JPH01141397A - Nuclear fusion device - Google Patents

Nuclear fusion device

Info

Publication number
JPH01141397A
JPH01141397A JP62297620A JP29762087A JPH01141397A JP H01141397 A JPH01141397 A JP H01141397A JP 62297620 A JP62297620 A JP 62297620A JP 29762087 A JP29762087 A JP 29762087A JP H01141397 A JPH01141397 A JP H01141397A
Authority
JP
Japan
Prior art keywords
magnetic field
toroidal magnetic
fusion device
vacuum container
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62297620A
Other languages
Japanese (ja)
Other versions
JP2633876B2 (en
Inventor
Hiroshi Sato
弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297620A priority Critical patent/JP2633876B2/en
Publication of JPH01141397A publication Critical patent/JPH01141397A/en
Application granted granted Critical
Publication of JP2633876B2 publication Critical patent/JP2633876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To assure nondefectiveness even if a housing vessel is thin by constituting a superconducting toroidal field coil freely movable with respect to the housing vessel thereof and reinforcing the vicinity of the support thereof. CONSTITUTION:A vacuum vessel 2 and heat-insulated vacuum vessel 10 for confining plasma 1 are supported by vibrationproof supporting devices 14. A shear panel part 5 integrated to the superconducting toroidal field coil 5 and the heat-insulated vacuum vessel 10 are supported by vibrationproof supporting devices 15. Both ends of the vibrationproof supporting devices 14, 15 are connected like connecting bars by pinning to the vacuum vessel 2, the shear panel part 5 and the heat-insulated vacuum vessel 10 and are constructed freely rotatable. The vibrationproof supporting devices 14, 15 are disposed in plural sets at equal intervals in the circumferential direction thereof. Reinforcing rings 16, 17 are provided to the upper and lower outside circumferential positions of the heat-insulated vacuum vessel 10 in the aperture 11 of the vacuum vessel 10 and are connected to reinforcing columns 18, by which said devices are integrated to the floor surface part of a foundation 13. The vibrationproof supporting rigidity of the superconducting toroidal field coil is thereby obtd. even if the heat-insulated vacuum vessel is thin in shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核融合装置に係り、特にトロイダル磁場コイル
として超電導トロイダル磁場コイルを採用してなる核融
合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear fusion device, and particularly to a nuclear fusion device that employs a superconducting toroidal magnetic field coil as a toroidal magnetic field coil.

〔従来の技術〕[Conventional technology]

一般に、核融合装置に使用されているトロイダル磁場コ
イルは、銅等から形成された常電導トロイダル磁場コイ
ルが採用されていた。この常電導トロイダル磁場コイル
を有する核融合装置は、その構造的な制約が少ないため
に、耐震設計の面においても比較的な自由な補強対策が
可能であって、健全なシステムの設計が完成していた。
Generally, the toroidal magnetic field coil used in a nuclear fusion device is a normally conducting toroidal magnetic field coil made of copper or the like. Because this nuclear fusion device with a normal-conducting toroidal magnetic field coil has few structural restrictions, it is possible to take relatively free reinforcing measures in terms of seismic design, and a sound system design can be completed. was.

ところが、近年、強磁場、高磁界の必要性からトロイダ
ル磁場コイルとして超電導体で形成された超電導トロイ
ダル磁場コイルを採用した核融合装置が提案されている
。この超電導トロイダル磁場コイルを採用した核融合装
置では、超電導トロイダル磁場コイルを、液体ヘリウム
等による冷却によって極低温状態に保持する必要がある
ため、装置全体が巨大な断熱用の真空容器に収納された
構造となっており、常電導トロイダル磁場コイルを用い
た時のような自由な構造設計がとれないために、耐震性
の点で充分な健全性の確保ができない。
However, in recent years, due to the need for strong and high magnetic fields, nuclear fusion devices have been proposed that employ superconducting toroidal magnetic field coils made of superconductors as toroidal magnetic field coils. In a nuclear fusion device that uses this superconducting toroidal magnetic field coil, it is necessary to maintain the superconducting toroidal magnetic field coil at an extremely low temperature by cooling it with liquid helium, etc., so the entire device is housed in a huge insulated vacuum container. Since it is not possible to have a free structural design like when using normal conducting toroidal magnetic field coils, it is not possible to ensure sufficient soundness in terms of earthquake resistance.

第6図、及び第う図に超電導トロイダル磁場コイルを用
いた従来の核融合装置の概略を示し、これを用いて更に
説明する。
A conventional nuclear fusion device using a superconducting toroidal magnetic field coil is schematically shown in FIGS. 6 and 6, and will be further explained using this.

該図において、1はプラズマ、2はプラズマ1を閉じ込
める真空容器で、中空環状体に形成されている。3はこ
の真空容器2の支持脚であって、一端を真空容器2に、
他端を基礎13に結合されている。4は超電導トロイダ
ル磁場コイルで、超電導体から形成され、前記真空容器
2を取り囲み、かつ、トーラス周方向に所定間隔をもっ
て複数個配置されている。5はトーラス周方向に配置さ
れた超電導トロイダル磁場コイル4同志を結合するシア
パネル部であって、超電導トロイダル磁場コイル4と一
体に形成され、トーラス周方向では相隣接する超電導ト
ロイダル磁場コイル4同志の中間部で分割されたセクタ
ーを形成する。6は超電導トロイダル磁場コイル4に発
生する電磁力を支持する中心柱であり、超電導トロイダ
ル磁場コイル4と共に液体ヘリウムにより冷却され極低
温状態となる。7,8は断熱支持柱であり、断熱支持柱
7は一端を極低温の超電導トロイダル磁場コイル4と、
断熱支持柱8は一端を中心柱6にそれぞれ結合し、他端
はいずれも常温状態にあり超電導トロイダル磁場コイル
4への熱侵入を防止する断熱真空容器10の底部を介し
て基礎13と結合されている。9は支持脚7,8の中間
に設けられているサーマルアンカーであって、液体窒素
により冷却され、常温域から侵入する熱を途中で除去す
るためのものである。第6図の左側半分は、超電導トロ
イダル磁場コイル4を含む位置での断面を示し、右側半
分は相隣接する超電導トロイダル磁場コイル4間の中間
部での断面で示した。この位置ではプラズマ1を閉じ込
める真空容器2は、超電導トロイダル磁場コイル4間で
半径方向にノズル状に延長され、先端部は開口部11を
形成し、この開口部11には図示しないが附帯設備の取
付や真空容器2の内部へ接近するためのマンホールなど
が設けられる。第7図での左半分は、第6図縦断面での
超電導トロイダル磁場コイル4の上部位置での横断面を
示したものであり、右半分はプラズマ1を含む位置での
断面を示した。この図で、12は真空容器2と断熱真空
容器10を結合するベローズであって、真空容器2の温
度上昇による熱膨張を吸収する。13は超電導トロイダ
ル磁場コイル4同志を結合しているシアパネル5をトー
ラス周方向に分割部分で結合するキーであって、これに
より、超電導トロイダル磁場コイル全体は結合され一体
化されている。
In the figure, 1 is a plasma, and 2 is a vacuum container that confines the plasma 1, and is formed into a hollow annular body. 3 is a supporting leg of this vacuum container 2, with one end attached to the vacuum container 2;
The other end is connected to the foundation 13. Reference numeral 4 denotes superconducting toroidal magnetic field coils, which are made of a superconductor, surround the vacuum vessel 2, and are arranged in plural pieces at predetermined intervals in the circumferential direction of the torus. Reference numeral 5 denotes a shear panel section that connects the superconducting toroidal magnetic field coils 4 arranged in the circumferential direction of the torus, and is formed integrally with the superconducting toroidal magnetic field coils 4, and is located between adjacent superconducting toroidal magnetic field coils 4 in the circumferential direction of the torus. form a sector divided by parts. A central column 6 supports the electromagnetic force generated in the superconducting toroidal magnetic field coil 4, and is cooled together with the superconducting toroidal magnetic field coil 4 by liquid helium to a cryogenic state. 7 and 8 are adiabatic support columns, and the adiabatic support column 7 has one end connected to an extremely low temperature superconducting toroidal magnetic field coil 4;
The heat-insulating support columns 8 have one end connected to the center column 6, and the other ends connected to the foundation 13 through the bottom of a heat-insulating vacuum container 10 which is at room temperature and prevents heat from entering the superconducting toroidal magnetic field coil 4. ing. Reference numeral 9 denotes a thermal anchor provided between the support legs 7 and 8, which is cooled by liquid nitrogen and is used to remove heat that enters from the normal temperature range. The left half of FIG. 6 shows a cross section at a position including the superconducting toroidal magnetic field coils 4, and the right half shows a cross section at an intermediate portion between adjacent superconducting toroidal magnetic field coils 4. In this position, the vacuum vessel 2 that confines the plasma 1 is extended in the radial direction into a nozzle-like shape between the superconducting toroidal magnetic field coils 4, and its tip forms an opening 11, in which incidental equipment (not shown) is installed. A manhole etc. for attachment and access to the inside of the vacuum container 2 is provided. The left half of FIG. 7 shows a cross section at the upper position of the superconducting toroidal magnetic field coil 4 in the longitudinal section of FIG. 6, and the right half shows a cross section at a position including the plasma 1. In this figure, 12 is a bellows that connects the vacuum container 2 and the insulating vacuum container 10, and absorbs thermal expansion due to temperature rise of the vacuum container 2. Reference numeral 13 denotes a key for connecting the shear panel 5 that connects the superconducting toroidal magnetic field coils 4 to each other at divided portions in the circumferential direction of the torus, whereby the entire superconducting toroidal magnetic field coil is connected and integrated.

尚、超電導コイルを用いた核融合装置に関しては、例え
ば特開昭59−37486号公報、特開昭56−723
90号公報等に開示されている。
Regarding nuclear fusion devices using superconducting coils, for example, JP-A-59-37486, JP-A-56-723,
It is disclosed in Publication No. 90 and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように構成される超′I¥!専トロイダル磁場コイ
ル4を備えた核融合装置では、巨大な構造物が広範囲の
温度変化を受けるために、その熱膨張。
Super 'I\' configured like this! In a fusion device equipped with a dedicated toroidal magnetic field coil 4, the huge structure undergoes a wide range of temperature changes, resulting in its thermal expansion.

収縮を吸収できるような支持系を構成しなければら液体
ヘリウム温度の極低温までの温度変化を受け、この時の
収縮は支持脚部分で数十間に達する。
A support system must be constructed that can absorb shrinkage, which is subject to temperature changes down to the extremely low temperatures of liquid helium, and the shrinkage at this time can reach tens of degrees at the support legs.

また、プラズマ1を閉じ込める真空容器2も、運転中や
ベーキングに際し高温度となるために数十mmの熱膨張
を生ずる。これらの熱変形を吸収するために、その支持
脚は可撓式に設計してこれを逃げるようにしたり、ある
いは滑りによってこれを逃がすような方法がとられてい
る。
Further, the vacuum vessel 2 that confines the plasma 1 also reaches a high temperature during operation and baking, and therefore undergoes thermal expansion of several tens of millimeters. In order to absorb these thermal deformations, the support legs are designed to be flexible so that they can escape, or methods have been adopted to allow them to escape by sliding.

更に、極低温の超電導トロイダル磁場コイル4では、外
部から極低温領域に侵入する熱を遮断するために、装置
の支持脚を階層構造の高い構造物として熱抵抗を持たせ
なければならなく、このために支持脚の断面積を極力小
さく設計する必要がある。従って、これらの点からも大
きな支持剛性が得られない。また、超電導トロイダル磁
場コイル4を備えた装置では、装置全体を断熱真空容器
10中に収納し、侵入熱を遮断している。このため装置
の支持方法は、一般には断熱真空容器10の底面からに
限られ、周辺の建造物などから有効に補強支持すること
が困難である。
Furthermore, in the cryogenic superconducting toroidal magnetic field coil 4, in order to block heat from entering the cryogenic region from the outside, the supporting legs of the device must be constructed as highly hierarchical structures with thermal resistance. Therefore, it is necessary to design the cross-sectional area of the supporting legs to be as small as possible. Therefore, large support rigidity cannot be obtained from these points as well. Furthermore, in a device equipped with a superconducting toroidal magnetic field coil 4, the entire device is housed in a heat insulating vacuum container 10 to block intrusion heat. For this reason, the method of supporting the device is generally limited to the bottom of the insulated vacuum container 10, and it is difficult to effectively support the device from surrounding buildings.

これらの問題点を有するために、全体として支持系の固
有振動数が低下し、そのため地震波との共振を生じ易く
なり、耐震性の不足する結果となってしまい、従って、
耐震性の点で充分な健全性の確保ができないのである。
Due to these problems, the natural frequency of the support system as a whole decreases, which makes it more likely to resonate with seismic waves, resulting in a lack of earthquake resistance.
It is not possible to ensure sufficient soundness in terms of earthquake resistance.

本発明は上述の点に鑑み成されたもので、その第1目的
とするところは、超電導トロイダル磁場コイルを採用し
たものであっても、充分な耐震支持剛性が得られ健全性
が確保される点、また、第2の目的とするところは、第
1の目的に加え、断熱真空容器が薄肉形状であっても同
様にすることのできる核融合装置を保供するにある。
The present invention has been made in view of the above points, and its first objective is to obtain sufficient seismic support rigidity and ensure soundness even when superconducting toroidal magnetic field coils are adopted. In addition to the first objective, the second objective is to provide a nuclear fusion device that can be used even if the insulated vacuum vessel has a thin wall shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は内部にプラズマが閉じ込められると共に、基礎
に支持脚を介して支持される中空環状体の真空容器と、
この真空容器を取り囲み、かつ。
The present invention includes a hollow annular vacuum vessel in which plasma is confined and supported on a foundation via support legs;
surrounding this vacuum container, and.

トーラス周方向に所定間隔をもって複数個配置されると
共に、各々が断熱支持柱を介して基礎に支持される超電
導トロイダル磁場コイルとを、各々これらを収納する断
熱真空容器に支持装置で水平方向に移動自在に支持する
ことにより、及び超電導1−ロイダル磁場コイルの各々
をシアパネルで結合支持する場合には、シアパネルを支
持装置で断熱真空容器に移動自在に支持することにより
第1の目的を、また、上記構成に加え、断熱真空容器に
支持部近傍の外周側を補強輪で補強することにより第2
の目的をそれぞれ達成するように成したものである。
A plurality of superconducting toroidal magnetic field coils are arranged at predetermined intervals in the circumferential direction of the torus, and each is supported by a foundation via an insulating support column, and each is moved in the horizontal direction by a support device to an insulated vacuum container that houses them. In the case where each of the superconducting 1-loidal magnetic field coils is coupled and supported by a shear panel, the first purpose is achieved by movably supporting the shear panel in an insulated vacuum container with a support device, and In addition to the above configuration, a second
It was designed to achieve each of the objectives.

〔作用〕[Effect]

上記構成とすることにより、真空容器と超電導トロイダ
ル磁場コイルは熱変形を拘束することなく有効な剛性が
得られるため充分な耐振支持剛性が得られ健全性が確保
され、更に補強輪で断熱真空容器の外周側で補強してい
るので断熱真空容器が薄肉形状であっても可能である。
With the above configuration, the vacuum vessel and the superconducting toroidal magnetic field coil can obtain effective rigidity without restricting thermal deformation, so sufficient vibration-proof support rigidity can be obtained to ensure soundness, and the reinforcing ring is used to insulate the vacuum vessel. Since it is reinforced on the outer periphery side, it is possible even if the insulated vacuum container has a thin wall shape.

〔実施例〕〔Example〕

以下1図面の実施例に基づいて本発明の詳細な説明する
。尚、符号は従来と同一のものは同符号を使用する。
The present invention will be described in detail below based on an embodiment shown in one drawing. Incidentally, the same reference numerals are used for the same parts as in the past.

第1図、及び第2図に本発明の核融合装置の一実施例を
示す。その概略構成は従来のものとほとんど同一のため
、ここでの詳細説明は省略する。
FIG. 1 and FIG. 2 show an embodiment of the nuclear fusion device of the present invention. Since its schematic configuration is almost the same as the conventional one, detailed explanation will be omitted here.

該図に示す如く、本実施例ではプラズマ1を閉じ込める
真空容器2と断熱真空容器10を防振支持装置14と支
持すると共に、超電導トロイダル磁場コイル4と一体化
されているシアパネル部5と断熱真空容器10も防振支
持装置15で支持している。本実施例は、後述詳細説明
するが、それぞれの防振支持装置14.15の両端部は
、真空容器2.シアパネル部5、及び断熱真空容器10
とピン結合された連結棒状の場合である。
As shown in the figure, in this embodiment, a vacuum vessel 2 that confines plasma 1 and a heat insulating vacuum vessel 10 are supported by a vibration isolating support device 14, and a shear panel portion 5 integrated with a superconducting toroidal magnetic field coil 4 and a heat insulating vacuum vessel 10 are supported. The container 10 is also supported by an anti-vibration support device 15. Although this embodiment will be described in detail later, both ends of each vibration isolating support device 14 and 15 are connected to the vacuum container 2. Shear panel section 5 and insulated vacuum container 10
This is the case of a connecting rod that is connected with a pin.

本実施例での防振支持装置1f14..15は、真空容
器2、及びシアパネル部5との結合点とトーラス中心を
結ぶ中心線に対してそれぞれ直角となる切線方向に配置
され、一端を真空容器2、及びシアパネル部5に、他端
は断熱真空容器1oに結合されている。そして、この防
振支持装置14゜15は、その円周方向にほぼ均等の間
隔で複数組が配置され、かつ、同一構造で全て同一方向
に配置されている。更に、本実施例では、断熱真空容器
10の真空容器2の開口部11の上、下部外周位置に補
強輪16.17を設け、この上下の補強輪16.17は
開口部11の両側で補強柱18により連結され乞と共に
、開口部11の下部位置の補強輪16は、基礎13の床
面部と結合一体化されて構成される。
Anti-vibration support device 1f14 in this embodiment. .. 15 are arranged in the tangential direction perpendicular to the center line connecting the connection point with the vacuum vessel 2 and the shear panel part 5 and the center of the torus, with one end connected to the vacuum vessel 2 and the shear panel part 5, and the other end connected to the vacuum vessel 2 and the shear panel part 5. It is coupled to an insulated vacuum container 1o. A plurality of sets of the vibration isolating support devices 14 and 15 are arranged at substantially equal intervals in the circumferential direction, and all have the same structure and are arranged in the same direction. Furthermore, in this embodiment, reinforcing rings 16 and 17 are provided at the outer periphery of the lower part above the opening 11 of the vacuum container 2 of the insulating vacuum container 10, and the upper and lower reinforcing rings 16 and 17 are reinforced on both sides of the opening 11. The reinforcing ring 16 at the lower part of the opening 11 is connected by the pillar 18 and is integrated with the floor part of the foundation 13.

次に本実施例における動作を説明する。第3図は、上述
した本実施例の構成における防振支持装置14.15の
動作をスケルトンで表わしたもので、図中、第1図、及
び第2図と同一符号は同一部材を示す。
Next, the operation in this embodiment will be explained. FIG. 3 is a skeleton representation of the operation of the vibration isolating support device 14, 15 in the configuration of the present embodiment described above, and in the figure, the same reference numerals as in FIGS. 1 and 2 indicate the same members.

前述したように、超電導トロイダル磁場コイルを備えた
核融合装置の耐震上の問題点は、核融合装置を構成する
構造物を支持する垂直方向の支持機構が、構造物の水平
方向の熱変形を拘束しないようにするために、その水平
方向の剛性が不足するためであった。従って、この問題
の解決のためには、水平方向力を水平方向に直接支持す
る支持機構であって、それが熱変形を拘束することなく
有効な剛性を有する支持機構を備えることである。
As mentioned above, the seismic problem with fusion devices equipped with superconducting toroidal magnetic field coils is that the vertical support mechanism that supports the structures that make up the fusion device prevents horizontal thermal deformation of the structures. This was because the horizontal rigidity was insufficient to avoid binding. Therefore, in order to solve this problem, it is necessary to provide a support mechanism that directly supports horizontal forces in the horizontal direction, and that has effective rigidity without restricting thermal deformation.

第3図において、取付点Aは真空容器2、又はシアパネ
ル部5と防振支持装置14、又は15の一端との結合点
で、取付点Bは断熱真空容器10と防振支持装置14、
又は15の一端との結合点である。通常、トーラス型核
融合装置では、その温度変化に対する不動基準点はトー
ラス中心にある。従って、温度変化時の取付点Aの変位
はl−−ラス中心と取付点Aを結ぶ線上を半径方向に移
動することになる。且つ、同一半径の円周上では、円周
方向での温度分布が一様であるかぎり、円周方向のどの
位置においてもその変位は同一である。
In FIG. 3, attachment point A is a connection point between the vacuum container 2 or shear panel section 5 and one end of the vibration isolation support device 14 or 15, and attachment point B is the connection point between the insulating vacuum container 10 and the vibration isolation support device 14,
Or it is a connection point with one end of 15. Typically, in a torus-type fusion device, the immovable reference point for temperature changes is located at the center of the torus. Therefore, the displacement of the attachment point A when the temperature changes will move in the radial direction on the line connecting the l--ras center and the attachment point A. Further, on a circumference having the same radius, as long as the temperature distribution in the circumferential direction is uniform, the displacement is the same at any position in the circumferential direction.

防振支持装置14.15は、取付点Aを移動端とし、取
付部Bを固定端としたピン結合の連結棒状で回転自在に
結合されているので、移動取付点Aの軌跡は固定取付点
Bを中心として防振支持装置14.15の長さQsを半
径として円弧の円周上に存在することになる。移動取付
点Aの変位δに対して、防振支持装置14.15の長さ
Qsを充分に長く取れば、防振支持装[14,15の各
回転角は極めて微小であるから、移動取付点Aの軌跡は
実用的には直線として取扱ってもさしつかえない。従っ
て、トーラス中心と移動取付点Aを結ぶ線に直角となる
線上に防振支持装置14.15の固定取付点Bを設けれ
ば、移動取付点Aの軌跡は実用的にはトーラス中心と移
動取付点Aとを結ぶ線上に存在するとしてもさしつかえ
ない。このように本実施例での防振支持装5114.1
5は、真空容器2や超電導トロイダル磁場コイル4の熱
変形に対し、これを拘束することはない。
The vibration isolating support device 14.15 is rotatably connected in the form of a connecting rod with a pin connection, with the attachment point A as the movable end and the attachment part B as the fixed end, so that the locus of the movable attachment point A follows the fixed attachment point. It exists on the circumference of a circular arc with B as the center and the length Qs of the vibration isolating support device 14.15 as the radius. If the length Qs of the anti-vibration support device 14 and 15 is made sufficiently long with respect to the displacement δ of the movable attachment point A, each rotation angle of the anti-vibration support device [14 and 15 is extremely small, so the movable attachment point In practical terms, the locus of point A can be treated as a straight line. Therefore, if the fixed attachment point B of the anti-vibration support device 14.15 is provided on a line that is perpendicular to the line connecting the torus center and the movable attachment point A, the locus of the movable attachment point A can be practically moved with the torus center. There is no problem even if it exists on the line connecting the attachment point A. In this way, the anti-vibration support device 5114.1 in this embodiment
5 does not restrict thermal deformation of the vacuum vessel 2 or the superconducting toroidal magnetic field coil 4.

次に地震力に対する作用を説明する。前述した如く、本
実施例での防振支持装[14,15は、トーラス円周上
に複数組配設される。一方、真空容器2、及びシアパネ
ル部5は、トーラス方向には強固に結合された環状体を
形成し、それ自体の環状体としての剛性は充分に剛であ
る。これら環状体の剛性が充分に剛であれば、それの水
平方向の振動を抑制する防振支持装置は、抑制すべき方
向にその環状体のどの部分に配設されてあっても機能す
る。即ち、切線方向に配置された防振支持装[14,1
5は、それと平行な方向への振動を抑制する効果を持つ
。円周上に等間隔で3組以上の防振支持装置14.15
は配置するならば、それらの抑制力の金成分によって、
水平方向のいかなる方向に対しても均等な抑制機能を持
つ。この場合の防振支持装置14.15の剛性は、その
連結棒状の軸方向の単純な引張、圧縮剛性であるから、
その長さに対して断面積を適切に選択することによって
容易に充分な剛性を持たし得るものである。このように
して、本実施例の防振支持装置14.15の構成は、熱
変形をまったく拘束することなしに逃がしながら、しか
も、耐震性の向上に対して有効な支持剛性が得られるも
のである。
Next, the effect on seismic force will be explained. As mentioned above, a plurality of sets of vibration-proof supports [14, 15 in this embodiment are arranged on the circumference of the torus. On the other hand, the vacuum container 2 and the shear panel portion 5 form an annular body that is firmly connected in the torus direction, and the rigidity of the annular body itself is sufficiently rigid. If the rigidity of these annular bodies is sufficiently rigid, the vibration isolating support device for suppressing horizontal vibrations of the annular bodies will function no matter where in the direction of suppression the vibration isolating support device is disposed on the annular bodies. That is, the vibration isolating support device [14, 1
5 has the effect of suppressing vibration in a direction parallel to it. Three or more sets of anti-vibration support devices equally spaced on the circumference 14.15
If placed, by the gold component of their suppressive force,
It has an equal suppression function in any horizontal direction. In this case, the rigidity of the vibration isolating support device 14, 15 is simply the tensile and compressive rigidity in the axial direction of the connecting rod.
Sufficient rigidity can be easily achieved by appropriately selecting the cross-sectional area relative to the length. In this way, the configuration of the vibration isolating support devices 14 and 15 of this embodiment allows thermal deformation to escape without being restrained at all, while providing support rigidity that is effective for improving earthquake resistance. be.

このように、本実施例の防振支持装置は極めて有効なも
のであるが、これをさらに効果的にするために、本実施
例では次のような工夫を加えている。
As described above, the vibration isolating support device of this embodiment is extremely effective, but in order to make it even more effective, the following measures have been added to this embodiment.

本実施例では防振支持装置14.15の一端は、断熱真
空容器1oに結合されているが、断熱真空容器10は極
めて大型の薄肉円筒状であるから、その円筒部に弧部的
に荷重が作用した場合には円筒部に局部的な変形を生じ
やすい。この局部変形は結局には防振支持装置全体の剛
性を支配し、必要な支持剛性の確保に困難を来たす。従
って、上述した構成を実施する場合には、断熱真空容器
10の局部変形を防止するに有効な補強が必要である。
In this embodiment, one end of the vibration isolating support device 14, 15 is connected to the insulating vacuum container 1o, but since the insulating vacuum container 10 has an extremely large thin-walled cylindrical shape, a load is applied to the cylindrical portion in an arcuate manner. When this occurs, local deformation tends to occur in the cylindrical portion. This local deformation ultimately controls the rigidity of the entire vibration isolating support device, making it difficult to ensure the necessary support rigidity. Therefore, when implementing the above-described configuration, effective reinforcement is required to prevent local deformation of the insulating vacuum container 10.

第1図、第2図に示した補強輪16.17は、この機能
を有するものであって、固定支持点Bはそれぞれこの補
強輪16.17に接近して設けられ、局部的に作用する
水平方向荷重を断熱真空容器10全体に分散せしめ、局
部的変形を防止し、有効な剛性を確保するためのもので
ある。更に本実施例では、下部位置の補強輪16を、基
礎13の床面部と接触状態、あるいは埋設せしめ、床面
部と一体化することによってより有効な補強効果と剛性
の向上を計っている。また、上部位置の補強輪17に伝
達された荷重に対しては、上下の補強輪16.17を連
結する補強柱18を設け、断熱真空容器10の開口11
部を補強した。この部分は、断熱真空容器10の円筒部
の壁面と共に中空の箱状断面を形成し、大きな剛性を有
するものである。
The reinforcing rings 16, 17 shown in FIGS. 1 and 2 have this function, and the fixed support points B are respectively provided close to the reinforcing rings 16, 17 and act locally. This is to distribute the horizontal load over the entire insulated vacuum vessel 10, prevent local deformation, and ensure effective rigidity. Furthermore, in this embodiment, the reinforcing ring 16 at the lower position is in contact with or buried in the floor surface of the foundation 13, and is integrated with the floor surface, thereby achieving a more effective reinforcing effect and improving rigidity. In addition, for the load transmitted to the reinforcing ring 17 at the upper position, a reinforcing column 18 is provided to connect the upper and lower reinforcing rings 16 and 17.
The section was reinforced. This portion forms a hollow box-shaped cross section together with the wall surface of the cylindrical portion of the heat insulating vacuum container 10, and has great rigidity.

また、真空容器2を支持する防振支持装置14の高さ方
向での設置位置は、真空容器2の剛性が円周方向と先に
高さ方向でも充分に剛であるため、その上端でも下端で
も実用的に支障はない。一方、超電導トロイダル磁場コ
イル4を支持する防振支持装[15の最適設置位置は、
コイルの質量分布によりきまる。シアパネル部5を含め
た場合には、その主質量の分布が、上下のシアパネル部
5の位置に分布し、その間を連結する超電導トロイダル
磁場コイル本体部分が比較的剛性の弱い柱状を形成して
いるため、上下の2ケ所に分散して、シアパネル部5を
直接に支持するように構成することがよい。このような
ことを考慮するならば、断熱真空容器10側の剛性が上
部補強輪17側よりも下部補強輪16側が大きい点に注
目し、真空容器2の防振支持装置14を下部側に設置し
、超電導トロイダル磁場コイル4の防振支持装置15は
上下2ケ所とすることが妥当である。更に、本実施例で
は、防振支持装置14.15の具体的構成について若干
の工夫を施している。前述の説明では、防振支持装置1
4.15はそれ自体の温度変化がなく、その長さnsが
変化しないことを前提としている。真空容器2の防振支
持装置14では、真空容器2の温度上昇もそれほど高く
はなく、その結合部を充分に冷却することも可能であっ
て、実用的には温度変化はないと考えてよい。しかし、
超電導トロイダル磁場コイル4の防振支持装置15では
、常温境域かに極低温の超電導コイルシステム側へ侵入
する熱を極力排除する必要があり、防振支持装置自体を
液体窒素などで積極的に冷却するような事が行なわれる
ため、防振支持装置15の長さAsは大きな変化を受け
ることになるので、これを補償する構成をとる必要があ
る。第4図はこの構成の1例を示し、第5図はその動作
を説明するものである。該図に示す如く、超電導トロイ
ダル磁場コイル4を支持する防振支持装置15を、切線
方向で時計廻り方向と反時計廻り方向に配置した2組の
防振支持装[15Aと15Bを組合せ、これらの各々の
一端を共通の取付点Cで共通にピン結合し、更に、この
結合ピンが、断熱真空容器10に設けられた係合溝19
に滑動自由に係合され、かつ、この係合溝19はトーラ
ス中心を通る線上に並行に設けられて構成する。第5図
により本構成の動作を説明する。超電導トロイダル磁場
コイル4側の取付点A1.A2は、温度変化を受けた場
合は、その点とトーラスの中心0点を結ぶ線上を移動し
、取付点AI、A2はA I ’ l A 2’点に移
動する。防振支持装fil 15 A 。
In addition, since the vacuum container 2 is sufficiently rigid both in the circumferential direction and in the height direction, the installation position in the height direction of the vibration isolating support device 14 that supports the vacuum container 2 is determined at both the upper end and the lower end. However, there is no practical problem. On the other hand, the optimal installation position of the vibration-proof support system [15] that supports the superconducting toroidal magnetic field coil 4 is
Determined by the mass distribution of the coil. When the shear panel part 5 is included, its main mass is distributed at the positions of the upper and lower shear panel parts 5, and the superconducting toroidal magnetic field coil main body part connecting therebetween forms a relatively weak columnar shape. Therefore, it is preferable to configure the shear panel portion 5 to be directly supported by being distributed at two locations, upper and lower. Taking this into consideration, it should be noted that the rigidity of the insulating vacuum vessel 10 side is greater on the lower reinforcing ring 16 side than on the upper reinforcing ring 17 side, and the vibration isolating support device 14 of the vacuum vessel 2 is installed on the lower side. However, it is appropriate that the vibration isolating support devices 15 for the superconducting toroidal magnetic field coil 4 be provided at two locations, upper and lower. Furthermore, in this embodiment, some improvements have been made to the specific structure of the vibration isolating support devices 14 and 15. In the above description, the anti-vibration support device 1
4.15 assumes that there is no temperature change itself and that its length ns does not change. With the vibration isolation support device 14 for the vacuum container 2, the temperature rise in the vacuum container 2 is not so high, and the joints can be sufficiently cooled, so it can be considered that there is no temperature change in practical terms. . but,
In the vibration isolation support device 15 of the superconducting toroidal magnetic field coil 4, it is necessary to eliminate as much as possible the heat that penetrates into the superconducting coil system, which is at room temperature or at an extremely low temperature, so the vibration isolation support device itself is actively cooled with liquid nitrogen or the like. As a result, the length As of the vibration isolating support device 15 is subject to a large change, so it is necessary to take a configuration that compensates for this. FIG. 4 shows an example of this configuration, and FIG. 5 explains its operation. As shown in the figure, the vibration isolating support devices 15 supporting the superconducting toroidal magnetic field coil 4 are arranged in two sets of vibration isolating support devices [15A and 15B are combined, One end of each of them is commonly pin-coupled at a common attachment point C, and furthermore, this coupling pin is connected to an engagement groove 19 provided in the heat-insulating vacuum container 10.
The engagement grooves 19 are arranged in parallel to a line passing through the center of the torus. The operation of this configuration will be explained with reference to FIG. Attachment point A1 on the superconducting toroidal magnetic field coil 4 side. When A2 receives a temperature change, it moves on the line connecting that point and the center 0 point of the torus, and the attachment point AI and A2 move to the point A I' l A 2'. Anti-vibration support fil 15 A.

15Bの長さを同一に構成しておくならば、AI 。If the length of 15B is configured the same, then AI.

Ax、及び0点は、0点を頂点とする二等辺三角形を形
成する。AI、A2点は同−半径上に位置し同一温度変
化を受けるから、その移動量は同じである。従って、防
振支持装置15A、15Bが同一温度変化を受けるなら
ば、その温度の如何にかかわらず、その長さは同一であ
るから、0点の移動後の位置C′とA 1’ HAz’
で構成される三角形は、C′点を頂点とす乞二等辺三角
形を形成し、C′の移動は0点とトーラス中心○点を結
ぶ線上を移動する。このように本構成によれば、防振支
持装置15が温度変化を受けてもその変形を補償し、超
電導トロイダル磁場コイル4の熱変形を拘束することな
く、地震に対し充分に剛な防振支持装置が得られるので
ある。また、この構成では、防振支持装置15A、15
Bを、正確に切線方向に配設する必要はないから、その
設置の設計に対して大きな自由度が得られる効果があり
、極めて実用性が高い。
Ax and the 0 point form an isosceles triangle with the 0 point as the apex. Points AI and A2 are located on the same radius and undergo the same temperature change, so their movement amounts are the same. Therefore, if the vibration isolating support devices 15A and 15B undergo the same temperature change, their lengths will be the same regardless of the temperature, so the positions C' and A1'HAz' after the movement of the 0 point will be the same.
The triangle formed by C' forms an isosceles triangle with the apex at C', and C' moves on the line connecting the 0 point and the torus center point. In this way, according to this configuration, even if the vibration isolating support device 15 is subjected to temperature changes, the deformation is compensated for, and the vibration isolating device 15 is sufficiently rigid against earthquakes without restricting the thermal deformation of the superconducting toroidal magnetic field coil 4. A support device is obtained. Further, in this configuration, the vibration isolating support devices 15A, 15
Since it is not necessary to arrange B precisely in the tangential direction, there is an effect that a large degree of freedom can be obtained in the design of the installation, and this is extremely practical.

尚、本構成の説明では、防振支持装置15が移動取付点
Aの側にピン結合され、固定取付点側に支持装置係合溝
19を配設した場合を説明したが。
In the description of this configuration, a case has been described in which the anti-vibration support device 15 is pin-coupled to the side of the movable attachment point A, and the support device engagement groove 19 is provided on the side of the fixed attachment point.

機能上は、これを逆の構成として移動取付点側を1ケ所
とし支持装置係合溝19を設け、固定取付側を対をなす
2ケ所の取付点でピン結合されるように構成しても同じ
である。
Functionally, this can be reversed so that the movable attachment point side is provided at one location and the support device engagement groove 19 is provided, and the fixed attachment side is configured to be connected by pins at two attachment points forming a pair. It's the same.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の核融合装置によれば、内部にプラ
ズマが閉じ込められると共に、基礎に支持脚を介して支
持される中空環状体の真空容器と、この真空容器を取り
囲み、かつ、トーラス周方向に所定間隔をもって複数個
配置されると共に、各各が断熱支持柱を介して基礎に支
持される超電導トロイダル磁場コイルとを、各々これら
を収納する断熱真空容器に支持装置で水平方向に移動自
在に支持し、また、超電導トロイダル磁場コイルの各々
をシアパネルで結合支持する場合には、このシアパネル
を断熱真空容器に支持装置で水平方向に移動自在に支持
したものであるから、熱変形を拘束することなく有効な
剛性が得られるため、充分な耐振支持剛性が得られ健全
性が確保されると断熱真空容器が薄肉形状であっても上
述と同様な効果を得ることができ、此種核融合装置に採
用する場合には、非常に有効である。
According to the nuclear fusion device of the present invention described above, there is a hollow annular vacuum vessel in which a plasma is confined and which is supported on the foundation via support legs, and a vacuum vessel that surrounds the vacuum vessel and is arranged in the circumferential direction of the torus. A plurality of superconducting toroidal magnetic field coils are arranged at predetermined intervals on the ground, and each of them is supported on the foundation via an insulating support column. Furthermore, when each of the superconducting toroidal magnetic field coils is coupled and supported by a shear panel, the shear panel is supported movably in the horizontal direction by a support device in an insulated vacuum container, so thermal deformation can be restrained. Therefore, if sufficient vibration-proof support rigidity is obtained and soundness is ensured, the same effect as described above can be obtained even if the insulated vacuum vessel has a thin wall shape, and this type of fusion device It is very effective when used in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の核融合装置の一実施例を示す第6図に
相当する図、第2図は第1図の横断面を示し、第7図に
相当する図、第3図は本発明の一実施例における防振支
持装置の基本動作をスケルトンで表わした図、第4図は
防振支持装はの他の例をスケルトンで表わした図、第5
図は第4図の93作を説明するための説明図、第6図は
従来の核融合装置を示し、左半分は超電導トロイダル磁
場コイルを含む位置で断面、右半分は相隣接する超電導
トロイダル磁場コイルの中間部で断面した一縦断面図、
第7図は第6図の横断面を示し、左半分は超電導トロイ
ダル磁場コイルの上部位置での、右半分はプラズマを含
む位置での横断面図である。 1・・・プラズマ、2・・・真空容器、3・・・支持脚
、4・・・超電導トロイダル磁場コイル、5・・シアパ
ネル部、6・・中心柱、7,8・・・断熱支持柱、9・
・・サーマルアンカー、10・・・断熱真空容器、11
・・・開口部、13・・・基礎、14,15.15A、
15B・・・防振支持装置、16.17・・補強輪、1
8・・・補強柱、第1図 14−、 I5
FIG. 1 is a diagram corresponding to FIG. 6 showing an embodiment of the nuclear fusion device of the present invention, FIG. 2 is a cross section of FIG. 1, a diagram corresponding to FIG. 7, and FIG. FIG. 4 is a skeleton diagram showing the basic operation of the anti-vibration support device in one embodiment of the invention. FIG. 4 is a skeleton diagram showing another example of the anti-vibration support device.
The figure is an explanatory diagram to explain the 93 work in Figure 4. Figure 6 shows a conventional nuclear fusion device. The left half is a cross section at a position including the superconducting toroidal magnetic field coil, and the right half is a superconducting toroidal magnetic field adjacent to each other. A longitudinal sectional view taken at the middle part of the coil,
FIG. 7 shows a cross-sectional view of FIG. 6, with the left half being a cross-sectional view at an upper position of the superconducting toroidal magnetic field coil, and the right half being a cross-sectional view at a position containing plasma. DESCRIPTION OF SYMBOLS 1... Plasma, 2... Vacuum container, 3... Support leg, 4... Superconducting toroidal magnetic field coil, 5... Shear panel part, 6... Center column, 7, 8... Heat insulation support column , 9・
...Thermal anchor, 10...Insulated vacuum container, 11
...Opening, 13...Foundation, 14, 15.15A,
15B... Anti-vibration support device, 16.17... Reinforcement ring, 1
8...Reinforcement column, Figure 1 14-, I5

Claims (1)

【特許請求の範囲】 1、内部にプラズマが閉じ込められると共に、基礎に支
持脚を介して支持される中空環状体の真空容器と、該真
空容器を取り囲み、かつ、トーラス周方向に所定間隔を
もつて複数個配置されると共に、各々が断熱支持柱を介
して基礎に支持される超電導トロイダル磁場コイルと、
該超電導トロイダル磁場コイルと真空容器を収納する断
熱真空容器とを備えた核融合装置において、前記超電導
トロイダル磁場コイルと真空容器の各々を、前記断熱真
空容器に支持装置で水平方向に移動自在に支持したこと
を特徴とする核融合装置。 2、前記支持装置は、前記超電導トロイダル磁場コイル
と真空容器の外周部の各々にほぼ等ピッチで設けられた
少なくとも3個所の移動取付部と、該移動取付部とトー
ラス中心とを結ぶ線に対してトーラス切線方向に直角と
なる線上の前記断熱真空容器に設けられた固定取付部と
、該固定取付部と前記移動取付部とを連結する連結部材
とから構成することを特徴とする特許請求の範囲第1項
記載の核融合装置。 3、前記移動取付部と連結部材、及び固定取付部と連結
部材とは、ピンにより回転自在に結合されていることを
特徴とする特許請求の範囲第2項記載の核融合装置。 4、前記移動取付部と固定取付部のいずれか一方に係合
溝を設け、該係合溝に前記ピンを滑動自在に係合したこ
とを特徴とする特許請求の範囲第3項記載の核融合装置
。 5、内部にプラズマが閉じ込められると共に、基礎に支
持脚を介して支持される中空環状体の真空容器と、該真
空容器を取り囲み、かつ、トーラス周方向に所定間隔を
もつて複数個配置されると共に、各々が断熱支持柱を介
して基礎に支持される超電導トロイダル磁場コイルと、
該超電導トロイダル磁場コイルの各々を結合支持するた
めにトーラス状に設置されたシアパネルと、該シアパネ
ルで各々が結合支持された超電導トロイダル磁場コイル
と前記真空容器を収納する断熱真空容器とを備えた核融
合装置において、前記各々の超電導トロイダル磁場コイ
ルを結合支持するシアパネルと真空容器とを、各々前記
断熱真空容器に支持装置で水平方向に移動自在に支持し
たことを特徴とする核融合装置。 6、前記支持装置は、前記シアパネルと真空容器の外周
部の各々にほぼ等ピッチで設けられた少なくとも3個所
の移動取付部と、該移動取付部とトーラス中心とを結ぶ
線に対してトーラス切線方向に直角となる線上の前記断
熱真空容器に設けられた固定取付部と、該固定取付部と
前記移動取付部とを連結する連結部材とから構成するこ
とを特徴とする特許請求の範囲第5項記載の核融合装置
。 7、前記移動取付部と連結部材、及び固定取付部と連結
部材とは、ピンにより回転自在に結合されていることを
特徴とする特許請求の範囲第6項記載の核融合装置。 8、前記移動取付部と固定取付部のいずれか一方に係合
溝を設け、該係合溝に前記ピンを滑動自在に係合したこ
とを特徴とする特許請求の範囲第7項記載の核融合装置
。 9、前記シアパネルは、前記超電導トロイダル磁場コイ
ルと一体に形成されると共に、そのトーラス周方向途中
で複数に分割されてセクター状と成していることを特徴
とする特許請求の範囲第5項記載の核融合装置。 10、前記シアパネルのトーラス周方向途中の分割部は
、前記相隣接超電導トロイダル磁場コイル間の中間部に
位置すると共に、相隣接するシアパネルを前記分割部で
キーより一体に結合したことを特徴とする特許請求の範
囲第9項記載の核融合装置。 11、内部にプラズマが閉じ込められると共に、基礎に
支持脚を介して支持される中空環状体の真空容器と、該
真空容器を取り囲み、かつ、トーラス周方向に所定間隔
をもつて複数個配置されると共に、各々が断熱支持柱を
介して基礎に支持される超電導トロイダル磁場コイルと
、該超電導トロイダル磁場コイルの各々を結合支持する
ためにトーラス状に設置されたシアパネルと、該シアパ
ネルで各々が結合支持された超電導トロイダル磁場コイ
ルと前記真空容器を収納する断熱真空容器とを備えた核
融合装置において、前記各々の超電導トロイダル磁場コ
イルを結合支持するシアパネルと真空容器とを、各々前
記断熱真空容器に支持装置で水平方向に移動自在に支持
すると共に、該断熱真空容器の支持部近傍の外周側を補
強輪で補強したことを特徴とする核融合装置。 12、前記支持装置は、前記シアパネルと真空容器の外
周部の各々にほぼ等ピッチで設けられた少なくとも3個
所の移動取付部と、該移動取付部とトーラス中心とを結
ぶ線に対してトーラス切線方向に直角となる線上の前記
断熱真空容器に設けられた固定取付部と、該固定取付部
と前記移動取付部とを連結する連結部材とから構成し、
かつ、前記固定取付部が位置する近傍の前記断熱真空容
器の外周側に前記補強輪を設置したことを特徴とする特
許請求の範囲第11項記載の核融合装置。 13、前記移動取付部と連結部材、及び固定取付部と連
結部材とは、ピンにより回転自在に結合されていること
を特徴とする特許請求の範囲第12項記載の核融合装置
。 14、前記移動取付部と固定取付部のいずれか一方に係
合溝を設け、該係合溝に前記ピンを滑動自在に係合した
ことを特徴とする特許請求の範囲第13項記載の核融合
装置。 15、前記断熱真空容器の基礎床面部に位置する外周に
他の補強輪を設置し、該補強輪を基礎床面部と一体化し
たことを特徴とする特許請求の範囲第11項、又は第1
2項記載の核融合装置。 16、前記補強輪と基礎床面部と一体化された補強輪と
を補強柱で連結したことを特徴とする特許請求の範囲第
15項記載の核融合装置。
[Claims] 1. A hollow annular vacuum container in which plasma is confined and supported by support legs on a foundation, and a vacuum container surrounding the vacuum container and having a predetermined interval in the circumferential direction of the torus. a superconducting toroidal magnetic field coil in which a plurality of superconducting toroidal magnetic field coils are arranged and each supported on a foundation via a heat insulating support column;
In a nuclear fusion device comprising the superconducting toroidal magnetic field coil and an insulating vacuum vessel that houses the vacuum vessel, each of the superconducting toroidal magnetic field coil and the vacuum vessel is supported horizontally movably by a support device in the insulating vacuum vessel. A nuclear fusion device characterized by: 2. The support device includes at least three movable attachment portions provided at approximately equal pitches on each of the outer periphery of the superconducting toroidal magnetic field coil and the vacuum vessel, and a line connecting the movable attachment portions and the center of the torus. and a connecting member that connects the fixed attachment part and the movable attachment part. A nuclear fusion device according to scope 1. 3. The nuclear fusion device according to claim 2, wherein the movable attachment part and the connecting member, and the fixed attachment part and the connecting member are rotatably connected by a pin. 4. The core according to claim 3, characterized in that an engagement groove is provided in either the movable attachment part or the fixed attachment part, and the pin is slidably engaged in the engagement groove. fusion device. 5. A hollow annular vacuum container in which plasma is confined and supported by support legs on the foundation, and a plurality of vacuum containers surrounding the vacuum container and arranged at predetermined intervals in the circumferential direction of the torus. and superconducting toroidal magnetic field coils, each of which is supported on the foundation via adiabatic support columns;
A core comprising: a shear panel installed in a torus shape for coupling and supporting each of the superconducting toroidal magnetic field coils; and an insulating vacuum container housing the superconducting toroidal magnetic field coils each coupled and supported by the shear panel and the vacuum container. A nuclear fusion device characterized in that a shear panel and a vacuum container that couple and support each of the superconducting toroidal magnetic field coils are each supported by a support device in the insulating vacuum container so as to be movable in the horizontal direction. 6. The support device includes at least three movable attachment portions provided at approximately equal pitches on each of the shear panel and the outer periphery of the vacuum vessel, and a torus cutting line with respect to a line connecting the movable attachment portions and the center of the torus. Claim 5, characterized in that it is comprised of a fixed mounting part provided on the insulating vacuum container on a line perpendicular to the direction, and a connecting member connecting the fixed mounting part and the movable mounting part. Nuclear fusion device as described in section. 7. The nuclear fusion device according to claim 6, wherein the movable attachment portion and the connecting member, and the fixed attachment portion and the connecting member are rotatably connected by a pin. 8. The core according to claim 7, characterized in that an engagement groove is provided in either the movable attachment part or the fixed attachment part, and the pin is slidably engaged in the engagement groove. fusion device. 9. The shear panel is formed integrally with the superconducting toroidal magnetic field coil, and is divided into a plurality of sectors along the circumferential direction of the torus to form a sector shape. nuclear fusion device. 10. The dividing portion of the shear panel in the middle in the circumferential direction of the torus is located at an intermediate portion between the phase-adjacent superconducting toroidal magnetic field coils, and the adjacent shear panels are integrally connected by a key at the dividing portion. A nuclear fusion device according to claim 9. 11. A hollow annular vacuum container in which plasma is confined and supported by support legs on a foundation, and a plurality of vacuum containers surrounding the vacuum container and arranged at predetermined intervals in the circumferential direction of the torus. In addition, superconducting toroidal magnetic field coils each supported on the foundation via a heat insulating support pillar, a shear panel installed in a torus shape to couple and support each of the superconducting toroidal magnetic field coils, and each coupled and supported by the shear panel. In a nuclear fusion device comprising a superconducting toroidal magnetic field coil and an insulating vacuum vessel housing the vacuum vessel, a shear panel and a vacuum vessel that couple and support each of the superconducting toroidal magnetic field coils are each supported in the insulating vacuum vessel. A nuclear fusion device, characterized in that the device supports the insulating vacuum container so as to be movable in the horizontal direction, and the outer peripheral side of the insulating vacuum container near the support portion is reinforced with a reinforcing ring. 12. The support device includes at least three movable attachment portions provided at approximately equal pitches on each of the shear panel and the outer periphery of the vacuum vessel, and a torus cutting line with respect to a line connecting the movable attachment portions and the center of the torus. Consisting of a fixed mounting part provided on the insulating vacuum container on a line perpendicular to the direction, and a connecting member connecting the fixed mounting part and the movable mounting part,
12. The nuclear fusion device according to claim 11, wherein the reinforcing ring is installed on the outer peripheral side of the heat insulating vacuum container near where the fixed attachment part is located. 13. The nuclear fusion device according to claim 12, wherein the movable attachment part and the connecting member, and the fixed attachment part and the connecting member are rotatably connected by a pin. 14. The core according to claim 13, characterized in that an engagement groove is provided in either the movable attachment part or the fixed attachment part, and the pin is slidably engaged in the engagement groove. fusion device. 15. Another reinforcing ring is installed on the outer periphery of the foundation floor of the insulating vacuum container, and the reinforcing ring is integrated with the foundation floor.
The nuclear fusion device according to item 2. 16. The nuclear fusion device according to claim 15, wherein the reinforcing ring and the reinforcing ring integrated with the foundation floor are connected by a reinforcing column.
JP62297620A 1987-11-27 1987-11-27 Nuclear fusion device Expired - Lifetime JP2633876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297620A JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297620A JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Publications (2)

Publication Number Publication Date
JPH01141397A true JPH01141397A (en) 1989-06-02
JP2633876B2 JP2633876B2 (en) 1997-07-23

Family

ID=17848915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297620A Expired - Lifetime JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Country Status (1)

Country Link
JP (1) JP2633876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172692A (en) * 2012-02-27 2013-09-05 Samson Co Ltd Heat sterilization device
CN110462746A (en) * 2017-03-02 2019-11-15 俄罗斯联邦诺萨顿国家原子能公司 For cladding modular to be fastened to the device of fusion reactor vacuum tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297162B2 (en) 2008-11-21 2013-09-25 三菱重工業株式会社 Superconducting device
JP5364356B2 (en) 2008-12-11 2013-12-11 三菱重工業株式会社 Superconducting coil device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524616A (en) * 1978-08-11 1980-02-21 Hitachi Ltd Vaccum vessel supporting device for nuclear fusion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524616A (en) * 1978-08-11 1980-02-21 Hitachi Ltd Vaccum vessel supporting device for nuclear fusion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172692A (en) * 2012-02-27 2013-09-05 Samson Co Ltd Heat sterilization device
CN110462746A (en) * 2017-03-02 2019-11-15 俄罗斯联邦诺萨顿国家原子能公司 For cladding modular to be fastened to the device of fusion reactor vacuum tank
CN110462746B (en) * 2017-03-02 2023-06-23 俄罗斯联邦诺萨顿国家原子能公司 Device for fastening cladding module to fusion reactor vacuum vessel

Also Published As

Publication number Publication date
JP2633876B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US6011454A (en) Superconducting magnet suspension assembly
JPH01141397A (en) Nuclear fusion device
JPH0559566B2 (en)
JP3349539B2 (en) Insulated support device
CA1119418A (en) Fuel storage rack
Kwon et al. Progress of the KSTAR tokamak engineering
JP2801523B2 (en) Superconducting acceleration cavity
JP3829169B2 (en) Central solenoid coil support device
JPH03135077A (en) Heat insulating supporting device of superconducting coil
JP2001289988A (en) Nuclear reactor containment supporting device, and nuclear reactor
JP3845838B2 (en) Viscoelastic damper, method for manufacturing the same, and damping structure using the same
JPH01145598A (en) Nuclear fusion device
KR100573915B1 (en) Toroidal coil structure for superconducting tokamak
Tamura et al. Design and construction of coil supporting structure and cryostat vessel for LHD
JPS60188874A (en) Nuclear fusion device
JPS6236369B2 (en)
JP2000356295A (en) Base isolated piping system and bellows expansion pipe joint with leg part
JPH10172799A (en) Method and structure for supporting beam chamber and inner tank of superconducting wiggler
JPH0578618B2 (en)
JPS61153098A (en) Cryogenic double shell tank
JPS62204187A (en) Nuclear fusion device
Yu et al. Cryostat engineering design and manufacturing of the EAST superconducting Tokamak
JPH048396Y2 (en)
Ahn et al. Design and analysis of poloidal field magnet structures for KSTAR
JPH0468496B2 (en)