに環状の内槽(3)の内部
に収容されている。なお、内槽(3)はステンレス材で
製作されている。(4)は内部を真空に保持する外槽、
(町は内槽(3)を包囲するように内槽(3)と外槽(
4)との間の真空空間に配設されたアルミニウム製の熱
シールド板で、液体窒素が通流する図示しない配管で冷
却され、外槽(4)から内槽(3)への輻射による熱の
侵入を抑制する。In the figure, (1) is a superconducting coil, which is housed in an annular inner tank (3) together with liquid helium (2) as a liquid refrigerant. Note that the inner tank (3) is made of stainless steel. (4) is an outer tank that maintains a vacuum inside;
(The town has an inner tank (3) and an outer tank (
4) is an aluminum heat shield plate placed in the vacuum space between control the invasion of
次に、以上の各部分の支持構造について説明する。先ず
、環状の内相(3)を貫通する形で外槽(4)の内壁間
に筒状の外槽連結棒(6)が溶接により取付は固定され
ている。この外槽連結棒(6)は、第3図に示すように
、内槽(3)の一径方向である装置長手方向に沿ってL
の間隔で2個設けられている。そして、熱シールド板(
51は第1の荷重支持材(7a)を介して外槽連結棒(
6)に締結固定されている。更に、第1の荷重支持材(
7a)に第2の荷重支持材(7b)を連結し、内槽(3
)はこの第2の荷重支持材(7b)に締結固定されてい
る。Next, the support structure of each of the above parts will be explained. First, a cylindrical outer tank connecting rod (6) is fixed by welding between the inner walls of the outer tank (4) so as to penetrate through the annular inner phase (3). As shown in FIG. 3, this outer tank connecting rod (6) extends along the longitudinal direction of the device, which is the radial direction of the inner tank (3).
Two are provided at an interval of . And a heat shield plate (
51 is an outer tank connecting rod (
6) is fastened and fixed. Furthermore, a first load support member (
7a) is connected to the second load support member (7b), and the inner tank (3
) is fastened and fixed to this second load support member (7b).
従来の超電導コイル装置は以上のように構成されている
ので、装置が運転に入ると、外槽(4)が常温下にある
のに対し、その内部の内槽(3)および熱シールド板(
5)はそれぞれ液体ヘリウム(2)および液体窒素で冷
却されてそれぞれ一269℃および川96℃の極低温下
となる。この結果、内槽(3)および熱シールド板(5
]が熱収縮し外槽(4)との間に変位量が発生し、荷重
支持材(7a) (7b)に大きなストレスが発生する
。そして、外槽連結棒(6)の取付間隔りを大きくする
につれて上記ストレスも大きくなり、遂には荷重支持材
(7a) (7b)の破壊ストレスに達することになる
。Conventional superconducting coil devices are configured as described above, so when the device starts operating, the outer tank (4) is at room temperature, while the inner tank (3) and heat shield plate (
5) are cooled with liquid helium (2) and liquid nitrogen, respectively, to extremely low temperatures of -269°C and 96°C, respectively. As a result, the inner tank (3) and the heat shield plate (5
] thermally shrinks and a displacement occurs between the outer tank (4) and a large stress on the load supporting members (7a) (7b). As the interval between the outer tank connecting rods (6) is increased, the stress increases, and eventually reaches the stress that destroys the load supporting members (7a) (7b).
もっとも、荷重支持材(7a) (7b)に発生する上
記ストレスの最大値を低減するため、外槽連結棒(6)
の取付間隔りをあらかじめ内槽(3)等の熱収縮を見込
んで小さ目に組立てる方法も考えられるが、その場合、
寸法管理が非常に厳しくなり組立作業も困難になる。However, in order to reduce the maximum value of the stress generated on the load supporting members (7a) (7b), the outer tank connecting rod (6)
It is also possible to assemble the inner tank (3) to a smaller spacing in advance to allow for heat shrinkage of the inner tank (3), etc., but in that case,
Dimensional control becomes extremely strict and assembly work becomes difficult.
この発明は以上のような従来の問題点を解消するために
なされたもので、内相等が熱収縮しても荷重支持材にほ
とんどストレスを発生させることがない超電導コイル装
置を得ることを目的とする。This invention was made in order to solve the above-mentioned conventional problems, and the purpose is to obtain a superconducting coil device that hardly generates stress on the load supporting material even if the internal phase etc. shrinks due to heat. do.
この発明に係る超電導コイル装置は、荷重支持材を、外
槽連結棒の連接する方向に滑動可能なjj4成で上記外
槽連結棒に係合させたものである。In the superconducting coil device according to the present invention, the load support member is engaged with the outer tank connecting rod using a JJ4 configuration that is slidable in the direction in which the outer tank connecting rod connects.
内槽と熱シールド板とはその温度が低下すると熱収縮す
る。この熱収縮による変位量は荷重支持材と外槽連結棒
との係合機構で吸収される。The inner tank and the heat shield plate thermally shrink when their temperature decreases. The amount of displacement due to this thermal contraction is absorbed by the engagement mechanism between the load support member and the outer tank connecting rod.
以下、この発明の一実施例を図について説明する。第1
図はその拡大断面図で従来の第4図に対応するものであ
る。図において、従来と異なるのは第1の荷重支持材(
7a)と外槽連結棒(6)との係合構造の部分で、以下
、第1図の■−■線の断面図である第2図とあわせて上
記係合構造を説明する。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is an enlarged sectional view and corresponds to the conventional figure 4. In the figure, the difference from the conventional one is the first load support member (
7a) and the outer tank connecting rod (6), the above-mentioned engaging structure will be explained below in conjunction with FIG. 2, which is a cross-sectional view taken along the line ■-■ in FIG. 1.
即ち、第1の荷重支持材(7a)と外槽連結棒(6)と
の間に新たに荷重支持材としての荷重伝達金具(8)を
挿入している。この荷重伝達金具(8)は、第1の荷重
支持材(7a)に締結され、第1の荷重支持材(7a)
を介して加わる内槽(3)および熱シールド板((5)
の荷重はそのまま外槽連結棒(6)に伝達するが、この
荷重方向と直角の装置長手方向く第2図の間隔りの方向
)には外槽連結棒(6)との間で滑動できるように構成
されている。(9)は荷重伝達金具(8)を外槽連結棒
(6)の軸方向に固定するためのストッパーである。That is, a new load transmission fitting (8) as a load support member is inserted between the first load support member (7a) and the outer tank connecting rod (6). This load transmission fitting (8) is fastened to the first load support member (7a), and the first load support member (7a)
The inner tank (3) and the heat shield plate ((5)
The load is transmitted as is to the outer tank connecting rod (6), but it can slide between the outer tank connecting rod (6) in the longitudinal direction of the device perpendicular to this load direction (in the direction of the spacing shown in Figure 2). It is configured as follows. (9) is a stopper for fixing the load transmission fitting (8) in the axial direction of the outer tank connecting rod (6).
次に、熱収縮が発生した場合の動作を説明する。Next, the operation when thermal contraction occurs will be explained.
第2図(A)は冷却前、即ち、各部分の温度がいずれも
常温下にある場合の状態、そして第2図(B)は冷却後
、即ち内槽(3)および熱シールド板(51が極低温下
にある場合の状態を示す。図において、C1およびC2
は各外槽連結棒(6)の装置長手方向の中心位置、DI
およびD2は荷重伝達金具(8)の同方向の中心位置を
示し、C1とC2との間隔はLに設定されている。また
、lは荷重伝達金具(8)と外槽連結棒(6)との間に
設+−1られな間隙で、内槽(3)等の熱収縮量に相当
する寸法に選定されている。Figure 2 (A) shows the state before cooling, that is, when the temperature of each part is at room temperature, and Figure 2 (B) shows the state after cooling, that is, the inner tank (3) and the heat shield plate (51). shows the state when C1 and C2 are under cryogenic temperature.
is the center position of each outer tank connecting rod (6) in the longitudinal direction of the device, DI
and D2 indicate the center position of the load transmission fitting (8) in the same direction, and the distance between C1 and C2 is set to L. In addition, l is the gap provided between the load transmission fitting (8) and the outer tank connecting rod (6), and the dimension is selected to correspond to the amount of heat shrinkage of the inner tank (3), etc. .
今、L = 1600+um、また、常温から各液体冷
媒温度までのステンレス材やアルミニウム材の熱収縮率
を3/ 1000とすると、
となる。Now, if L = 1600+um and the thermal contraction rate of stainless steel and aluminum materials from room temperature to the temperature of each liquid refrigerant is 3/1000, then it becomes as follows.
即ち、予め荷重伝達金具(8)と外槽連結棒(6)との
間に上記した間隙lを設けておくことにより、荷重伝達
金具(8)は温度の低下と共に間隔りの中央へ向けて滑
動′する。従って、荷重支持材(7aH7b)(81に
は内槽(3)等の熱収縮によるストレスは発生しないこ
とになる。That is, by providing the above-mentioned gap l in advance between the load transfer fitting (8) and the outer tank connecting rod (6), the load transfer fitting (8) will move toward the center of the gap as the temperature decreases. to slide. Therefore, stress due to heat shrinkage of the inner tank (3) etc. does not occur in the load supporting material (7aH7b) (81).
ると、上記した熱収縮によるストレスはほぼ完全に解消
されるが、例えば、運転中に超電導コイル(1)に長平
方向の外力が加わった場合には、残った遊び寸法の範囲
で内槽(3)が移動し衝撃振動を発生よるストレスは多
少発生するが、荷重伝達金具(8)と外槽連結棒(6)
との間の遊びをなくし、上記した衝撃、振動の発生を防
止することができる。However, if an external force in the longitudinal direction is applied to the superconducting coil (1) during operation, the inner tank ( 3) moves and generates impact vibration, which may cause some stress, but the load transmission fitting (8) and outer tank connecting rod (6)
By eliminating the play between the
以上のように、この発明では、外槽連結棒に係合する荷
重支持材を滑動可能に構成したので、内槽等の熱収縮に
より荷重支持材に発生するストレスを抑制することがで
きる。As described above, in the present invention, since the load support member that engages with the outer tank connecting rod is configured to be slidable, stress generated in the load support member due to thermal contraction of the inner tank or the like can be suppressed.
第1図はこの発明の一実施例による超電導コイル装置を
示す拡大断面図、第2図は第1図の■■線の断面図、第
3図は従来の超電導コイル装置を示す側面図、第4図は
第3図のlt/−IV線の断面図である。
図において、(1)は超電導コイル、(2)は液体冷媒
としての液体ヘリウム、(3)は内槽、圃は外槽、+5
1は熱シールド板、(6)は外槽連結棒、(7a) (
7b)および(8)は荷重支持材としてのそれぞれ第1
の荷重支持材、第2の荷重支持材および荷重伝達金具で
ある。
なお、各図中同一符号は同一または相当部分を示す。
代理人 弁理士 大 岩 増 雄
第1図
第2図
第3図
第4図
bFIG. 1 is an enlarged cross-sectional view showing a superconducting coil device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■■ in FIG. 1, and FIG. FIG. 4 is a sectional view taken along the lt/-IV line in FIG. 3. In the figure, (1) is a superconducting coil, (2) is liquid helium as a liquid refrigerant, (3) is an inner tank, the field is an outer tank, and +5
1 is a heat shield plate, (6) is an outer tank connecting rod, (7a) (
7b) and (8) are respectively the first
A load supporting member, a second load supporting member, and a load transmitting fitting. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa, Patent Attorney Figure 1 Figure 2 Figure 3 Figure 4 b
Claims (1)
に超電導コイルと液体冷媒とを収容する環状の内槽、こ
の内槽を包囲する中空環状の熱シールド板、上記外槽の
内壁間に取付け固定され上記内槽の一径方向に沿って所
定間隔で設けられた複数の外槽連結棒、およびこの外槽
連結棒と係合し上記内槽と熱シールド板とを支持する荷
重支持材を備えたものにおいて、 上記荷重支持材を、上記一径方向に滑動可能な構成で上
記外槽連結棒に係合させたことを特徴とする超電導コイ
ル装置。[Claims] An outer tank that maintains a vacuum inside, an annular inner tank disposed within the outer tank and containing a superconducting coil and a liquid refrigerant, and a hollow annular heat shield surrounding the inner tank. a plurality of outer tank connecting rods installed and fixed between the inner walls of the outer tank and provided at predetermined intervals along the radial direction of the inner tank; A superconducting coil device comprising a load supporting member supporting a shield plate, wherein the load supporting member is engaged with the outer tank connecting rod in a configuration capable of sliding in the radial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109712A JPH02288275A (en) | 1989-04-27 | 1989-04-27 | Superconducting coil device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109712A JPH02288275A (en) | 1989-04-27 | 1989-04-27 | Superconducting coil device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02288275A true JPH02288275A (en) | 1990-11-28 |
Family
ID=14517309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1109712A Pending JPH02288275A (en) | 1989-04-27 | 1989-04-27 | Superconducting coil device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02288275A (en) |
-
1989
- 1989-04-27 JP JP1109712A patent/JPH02288275A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6011454A (en) | Superconducting magnet suspension assembly | |
JPH04226005A (en) | Mr magnet longitudinal support system | |
JPH04252005A (en) | Radial supporting system for mr magnet | |
US3814361A (en) | Dual-mode cryogenic support system | |
US5736859A (en) | Cryogenic MRI magnets | |
US4184665A (en) | Thermally actuated wedge block | |
JPH02288275A (en) | Superconducting coil device | |
JPH04252004A (en) | Supporting body for axial-direction heat shielding part of mr magnet | |
US4487332A (en) | Cryostat vessel wall spacing system | |
JPH03174706A (en) | Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus | |
JP2801523B2 (en) | Superconducting acceleration cavity | |
JPH01141397A (en) | Nuclear fusion device | |
JPH04200263A (en) | Rotor of superconducting rotating machine | |
JP3000106B2 (en) | Cryostat | |
US3900809A (en) | Absorption apparatus for adjacently disposed magnet coils | |
JP3647266B2 (en) | Superconducting magnet device | |
JP7450406B2 (en) | Cryogenic equipment and thermal switches | |
JPS63261706A (en) | Cryogenic apparatus | |
JPH11329824A (en) | Superconducting coil load support | |
JP2765044B2 (en) | Cryogenic support structure | |
JPS60113482A (en) | Cryostat | |
JPS63108703A (en) | Supporting structure of electrical power supply line for superconductive conductor | |
JPH0856021A (en) | Heat insulation support structure for cryogenic device | |
JPH04122003A (en) | Superconductive coil device | |
JPS5939679Y2 (en) | Fusion device port |