JP2633876B2 - Nuclear fusion device - Google Patents

Nuclear fusion device

Info

Publication number
JP2633876B2
JP2633876B2 JP62297620A JP29762087A JP2633876B2 JP 2633876 B2 JP2633876 B2 JP 2633876B2 JP 62297620 A JP62297620 A JP 62297620A JP 29762087 A JP29762087 A JP 29762087A JP 2633876 B2 JP2633876 B2 JP 2633876B2
Authority
JP
Japan
Prior art keywords
mounting portion
torus
magnetic field
toroidal magnetic
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62297620A
Other languages
Japanese (ja)
Other versions
JPH01141397A (en
Inventor
弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297620A priority Critical patent/JP2633876B2/en
Publication of JPH01141397A publication Critical patent/JPH01141397A/en
Application granted granted Critical
Publication of JP2633876B2 publication Critical patent/JP2633876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核融合装置に係り、特にトロイダル磁場コイ
ルとして超電導トロイダル磁場コイルを採用してなる核
融合装置に関する。
Description: TECHNICAL FIELD The present invention relates to a nuclear fusion device, and more particularly to a nuclear fusion device employing a superconducting toroidal magnetic field coil as a toroidal magnetic field coil.

〔従来の技術〕[Conventional technology]

一般に、核融合装置に使用されているトロイダル磁場
コイルは、銅等から形成された常電導トロイダル磁場コ
イルが採用されていた。この常電導トロイダル磁場コイ
ルを有する核融合装置は、その構造的な制約が少ないた
めに、耐震設計の面においても比較的な自由な補強対策
が可能であつて、健全なシステムの設計が完成してい
た。
Generally, as a toroidal magnetic field coil used in a nuclear fusion device, a normal conducting toroidal magnetic field coil made of copper or the like has been adopted. Since the fusion device with this normal conducting toroidal magnetic field coil has few structural constraints, comparatively free reinforcement measures are possible in terms of seismic design, and a sound system design has been completed. I was

ところが、近年、強磁場,高磁界の必要性からトロイ
ダル磁場コイルとして超電導体で形成された超電導トロ
イダル磁場コイルを採用した核融合装置が提案されてい
る。この超電導トロイダル磁場コイルを採用した核融合
装置では、超電導トロイダル磁場コイルを、液体ヘリウ
ム等による冷却によつて極低温状態に保持する必要があ
るため、装置全体が巨大な断熱用の真空容器に収納され
た構造となつており、常電導トロイダル磁場コイルを用
いた時のような自由な構造設計がとれないために、耐震
性の点で充分な健全性の確保ができない。
However, in recent years, a fusion device employing a superconducting toroidal magnetic field coil formed of a superconductor as a toroidal magnetic field coil has been proposed because of the necessity of a strong magnetic field and a high magnetic field. In a fusion device employing this superconducting toroidal magnetic field coil, it is necessary to maintain the superconducting toroidal magnetic field coil in a very low temperature state by cooling with liquid helium or the like. The structure cannot be freely designed as in the case of using a normal conducting toroidal magnetic field coil, so that sufficient soundness cannot be ensured in terms of earthquake resistance.

第6図、及び第7図に超電導トロイダル磁場コイルを
用いた従来の核融合装置の概略を示し、これを用いて更
に説明する。
FIG. 6 and FIG. 7 schematically show a conventional nuclear fusion device using a superconducting toroidal magnetic field coil, which will be further described with reference to FIGS.

該図において、1はプラズマ、2はブラズマ1を閉じ
込める真空容器で、中空環状体に形成されている。3は
この真空容器2の支持脚であつて、一端を真空容器2
に、他端を基礎13に結合されている。4は超電導トロイ
ダル磁場コイルで、超電導体から形成され、前記真空容
器2を取り囲み、かつ、トーラス周方向に所定間隔をも
つて複数個配置されている。5はトーラス周方向に配置
された超電導トロイダル磁場コイル4同志を結合するシ
アパネル部であつて、超電導トロイダル磁場コイル4と
一体に形成され、トーラス周方向では相隣接する超電導
トロイダル磁場コイル4同志の中間部で分割されたセク
ターを形成する。6は超電導トロイダル磁場コイル4に
発生する電磁力を支持する中心柱であり、超電導トロイ
ダル磁場コイル4と共に液体ヘリウムにより冷却され極
低温状態となる。7,8は断熱支持柱であり、断熱支持柱
7は一端を極低温の超電導トロイダル磁場コイル4と、
断熱支持柱8は一端を中心柱6にそれぞれ結合し、他端
はいずれも常温状態にあり超電導トロイダル磁場コイル
4への熱侵入を防止する断熱真空容器10の底部を介して
基礎13と結合されている。9は断熱支持柱7,8の中間に
設けられているサーマルアンカーであつて、液体窒素に
より冷却され、常温域から侵入する熱を途中で除去する
ためのものである。第6図の左側半分は、超電導トロイ
ダル磁場コイル4を含む位置での断面を示し、右側半分
は相隣接する超電導トロイダル磁場コイル4間の中間部
での断面で示した。この位置ではプラズマ1を閉じ込め
る真空容器2は、超電導トロイダル磁場コイル4間で半
径方向にノズル状に延長され、先端部は開口部11を形成
し、この開口部11には図示しないが附帯設備の取付や真
空容器2の内部へ接近するためのマンホールなどが設け
られる。第7図での左半分は、第6図縦断面での超電導
トロイダル磁場コイル4の上部位置での横断面を示した
ものであり、右半分はプラズマ1を含む位置での断面を
示した。この図で、12は真空容器2と断熱真空容器10を
結合するベローズであつて、真空容器2の温度上昇によ
る熱膨張を吸収する。13は超電導トロイダル磁場コイル
4同志を結合しているシアパネル5をトーラス周方向に
分割部分で結合するキーであつて、これにより、超電導
トロイダル磁場コイル全体は結合され一体化されてい
る。
In the figure, reference numeral 1 denotes a plasma, and 2 denotes a vacuum vessel for confining the plasma 1, which is formed in a hollow annular body. Numeral 3 is a support leg of the vacuum vessel 2, one end of which is a vacuum vessel 2.
The other end is connected to the foundation 13. Reference numeral 4 denotes a superconducting toroidal magnetic field coil, which is formed of a superconductor, surrounds the vacuum vessel 2, and is arranged at predetermined intervals in a circumferential direction of the torus. Reference numeral 5 denotes a shear panel unit which connects the superconducting toroidal magnetic field coils 4 arranged in the circumferential direction of the torus, and is formed integrally with the superconducting toroidal magnetic field coil 4 and is located between the adjacent superconducting toroidal magnetic field coils 4 in the circumferential direction of the torus. Form a divided sector. Reference numeral 6 denotes a center column for supporting an electromagnetic force generated in the superconducting toroidal magnetic field coil 4, which is cooled by liquid helium together with the superconducting toroidal magnetic field coil 4 to be in a very low temperature state. Reference numerals 7 and 8 denote adiabatic support columns. The adiabatic support column 7 has a cryogenic superconducting toroidal magnetic field coil 4 at one end.
One end of the heat-insulating support column 8 is connected to the center column 6, and the other end is connected to the foundation 13 via the bottom of the heat-insulating vacuum vessel 10 which is at room temperature and prevents heat from entering the superconducting toroidal magnetic field coil 4. ing. Reference numeral 9 denotes a thermal anchor provided between the heat-insulating support columns 7 and 8, which is cooled by liquid nitrogen and removes heat entering from the normal temperature range. The left half of FIG. 6 shows a cross section at a position including the superconducting toroidal magnetic field coil 4, and the right half shows a cross section at an intermediate portion between adjacent superconducting toroidal magnetic field coils 4. In this position, the vacuum vessel 2 for confining the plasma 1 is extended in a nozzle-like manner in the radial direction between the superconducting toroidal magnetic field coils 4, and has an opening 11 at the tip end. A manhole or the like for mounting or approaching the inside of the vacuum vessel 2 is provided. The left half in FIG. 7 shows a cross section at an upper position of the superconducting toroidal magnetic field coil 4 in a vertical cross section in FIG. 6, and the right half shows a cross section at a position including the plasma 1. In this figure, reference numeral 12 denotes a bellows connecting the vacuum vessel 2 and the heat-insulating vacuum vessel 10, which absorbs thermal expansion due to a temperature rise of the vacuum vessel 2. Reference numeral 13 denotes a key for connecting the shear panel 5 connecting the superconducting toroidal magnetic field coils 4 to each other at a divided portion in the circumferential direction of the torus, whereby the entire superconducting toroidal magnetic field coil is connected and integrated.

尚、超電導コイルを用いた核融合装置に関しては、例
えば特開昭59−37486号公報、特開昭56−72390号公報等
に開示されている。
A nuclear fusion device using a superconducting coil is disclosed in, for example, JP-A-59-37486 and JP-A-56-72390.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように構成される超電導トロイダル磁場コイル4
を備えた核融合装置では、巨大な構造物が広範囲の温度
変化を受けるために、その熱膨張,収縮を吸収できるよ
うな支持系を構成しなければならない。
Superconducting toroidal magnetic field coil 4 configured as above
In a nuclear fusion device equipped with, since a huge structure is subjected to a wide range of temperature change, a support system must be configured to absorb the thermal expansion and contraction.

特に、超電導トロイダル磁場コイル4は常温から液体
ヘリウム温度の極低温までの温度変化を受け、この時の
収縮は支持脚部分で数十mmに達する。また、プラズマ1
を閉じ込める真空容器2も、運転中やベーキングに際し
高温度となるために数十mmの熱膨張を生ずる。これらの
熱変形を吸収するために、その支持脚は可撓式に設計し
てこれを逃げるようにしたり、あるいは滑りによつてこ
れを逃がすような方法がとられている。
In particular, the superconducting toroidal magnetic field coil 4 undergoes a temperature change from room temperature to the extremely low temperature of liquid helium, and the shrinkage at this time reaches several tens mm at the supporting leg portion. Plasma 1
The vacuum vessel 2 which encloses the air also has a thermal expansion of several tens of mm due to a high temperature during operation or baking. In order to absorb these thermal deformations, the supporting legs are designed to be flexible so that they can escape, or they can be released by sliding.

更に、極低温の超電導トロイダル磁場コイル4では、
外部から極低温領域に侵入する熱を遮断するために、装
置の支持脚を階層構造の高い構造物として熱抵抗を持た
せなければならなく、このために支持脚の断面積を極力
小さく設計する必要がある。従つて、これらの点からも
大きな支持剛性が得られない。また、超電導トロイダル
磁場コイル4を備えた装置では、装置全体を断熱真空容
器10中に収納し、侵入熱を遮断している。このため装置
の支持方法は、一般には断熱真空容器10の底面からに限
られ、周辺の建造物などから有効に補強支持することが
困難である。
Further, in the cryogenic superconducting toroidal magnetic field coil 4,
In order to block heat from entering the cryogenic region from the outside, the support legs of the device must have a high-level structure and have thermal resistance, so the cross-sectional area of the support legs should be designed as small as possible There is a need. Therefore, a large supporting rigidity cannot be obtained from these points. Further, in the device provided with the superconducting toroidal magnetic field coil 4, the entire device is housed in a heat-insulated vacuum vessel 10 to block heat from entering. For this reason, the method of supporting the apparatus is generally limited to the bottom surface of the insulated vacuum vessel 10, and it is difficult to effectively reinforce and support the surrounding buildings and the like.

これらの問題点を有するために、全体として支持系の
固有振動数が低下し、そのため地震波との共振を生じ易
くなり、耐震性の不足する結果となつてしまい、従つ
て、耐震性の点で充分な健全性の確保ができないのであ
る。
Due to these problems, the natural frequency of the support system is lowered as a whole, which tends to cause resonance with seismic waves, resulting in insufficient seismic resistance. It is not possible to secure sufficient soundness.

本発明は上述の点に鑑み成されたもので、その第1目
的とするところは、超電導トロイダル磁場コイルを採用
したものであつても、充分な耐震支持剛性が得られ健全
性が確保される点、また、第2の目的とするところは、
第1の目的に加え、断熱真空容器が薄肉形状であつても
同様にすることのできる核融合装置を提供するにある。
The present invention has been made in view of the above points, and a first object of the present invention is to provide sufficient seismic support rigidity and secure soundness even when a superconducting toroidal magnetic field coil is employed. The point, and the second purpose,
In addition to the first object, it is an object of the present invention to provide a nuclear fusion device which can perform the same operation even when the heat insulating vacuum vessel has a thin wall shape.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は内部にプラズマが閉じ込められると共に、基
礎に支持脚を介して支持される中空環状体の真空容器
と、この真空容器を取り囲み、かつ、トーラス周方向に
所定間隔をもつて複数個配置されると共に、各々が断熱
支持柱を介して基礎に支持される超電導トロイダル磁場
コイルとを、各々これらを収納する断熱支持装置に、超
電導トロイダル磁場コイルと真空容器の外周部の各々に
ほぼ等ピッチで設けられた移動取付部と、該移動取付部
とトーラス中心とを結ぶ線に対してトーラス切線方向に
直角となる線上の前記断熱真空容器に設けられた固定取
付部と該固定取付部と前記移動取付部とを連結する連結
部材とから形成されると共に、トーラス円周上で等間隔
に3組以上設けられた防振支持装置で水平方向に移動自
在に支持し、かつ、前記移動取付部と連結部材、及び固
定取付部と連結部材とは、ピンにより回転自在に結合さ
れていることにより、及び超電導トロイダル磁場コイル
の各々をシアパネルで結合支持する場合には、シアパネ
ルを、該シアパネルと真空容器の外周部の各々にほぼ等
ピッチで設けられた移動取付部と、該移動取付部とトー
ラス中心とを結ぶ線に対してトーラス切線方向に直角と
なる線上の前記断熱真空容器に設けられた固定取付部
と、該固定取付部と前記移動取付部とを連結する連結部
材とから形成されると共に、トーラス円周上で等間隔に
3組以上設けられた防振支持装置で水平方向に移動自在
に支持し、かつ、前記移動取付部と連結部材、及び固定
取付部材と連結部材とは、ピンにより回転自在に結合す
ることにより第1の目的を、また、上記構成に加え、断
熱真空容器に支持部近傍の外周側を補強輪で補強するこ
とにより第2の目的をそれぞれ達成するように成したも
のである。
The present invention contemplates a vacuum vessel having a hollow annular body in which plasma is confined inside and supported on supporting bases via supporting legs, and a plurality of vacuum vessels surrounding the vacuum vessel and arranged at predetermined intervals in a circumferential direction of the torus. At the same time, the superconducting toroidal magnetic field coils, each of which is supported on the foundation via the heat insulating supporting columns, are provided at substantially equal pitch to the superconducting toroidal magnetic field coils and the outer peripheral portion of the vacuum vessel, respectively. A movable mounting portion provided; a fixed mounting portion provided on the insulated vacuum vessel on a line perpendicular to a torus cutting direction with respect to a line connecting the moving mounting portion and the center of the torus; And a connecting member for connecting to the mounting portion. The connecting member is supported in a horizontally movable manner by three or more anti-vibration supporting devices provided at equal intervals on the circumference of the torus. The movable mounting portion and the connecting member, and the fixed mounting portion and the connecting member are rotatably connected by pins, and when each of the superconducting toroidal magnetic field coils is connected and supported by the shear panel, the shear panel is A movable mounting portion provided at substantially equal pitches on each of the outer peripheral portions of the shear panel and the vacuum container, and the insulated vacuum container on a line perpendicular to the torus cutting direction with respect to a line connecting the movable mounting portion and the center of the torus. A fixed mounting portion is provided, and a connecting member for connecting the fixed mounting portion and the moving mounting portion is formed, and at least three pairs of anti-vibration support devices provided at equal intervals on the circumference of the torus are used for horizontal mounting. The movable mounting portion and the connecting member, and the fixed mounting member and the connecting member are rotatably connected to each other by a pin. In addition, in which form to achieve the second object, respectively by reinforced with a reinforcing ring outer peripheral side of the support portion near the heat insulating vacuum vessel.

〔作用〕[Action]

上記構成とすることにより、真空容器と超電導トロイ
ダル磁場コイルは熱変形を拘束することなく有効な剛性
が得られるため充分な耐振支持剛性が得られ健全性が確
保され、更に補強輪で断熱真空容器の外周側で補強して
いるので断熱真空容器が薄肉形状であつても可能であ
る。
With the above configuration, the vacuum container and the superconducting toroidal magnetic field coil can obtain effective rigidity without restraining thermal deformation, so that sufficient vibration-proof supporting rigidity can be obtained, soundness is secured, and furthermore, the heat insulating vacuum container is provided with reinforcing wheels. Since the outer peripheral side of the vacuum container is reinforced, it is possible to use a heat-insulating vacuum container having a thin wall shape.

〔実施例〕〔Example〕

以下、図面の実施例に基づいて本発明を詳細に説明す
る。尚、符号は従来と同一のものは同符号を使用する。
Hereinafter, the present invention will be described in detail with reference to embodiments of the drawings. Note that the same reference numerals are used for the same components as those in the related art.

第1図、及び第2図に本発明の核融合装置の一実施例
を示す。その概略構成は従来のものとほとんど同一のた
め、ここでの詳細説明は省略する。
FIG. 1 and FIG. 2 show an embodiment of the nuclear fusion device of the present invention. Since the schematic configuration is almost the same as the conventional one, the detailed description is omitted here.

該図に示す如く、本実施例ではプラズマ1を閉じ込め
る真空容器2と断熱真空容器10と防振支持装置14で支持
すると共に、超電導トロイダル磁場コイル4と一体化さ
れているシアパネル部5と断熱真空容器10も防振支持装
置15で支持している。本実施例は、後述詳細説明する
が、それぞれの防振支持装置14,15の両端部は、真空容
器2、シアパネル部5、及び断熱真空容器10とピン結合
された連結棒状の場合である。
As shown in the drawing, in this embodiment, a vacuum container 2 for confining a plasma 1, an adiabatic vacuum container 10 and a vibration isolating support device 14, and a sheer panel unit 5 integrated with a superconducting toroidal magnetic field coil 4 and an adiabatic vacuum The container 10 is also supported by an anti-vibration support device 15. As will be described in detail later, this embodiment is a case where both ends of each of the vibration-proof supporting devices 14 and 15 are in the form of a connecting rod pin-connected to the vacuum vessel 2, the shear panel section 5, and the heat-insulating vacuum vessel 10.

本実施例での棒振支持装置14,15は、真空容器2、及
びシアパネル部5との結合点とトーラス中心を結ぶ中心
線に対してそれぞれ直角となる切線方向に配置され、一
端を真空容器2、及びシアパネル部5に、他端は断熱真
空容器10に結合されている。そして、この防振支持装置
14,15は、その円周方向にほぼ均等の間隔で複数組が配
置され、かつ、同一構造で全て同一方向に配置されてい
る。更に、本実施例では、断熱真空容器10の真空容器2
の開口部11の上,下部外周位置に補強輪16,17を設け、
この上下の補強輪16,17は開口部11の両側で補強柱18に
より連結されると共に、開口部11の下部位置の補強輪16
は、基礎13の床面部と結合一体化されて構成される。
The oscillating support devices 14 and 15 in the present embodiment are arranged in a cutting line direction perpendicular to the center line connecting the center of the torus with the connection point between the vacuum container 2 and the shear panel unit 5, and one end of the vacuum container 2, and the other end is connected to the heat insulating vacuum vessel 10. And this anti-vibration support device
A plurality of sets 14 and 15 are arranged at substantially equal intervals in the circumferential direction, and have the same structure and are all arranged in the same direction. Further, in this embodiment, the vacuum vessel 2 of the heat-insulating vacuum vessel 10 is used.
Reinforcement wheels 16 and 17 are provided at the upper and lower outer peripheral positions of the opening 11 of
The upper and lower reinforcing wheels 16 and 17 are connected by reinforcing columns 18 on both sides of the opening 11, and the reinforcing wheels 16 at a position below the opening 11.
Is integrated with and integrated with the floor of the foundation 13.

次に本実施例における動作を説明する。第3図は、上
述した本実施例の構成における防振支持装置14,15の動
作をスケルトンで表わしたもので、図柱、第1図,及び
第2図と同一符号は同一部材を示す。
Next, the operation in this embodiment will be described. FIG. 3 shows the operation of the anti-vibration support devices 14 and 15 in the configuration of the present embodiment described above in a skeleton, and the same reference numerals as those in FIG. 1 and FIGS. 1 and 2 denote the same members.

前述したように、超電導トロイダル磁場コイルを備え
た核融合装置の耐震上の問題点は、核融合装置を構成す
る構造物を支持する垂直方向の支持機構が、構造物の水
平方向の熱変形を拘束しないようにするために、その水
平方向の剛性が不足するためであつた。従つて、この問
題の解決のためには、水平方向力を水平方向に直接支持
する支持機構であつて、それが熱変形を拘束することな
く有効な剛性を有する支持機構を備えることである。
As mentioned above, the problem of seismic resistance of a fusion device equipped with a superconducting toroidal magnetic field coil is that the vertical support mechanism that supports the structure that composes the fusion device reduces the horizontal thermal deformation of the structure. This is because the rigidity in the horizontal direction is insufficient in order not to be restrained. Therefore, in order to solve this problem, a support mechanism for directly supporting a horizontal force in the horizontal direction is provided with a support mechanism having effective rigidity without restraining thermal deformation.

第3図において、取付点Aは真空容器2、又はシアパ
ネル部5と防振支持装置14、又は15の一端との結合点
で、取付点Bは断熱真空容器10と防振支持装置14、又は
15の一端との結合点である。通常、トーラス型核融合装
置では、その温度変化に対する不動基準点はトーラス中
心にある。従つて、温度変化時の取付点Aの変位はトー
ラス中心と取付点Aを結ぶ線上を半径方向に移動するこ
とになる。且つ、同一半径の円周上では、円周方向での
温度分布が一様であるかぎり、円周方向のどの位置にお
いてもその変位は同一である。防振支持装置14,15は、
取付点Aを移動端とし、取付部Bを固定端としたピン結
合の連結防状で回転自在に結合されているので、移動取
付点Aの軌跡は固定取付点Bを中心として防振支持装置
14,15の流さlsを半径として円弧の円周上に存在するこ
とになる。移動取付点Aの変位δに対して、防振支持装
置14,15の長さlsを充分に長く取れば、防振支持装置14,
15の各回転角は極めて微小であるから、移動取付点Aの
軌跡は実用的には直線として取扱つてもさしつかえな
い。従つて、トーラス中心と移動取付点Aを結ぶ線に直
角となる線上に防振支持装置14,15の固定取付点Bを設
ければ、移動取付点Aの軌跡は実用的にはトーラス中心
と移動取付点Aとを結ぶ線上に存在するとしてもさしつ
かえない。このように本実施例での防振支持装置14,15
は、真空容器2や超電導トロイダル磁場コイル4の熱変
形に対し、これを拘束することはない。
In FIG. 3, an attachment point A is a connection point between the vacuum vessel 2 or the shear panel unit 5 and one end of the vibration-proof supporting device 14 or 15, and a mounting point B is a heat-insulating vacuum vessel 10 and the vibration-proof supporting device 14 or
It is the point of connection with one end of 15 Usually, in a torus-type fusion device, the immobile reference point for the temperature change is at the center of the torus. Therefore, the displacement of the attachment point A at the time of a temperature change moves in the radial direction on a line connecting the center of the torus and the attachment point A. In addition, on the circumference of the same radius, the displacement is the same at any position in the circumferential direction as long as the temperature distribution in the circumferential direction is uniform. The anti-vibration support devices 14 and 15
Since the mounting point A is a movable end and the mounting portion B is a fixed end, the pin is connected rotatably in a pin-locking manner, so that the locus of the moving mounting point A is centered on the fixed mounting point B.
It would be present on an arc of circumference 14, 15 of flow l s as radius. If the length l s of the anti-vibration support devices 14 and 15 is sufficiently long with respect to the displacement δ of the moving mounting point A,
Since each of the rotation angles 15 is extremely small, the trajectory of the moving attachment point A may be practically treated as a straight line. Therefore, if the fixed mounting point B of the vibration isolator 14 and 15 is provided on a line perpendicular to the line connecting the center of the torus and the moving mounting point A, the locus of the moving mounting point A is practically the center of the torus. Even if it exists on the line connecting the moving attachment point A, it may be acceptable. As described above, the anti-vibration support devices 14 and 15 in this embodiment are
Does not restrict the thermal deformation of the vacuum vessel 2 or the superconducting toroidal magnetic field coil 4.

次に地震力に対する作用を説明する。前述した如く、
本実施例での防振支持装置14,15は、トーラス円周上に
複数組配設される。一方、真空容器2、及びシアパネル
部5は、トーラス方向には強固に結合された環状体を形
成し、それ自体の環状体としての剛性は充分に剛であ
る。これら環状体の剛性が充分に剛であれば、それの水
平方向の振動を抑制する防振支持装置は、抑制すべき方
向にその環状体のどの部分に配設されてあつても機能す
る。即ち、切線方向に配置された防振支持装置14,15
は、それと平行な方向への振動を抑制する効果を持つ。
円周上に等管下で3組以上の防振支持装置14,15は配置
するならば、それらの抑制力の合成分によつて、水平方
向のいかなる方向に対しても均等な抑制機能を持つ。こ
の場合の防振支持装置14,15の剛性は、その連結棒状の
軸方向の単純な引張,圧縮剛性であるから、その長さに
対して断面積を適切に選択することによつて容易に充分
な剛性を持たし得るものである。このようにして、本実
施例の棒振支持装置14,15の構成は、熱変形をまつたく
拘束することなしに逃がしながら、しかも、耐震性の向
上に対して有効な支持剛性が得られるものである。
Next, the effect on the seismic force will be described. As mentioned above,
The anti-vibration support devices 14 and 15 in the present embodiment are provided in plural sets on the circumference of the torus. On the other hand, the vacuum vessel 2 and the shear panel section 5 form an annular body firmly connected in the torus direction, and the rigidity of the annular body itself is sufficiently rigid. If the rigidity of these annular bodies is sufficiently rigid, the anti-vibration support device for suppressing the horizontal vibration of the annular bodies will work regardless of the position of the annular body in the direction to be suppressed. That is, the anti-vibration support devices 14, 15 arranged in the section line direction
Has an effect of suppressing vibration in a direction parallel to the direction.
If three or more sets of anti-vibration support devices 14 and 15 are arranged on the circumference of the pipe under the same pipe, a uniform suppression function in any horizontal direction can be obtained by combining the suppression forces. Have. In this case, the rigidity of the anti-vibration support devices 14 and 15 is simple tensile and compressive rigidity in the axial direction of the connecting rod, and can be easily selected by appropriately selecting the cross-sectional area with respect to the length. It can have sufficient rigidity. In this way, the configuration of the rod vibration supporting devices 14 and 15 of the present embodiment allows the thermal deformation to escape without being restrained, and also provides a support rigidity effective for improving the earthquake resistance. It is.

このように、本実施例の棒振支持装置は極めて有効な
ものであるが、これをさらに効果的にするために、本実
施例では次のような工夫を加えている。
As described above, the rod vibration support device of the present embodiment is extremely effective, but in order to make it more effective, the present embodiment employs the following measures.

本実施例では防振支持装置14,15の一端は、断熱真空
容器10に結合されているが、断熱真空容器10は極めて大
型の薄肉円筒状であるから、その円筒部に強部的に荷重
が作用した場合には円筒部に局部的な変形を生じやす
い。この局部変形は結局には防振支持装置全体の剛性を
支配し、必要な支持剛性の確保に困難を来たす。従つ
て、上述した構成を実施する場合には、断熱真空容器10
の局部変形を防止するに有効な補強が必要である。第1
図,第2図に示した補強輪16,17は、この機能を有する
ものであつて、固定支持点Bはそれぞれこの補強輪16,1
7に接近して設けられ、局部的に作用する水平方向荷重
を断熱真空容器10全体に分散せしめ、局部的変形を防止
し、有効な剛性を確保するためのものである。更に本実
施例では、下部位置の補強輪16を、基礎13の床面部と接
触状態、あるいは埋設せしめ、床面部と一体化すること
によつてより有効な補強効果と剛性の向上を計つてい
る。また、上部位置の補強輪17に伝達された荷重に対し
ては、上下の補強輪16,17を連結する補強柱18を設け、
断熱真空容器10の開口11部を補強した。この部分は、断
熱真空容器10の円筒部の壁面と共に中空の箱状断面を形
成し、大きな剛性を有するものである。
In this embodiment, one end of each of the vibration-isolation supporting devices 14 and 15 is connected to the heat-insulating vacuum vessel 10. However, since the heat-insulating vacuum vessel 10 is a very large thin-walled cylinder, a strong load is applied to the cylindrical portion. In the case of acting, local deformation is likely to occur in the cylindrical portion. This local deformation eventually governs the rigidity of the entire vibration isolating support device, and makes it difficult to secure the necessary support rigidity. Therefore, when implementing the above-described configuration, the insulated vacuum container 10
Effective reinforcement is required to prevent local deformation. First
The reinforcing wheels 16 and 17 shown in FIGS. 2 and 3 have this function, and the fixed support points B are respectively provided on the reinforcing wheels 16 and 1.
7 is provided so as to disperse a horizontal load acting locally on the entire heat-insulated vacuum vessel 10 to prevent local deformation and secure effective rigidity. Further, in this embodiment, the reinforcing wheel 16 at the lower position is brought into contact with or buried in the floor surface of the foundation 13 to integrate the floor with the floor, thereby achieving a more effective reinforcing effect and improving rigidity. . In addition, for the load transmitted to the reinforcing wheel 17 at the upper position, a reinforcing column 18 that connects the upper and lower reinforcing wheels 16, 17 is provided,
The opening 11 of the heat insulating vacuum vessel 10 was reinforced. This portion forms a hollow box-shaped cross section together with the wall surface of the cylindrical portion of the heat-insulated vacuum vessel 10, and has high rigidity.

また、真空容器2を支持する防振支持装置14の高さ方
向での設置位置は、真空容器2の剛性が円周方向と先に
高さ方向でも充分に剛であるため、その上端でも下端で
も実用的に支障はない。一方、超電導トロイダル磁場コ
イル4を支持する防振支持装置15の最適設置位置は、コ
イルの質量分布によりきまる。シアパネル部5を含めた
場合には、その主質量の分布が、上下のシアパネル部5
の位置に分布し、その間を連結する超電導トロイダル磁
場コイル本体部分が比較的剛性の弱い柱状を形成してい
るため、上下の2ケ所に分散して、シアパネル部5を直
接に支持するように構成することがよい。このようなこ
とを考慮すならば、断熱真空容器10側の剛性が上部補強
輪17側よりも下部補強輪16側が大きい点に注目し、真空
容器2の防振支持装置14を下部側に設置し、超電導トロ
イダル磁場コイル4の防振支持装置15は上下2ケ所とす
ることが妥当である。更に、本実施例では、防振支持装
置14,15の具体的構成について若干の工夫を施してい
る。前述の説明では、防振支持装置14,15はそれ自体の
温度変化がなく、その長さlsが変化しないことを前提と
している。真空容器2の防振支持装置14では、真空容器
2の温度上昇もそれほど高くはなく、その結合部を充分
に冷却することも可能であつて、実用的には温度変化は
ないと考えてよい。しかし、超電導トロイダル磁場コイ
ル4の防振支持装置15では、常温境域かに極低温の超電
導コイルシステム側へ侵入する熱を極力排除する必要が
あり、防振支持装置自体を液体窒素などで積極的に冷却
するような事が行なわれるため、防振支持装置15の長さ
lsは大きな変化を受けることになるので、これを補償す
る構成をとる必要がある。第4図はこの構成の1例を示
し、第5図はその動作を説明するものである。該図に示
す如く、超電導トロイダル磁場コイル4を支持する防振
支持装置15を、切線方向で時計廻り方向と反時計廻り方
向に配置した2組の防振支持装置15Aと15Bを組合せ、こ
れらの各々の一端を共通の取付点Cで共通にピン結合
し、更に、この結合ピンが、断熱真空容器10に設けられ
た係合溝19に滑動自由に係合され、かつ、この係合溝19
はトーラス中心を通る線上に並行に設けられて構成す
る。第5図により本構成の動作を説明する。超電導トロ
イダル磁場コイル4側の取付点A1,A2は、温度変化を受
けた場合は、その点とトーラスの中心O点を結ぶ線上を
移動し、取付点A1,A2はA1′,A2′点に移動する。防振支
持装置15A,15Bの長さを同一に構成しておくならば、A1,
A2、及びC点は、C点を頂点とする二等辺三角形を形成
する。A1,A2点は同一半径上に位置し同一温度変化を受
けるから、その移動量は同じである。従つて、防振支持
装置15A,15Bが同一温度変化を受けるならば、その温度
の如何にかかわらず、その長さは同一であるから、C点
の移動後の位置C′とA1′,A2′で構成される三角形
は、C′点を頂点とする二等辺三角形を形成し、C′の
移動はC点とトーラス中心O点を結ぶ線上を移動する。
このように本構成によれば、防振支持装置15が温度変化
を受けてもその変形を補償し、超電導トロイダル磁場コ
イル4の熱変形を拘束することなく、地震に対し充分に
剛な防振支持装置が得られるのである。また、この構成
では、防振支持装置15A,15Bを、正確に切線方向に配設
する必要はないから、その設置の設計に対して大きな自
由度が得られる効果があり、極めて実用性が高い。
Further, the installation position in the height direction of the anti-vibration support device 14 that supports the vacuum vessel 2 is determined by the fact that the rigidity of the vacuum vessel 2 is sufficiently rigid both in the circumferential direction and in the height direction. But there is no problem practically. On the other hand, the optimum installation position of the anti-vibration support device 15 that supports the superconducting toroidal magnetic field coil 4 is determined by the coil mass distribution. When the shear panel portion 5 is included, the distribution of the main mass is equal to the upper and lower shear panel portions 5.
And the superconducting toroidal magnetic field coil body portion connecting them forms a columnar shape having relatively low rigidity, so that the superconducting toroidal magnetic field coil portion is dispersed in two upper and lower portions to directly support the shear panel portion 5. It is better to do. In consideration of this, it is noted that the rigidity of the insulated vacuum vessel 10 is higher on the lower reinforcing wheel 16 side than on the upper reinforcing wheel 17 side, and the vibration isolating support device 14 of the vacuum vessel 2 is installed on the lower side. However, it is appropriate that the anti-vibration support device 15 for the superconducting toroidal magnetic field coil 4 is provided at two upper and lower positions. Further, in the present embodiment, a slight contrivance is made on the specific configuration of the vibration isolation support devices 14 and 15. In the above description, it is assumed that the anti-vibration support devices 14 and 15 do not have their own temperature change and their length l s does not change. In the vibration isolating support device 14 of the vacuum vessel 2, the temperature rise of the vacuum vessel 2 is not so high, the joint thereof can be sufficiently cooled, and there is practically no change in temperature. . However, in the anti-vibration support device 15 for the superconducting toroidal magnetic field coil 4, it is necessary to eliminate as much as possible the heat that enters the superconducting coil system side at an extremely low temperature in the normal temperature range. The length of the anti-vibration support device 15 is
Since l s undergoes a large change, it is necessary to take a configuration to compensate for this. FIG. 4 shows an example of this configuration, and FIG. 5 explains its operation. As shown in the figure, two sets of anti-vibration support devices 15A and 15B, which are arranged in a clockwise direction and a counterclockwise direction in a cutting line direction, are combined with a vibration-proof support device 15 for supporting the superconducting toroidal magnetic field coil 4. One end of each is connected to a common pin C at a common mounting point C, and the connecting pin is slidably engaged with an engaging groove 19 provided in the heat-insulating vacuum vessel 10.
Are provided in parallel on a line passing through the center of the torus. The operation of this configuration will be described with reference to FIG. The attachment points A 1 and A 2 on the side of the superconducting toroidal magnetic field coil 4 move on a line connecting the points and the center O of the torus when the temperature changes, and the attachment points A 1 and A 2 are A 1 ′ , A 2 ′. If the lengths of the anti-vibration support devices 15A and 15B are configured to be the same, A 1 ,
The points A 2 and C form an isosceles triangle having the point C as a vertex. Since the points A 1 and A 2 are located on the same radius and undergo the same temperature change, their movement amounts are the same. Accordance connexion, vibration-damping support device 15A, if 15B is subjected to the same temperature change, regardless of the temperature, since its length is identical, the position C after movement of point C 'and A 1', The triangle formed by A 2 ′ forms an isosceles triangle having the point C ′ as the vertex, and the movement of C ′ moves on a line connecting the point C and the torus center O point.
As described above, according to this configuration, even if the anti-vibration support device 15 receives a temperature change, it compensates for its deformation, and does not restrict the thermal deformation of the superconducting toroidal magnetic field coil 4; A support device is obtained. Further, in this configuration, since it is not necessary to dispose the anti-vibration support devices 15A and 15B accurately in the direction of the cutting line, there is an effect that a great degree of freedom can be obtained for the design of the installation, which is extremely practical. .

尚、本構成の説明では、防振支持装置15が移動取付点
Aの側にピン結合され、固定取付点側に支持装置係合溝
19を配設した場合を説明したが、機能上は、これを逆の
構成として移動取付点側を1ケ所とし支持装置係合溝19
を設け、固定取付側を対をなす2ケ所の取付点でピン結
合されるように構成しても同じである。
In the description of the present configuration, the anti-vibration support device 15 is pin-connected to the movable mounting point A side, and the support device engaging groove is mounted to the fixed mounting point side.
Although the case where 19 is provided has been described, functionally, this is reversed, and the movable mounting point side is set to one position, and the supporting device engaging groove 19 is provided.
The same applies to the case where a pin is connected at two mounting points forming a pair on the fixed mounting side.

〔発明の効果〕〔The invention's effect〕

以上説明した本発明の核融合装置によれば、内部にプ
ラズマが閉じ込められると共に、基礎に支持脚を介して
支持される中空環状体の真空容器と、この真空容器を取
り囲み、かつ、トーラス周方向に所定間隔をもつて複数
個配置されると共に、各各が断熱支持柱を介して基礎に
支持される超電導トロイダル磁場コイルを、各々これら
を収納する断熱支持装置に、超電導トロイダル磁場コイ
ルと真空容器の外周部の各々にほぼ等ピッチで設けられ
た移動取付部と、該移動取付部とトーラス中心とを結ぶ
線に対してトーラス切線方向に直角となる線上の前記断
熱真空容器に設けられた固定取付部と、該固定取付部と
前記移動取付部とを連結する連結部材とから形成される
と共に、トーラス円周上で等間隔に3組以上設けられた
防振支持装置で水平方向に移動自在に支持し、かつ、前
記移動取付部と連結部材、及び固定取付部と連結部材と
は、ピンにより回転自在に結合されていることにより、
また、超電導トロイダル磁場コイルの各々をシアパネル
で結合支持する場合には、シアパネルを、該シアパネル
と真空容器の外周部の各々にほぼ等ピッチで設けられた
移動取付部と、該移動取付部とトーラス中心とを結ぶ線
に対してトーラス切線方向に直角となる線上の前記断熱
真空容器に設けられた固定取付部と、該固定取付部と前
記移動取付部とを連結する連結部材とから形成されると
共に、トーラス円周上で等間隔に3組以上設けられた防
振支持装置で水平方向に移動自在に支持し、かつ、前記
移動取付部と連結部材、及び固定取付部材と連結部材と
は、ピンにより回転自在に結合したものであるから、熱
変形を拘束することなく有効な剛性が得られるため、充
分な耐振支持剛性が得られ健全性が確保されると共に、
更に、上記構成に加え、断熱真空容器の支持部付近の外
周側を補強輪で補強することにより、断熱真空容器が薄
肉形状であつても上述と同様な効果を得ることができ、
此種核融合装置に採用する場合には、非常に有効であ
る。
According to the fusion device of the present invention described above, the plasma is confined inside, and the vacuum vessel is a hollow annular body supported on the base via the support legs, and surrounds the vacuum vessel, and has a torus circumferential direction. A plurality of superconducting toroidal magnetic coils, each of which is arranged at a predetermined interval and supported on a foundation via a heat insulating supporting column, are provided in a heat insulating supporting device for accommodating each of them. A movable mounting portion provided on each of the outer peripheral portions at substantially equal pitches, and a fixing provided on the insulated vacuum vessel on a line perpendicular to the torus cutting direction with respect to a line connecting the movable mounting portion and the torus center. It is formed of a mounting portion and a connecting member for connecting the fixed mounting portion and the movable mounting portion, and is provided with three or more vibration isolating support devices provided at equal intervals on the circumference of the torus. Movably supported by the direction, and the movable mounting part and the connecting member, and the connecting member and the fixed mounting portion, by which is rotatably coupled by a pin,
Further, when each of the superconducting toroidal magnetic field coils is connected and supported by the shear panel, the shear panel is provided with a movable mounting portion provided at substantially equal pitches on each of the outer peripheral portions of the shear panel and the vacuum vessel; It is formed from a fixed mounting portion provided on the heat-insulating vacuum vessel on a line perpendicular to the torus cutting direction with respect to a line connecting the center, and a connecting member connecting the fixed mounting portion and the moving mounting portion. In addition, three or more sets of vibration isolating support devices provided at equal intervals on the circumference of the torus are movably supported in the horizontal direction, and the movable mounting portion and the connecting member, and the fixed mounting member and the connecting member, Since it is rotatably connected by pins, effective rigidity can be obtained without restraining thermal deformation, so that sufficient vibration-resistant support rigidity is obtained and soundness is secured,
Further, in addition to the above configuration, by reinforcing the outer peripheral side near the support portion of the insulated vacuum container with a reinforcing ring, the same effect as described above can be obtained even if the insulated vacuum container is thin.
It is very effective when employed in this type of fusion device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の核融合装置の一実施例を示す第6図に
相当する図、第2図は第1図の横断面を示し、第7図に
相当する図、第3図は本発明の一実施例における防振支
持装置の基本動作をスケルトンで表わした図、第4図は
防振支持装置の他の例をスケルトンで表わした図、第5
図は第4図の動作を説明するための説明図、第6図は従
来の核融合装置を示し、左半分は超電導トロイダル磁場
コイルを含む位置で断面、右半分は相隣接する超電導ト
ロイダル磁場コイルの中間部で断面した縦断面図、第7
図は第6図の横断面を示し、左半分は超電導トロイダル
磁場コイルの上部位置での、右半分はプラズマを含む位
置での横断面図である。 1……プラズマ、2……真空容器、3……支持脚、4…
…超電導トロイダル磁場コイル、5……シアパネル部、
6……中心柱、7,8……断熱支持柱、9……サーマルア
ンカー、10……断熱真空容器、11……開口部、13……基
礎、14,15,15A,15B……防振支持装置、16,17……補強
輪、18……補強柱、19……係合溝。
FIG. 1 is a view corresponding to FIG. 6 showing one embodiment of the nuclear fusion device of the present invention, FIG. 2 is a cross-sectional view of FIG. 1, FIG. 7 is a view corresponding to FIG. 7, and FIG. FIG. 4 is a diagram showing a basic operation of a vibration isolating support device according to an embodiment of the present invention in a skeleton. FIG. 4 is a diagram showing another example of the vibration isolating support device in a skeleton.
FIG. 6 is an explanatory view for explaining the operation of FIG. 4, and FIG. 6 shows a conventional fusion device. The left half is a cross section at a position including a superconducting toroidal magnetic field coil, and the right half is an adjacent superconducting toroidal magnetic field coil. 7 is a vertical cross-sectional view taken along the middle part of FIG.
The figure shows the cross section of FIG. 6, where the left half is at the upper position of the superconducting toroidal field coil and the right half is at the position containing the plasma. 1 ... Plasma, 2 ... Vacuum container, 3 ... Support leg, 4 ...
... superconducting toroidal magnetic field coil, 5 ... shear panel part,
6 ... Center pillar, 7,8 ... Insulated support column, 9 ... Thermal anchor, 10 ... Insulated vacuum vessel, 11 ... Opening, 13 ... Foundation, 14,15,15A, 15B ... Vibration isolation Supporting device, 16, 17 ... reinforcing wheel, 18 ... reinforcing column, 19 ... engaging groove.

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部にプラズマが閉じ込められると共に、
基礎に支持脚を介して支持される中空環状体の真空容器
と、該真空容器を取り囲み、かつ、トーラス周方向に所
定間隔をもって複数個配置されると共に、各々が断熱支
持柱を介して基礎に支持される超電導トロイダル磁場コ
イルと、該超電導トロイダル磁場コイルと真空容器を収
納する断熱真空容器とを備えた核融合装置において、 前記超電導トロイダル磁場コイルと真空容器の各々を、
該超電導トロイダル磁場コイルと真空容器の外周部の各
々にほぼ等ピッチで設けられた移動取付部と、該移動取
付部とトーラス中心とを結ぶ線に対してトーラス切線方
向に直角となる線上の前記断熱真空容器に設けられた固
定取付部と、該固定取付部と前記移動取付部とを連結す
る連結部材とから形成されると共に、トーラス円周上で
等間隔に3組以上設けられた防振支持装置で水平方向に
移動自在に支持し、かつ、前記移動取付部と連結部材、
及び固定取付部と連結部材とは、ピンにより回転自在に
結合されていることを特徴とする核融合装置。
(1) A plasma is confined inside,
A vacuum vessel of a hollow annular body supported on the foundation via supporting legs, and surrounding the vacuum vessel, and a plurality of vacuum vessels are arranged at predetermined intervals in the circumferential direction of the torus, and each is provided on the foundation via a heat insulating support column. A superconducting toroidal magnetic field coil to be supported, and a fusion device including an adiabatic vacuum vessel that houses the superconducting toroidal magnetic field coil and a vacuum vessel, each of the superconducting toroidal magnetic field coil and the vacuum vessel,
A moving mounting portion provided at substantially equal pitches on each of the outer periphery of the superconducting toroidal magnetic field coil and the vacuum vessel, and a line perpendicular to a torus cutting direction with respect to a line connecting the moving mounting portion and the center of the torus. Anti-vibration formed of a fixed mounting portion provided on the heat-insulating vacuum vessel and a connecting member for connecting the fixed mounting portion and the moving mounting portion, and provided at least three pairs at equal intervals on the circumference of the torus. Supported movably in the horizontal direction by a supporting device, and the movable mounting portion and the connecting member,
The fusion device, wherein the fixed mounting portion and the connecting member are rotatably connected by a pin.
【請求項2】前記移動取付部と固定取付部のいずれか一
方に結合溝を設け、該係合溝に前記ピンを滑動自在に係
合したことを特徴とする特許請求の範囲第1項記載の核
融合装置。
2. The device according to claim 1, wherein a coupling groove is provided in one of the movable mounting portion and the fixed mounting portion, and the pin is slidably engaged with the engaging groove. Fusion device.
【請求項3】内部にプラズマが閉じ込められると共に、
基礎に支持脚を介して支持される中空環状体の真空容器
と、該真空容器を取り囲み、かつ、トーラス周方向に所
定間隔をもって複数個配置されると共に、各々が断熱支
持柱を介して基礎に支持される超電導トロイダル磁場コ
イルと、該超電導トロイダル磁場コイルの各々を結合支
持するためにトーラス状に設置されたシアパネルと、該
シアパネルで各々が結合支持された超電導トロイダル磁
場コイルと前記真空容器を収納する断熱真空容器とを備
えた核融合装置において、 前記各々の超電導トロイダル磁場コイルを結合支持する
シアパネルと真空容器とを、該シアパネルと真空容器の
外周部の各々にほぼ等ピッチで設けられた移動取付部
と、該移動取付部とトーラス中心とを結ぶ線に対してト
ーラス切線方向に直角となる線上の前記断熱真空容器に
設けられた固定取付部と、該固定取付部と前記移動取付
部とを連結する連結部材とから形成されると共に、トー
ラス円周上で等間隔に3組以上設けられた防振支持装置
で水平方向に移動自在に支持し、かつ、前記移動取付部
と連結部材、及び固定取付部材と連結部材とは、ピンに
より回転自在に結合されていることを特徴とする核融合
装置。
3. The plasma is confined inside,
A vacuum vessel of a hollow annular body supported on the foundation via supporting legs, and surrounding the vacuum vessel, and a plurality of vacuum vessels are arranged at predetermined intervals in the circumferential direction of the torus, and each is provided on the foundation via a heat insulating support column. A superconducting toroidal magnetic field coil supported, a shear panel installed in a torus shape for coupling and supporting each of the superconducting toroidal magnetic coils, a superconducting toroidal magnetic field coil each of which is coupled and supported by the shear panel, and the vacuum container are housed. A fusion device provided with a heat-insulating vacuum container, wherein a shear panel and a vacuum container that couple and support the superconducting toroidal magnetic field coils are provided at substantially equal pitches on each of the outer peripheral portions of the shear panel and the vacuum container. An adiabatic vacuum on a line perpendicular to the torus cutting direction with respect to a line connecting the mounting portion and the moving mounting portion to the center of the torus; An anti-vibration support device formed of a fixed mounting portion provided on a container and a connecting member for connecting the fixed mounting portion and the movable mounting portion, and provided at least three sets at equal intervals on the circumference of the torus. A nuclear fusion device characterized by being supported so as to be movable in the horizontal direction, and the movable mounting portion and the connecting member, and the fixed mounting member and the connecting member are rotatably connected by pins.
【請求項4】前記移動取付部と固定取付部のいずれか一
方に係合溝を設け、該係合溝に前記ピンを滑動自在に係
合したことを特徴とする特許請求の範囲第3項記載の核
融合装置。
4. The apparatus according to claim 3, wherein an engaging groove is provided in one of said movable mounting portion and said fixed mounting portion, and said pin is slidably engaged in said engaging groove. A fusion device as described.
【請求項5】前記シアパネルは、前記超電導トロイダル
磁場コイルと一体に形成されると共に、そのトーラス周
方向途中で複数に分割されてセクター状となしているこ
とを特徴とする特許請求の範囲第3項記載の核融合装
置。
5. The method according to claim 3, wherein the shear panel is formed integrally with the superconducting toroidal magnetic field coil, and is divided into a plurality of sections in the middle of the torus in a circumferential direction to form a sector shape. The nuclear fusion device according to the above item.
【請求項6】前記シアパネルのトーラス周方向途中の分
割部は、前記相隣接する超電導トロイダル磁場コイル間
の中間部に位置すると共に、相隣接するシアパネルを前
記分割部でキーにより一体に結合したことを特徴とする
特許請求の範囲第5項記載の核融合装置。
6. A split part in the circumferential direction of the torus of the shear panel is located at an intermediate part between the adjacent superconducting toroidal magnetic field coils, and the adjacent shear panels are integrally connected by a key at the split part. The nuclear fusion device according to claim 5, characterized in that:
【請求項7】内部にプラズマが閉じ込められると共に、
基礎に支持脚を介して支持される中空環状体の真空容器
と、該真空容器を取り囲み、かつ、トーラス周方向に所
定間隔をもって複数込配置されると共に、各々が断熱支
持柱を介して基礎に支持される超電導トロイダル磁場コ
イルと、該超電導トロイダル磁場コイルの各々を結合支
持するためにトーラス状に設置されたシアパネルと、該
シアパネルで各々が結合支持された超電導トロイダル磁
場コイルと前記真空容器を収納する断熱真空容器とを備
えた核融合装置において、 前記各々の超電導トロイダル磁場コイルを結合支持する
シアパネルと真空容器とを、該シアパネルと真空容器の
外周部の各々にほぼ等ピッチで設けられた移動取付部
と、該移動取付部とトーラス中心とを結ぶ線に対してト
ーラス切線方向に直角となる線上の前記断熱真空容器に
設けられた固定取付部と、該固定取付部と前記移動取付
部とを連結する連結部材とから形成されると共に、トー
ラス円周上で等間隔に3組以上設けられた防振支持装置
で水平方向に移動自在に支持し、かつ、前記移動取付部
と連結部材、及び固定取付部材と連結部材とは、ピンに
より回転自在に結合され、更に前記断熱真空容器の支持
部付近の外周側を補強輪で補強したことを特徴とする核
融合装置。
7. The plasma is confined inside,
A vacuum vessel of a hollow annular body supported on the foundation via supporting legs, and surrounding the vacuum vessel, and a plurality of the vacuum vessels are arranged at predetermined intervals in the circumferential direction of the torus, and each of the vacuum vessels is connected to the foundation via a heat insulating support column. A superconducting toroidal magnetic field coil supported, a shear panel installed in a torus shape for coupling and supporting each of the superconducting toroidal magnetic coils, a superconducting toroidal magnetic field coil each of which is coupled and supported by the shear panel, and the vacuum container are housed. A fusion device provided with a heat-insulating vacuum container, wherein a shear panel and a vacuum container that couple and support the superconducting toroidal magnetic field coils are provided at substantially equal pitches on each of the outer peripheral portions of the shear panel and the vacuum container. An adiabatic vacuum on a line perpendicular to the torus cutting direction with respect to a line connecting the mounting portion and the moving mounting portion to the center of the torus; An anti-vibration support device formed of a fixed mounting portion provided on a container and a connecting member for connecting the fixed mounting portion and the movable mounting portion, and provided at least three sets at equal intervals on the circumference of the torus. And the movable mounting portion and the connecting member, and the fixed mounting member and the connecting member are rotatably connected by pins, and furthermore, the outer peripheral side near the supporting portion of the heat-insulated vacuum vessel. Nuclear fusion device characterized by the fact that is reinforced with reinforcing wheels.
【請求項8】前記移動取付部と固定取付部のいずれか一
方に係合溝を設け、該係合溝に前記ピンを滑動自在に係
合したことを特徴とする特許請求の範囲第7項記載の核
融合装置。
8. The apparatus according to claim 7, wherein an engaging groove is provided in one of said movable mounting portion and said fixed mounting portion, and said pin is slidably engaged in said engaging groove. A fusion device as described.
【請求項9】前記断熱真空容器の基礎床面部に位置する
外周に他の補強輪を設置し、該補強輪を基礎床面部と一
体化したことを特徴とする特許請求の範囲第7項記載の
核融合装置。
9. The heat insulating vacuum vessel according to claim 7, wherein another reinforcing wheel is installed on an outer periphery located on a basic floor surface portion, and the reinforcing wheel is integrated with the basic floor surface portion. Fusion device.
【請求項10】前記補強輪と基礎床面部と一体化された
補強輪とを補強柱で連結したことを特徴とする特許請求
の範囲第9項記載の核融合装置。
10. The nuclear fusion device according to claim 9, wherein the reinforcing wheel and the reinforcing wheel integrated with the foundation floor are connected by reinforcing columns.
JP62297620A 1987-11-27 1987-11-27 Nuclear fusion device Expired - Lifetime JP2633876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297620A JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297620A JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Publications (2)

Publication Number Publication Date
JPH01141397A JPH01141397A (en) 1989-06-02
JP2633876B2 true JP2633876B2 (en) 1997-07-23

Family

ID=17848915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297620A Expired - Lifetime JP2633876B2 (en) 1987-11-27 1987-11-27 Nuclear fusion device

Country Status (1)

Country Link
JP (1) JP2633876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189991A2 (en) 2008-11-21 2010-05-26 Mitsubishi Heavy Industries Superconduction apparatus
WO2010067717A1 (en) 2008-12-11 2010-06-17 三菱重工業株式会社 Superconducting coil device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172692A (en) * 2012-02-27 2013-09-05 Samson Co Ltd Heat sterilization device
RU2713216C2 (en) * 2017-03-02 2020-02-04 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for attachment of blanket module on vacuum housing of thermonuclear reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524616A (en) * 1978-08-11 1980-02-21 Hitachi Ltd Vaccum vessel supporting device for nuclear fusion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189991A2 (en) 2008-11-21 2010-05-26 Mitsubishi Heavy Industries Superconduction apparatus
WO2010067717A1 (en) 2008-12-11 2010-06-17 三菱重工業株式会社 Superconducting coil device
US8818471B2 (en) 2008-12-11 2014-08-26 Mitsubishi Heavy Industries, Ltd. Superconducting coil apparatus

Also Published As

Publication number Publication date
JPH01141397A (en) 1989-06-02

Similar Documents

Publication Publication Date Title
JP2633876B2 (en) Nuclear fusion device
JPH1116719A (en) Mri superconducting magnet assembly
JP6167220B1 (en) Construction method of seismic isolation refrigeration or frozen warehouse
WO2019026520A1 (en) Antivibration support structure and antivibration system
JP3349539B2 (en) Insulated support device
JPS6015040B2 (en) It's fuel storage.
JPH03135077A (en) Heat insulating supporting device of superconducting coil
JP2801523B2 (en) Superconducting acceleration cavity
JP2000356295A (en) Base isolated piping system and bellows expansion pipe joint with leg part
JPH048396Y2 (en)
JP2624729B2 (en) Nuclear fusion device
JPH11125686A (en) Reactor pressure vessel
Tamura et al. Design and construction of coil supporting structure and cryostat vessel for LHD
JPH01119791A (en) Fusion device
JPH06146659A (en) Installation of sub structure of adaptive type growth structure
JP2023089851A (en) liquefied gas storage tank
JPH046883A (en) Cryostat
JPH0578618B2 (en)
SU1011944A1 (en) Apparatus for mounting vessels
Nicol TESLA Test Facility alternate cryostat design
JPS6313308A (en) Superconducting apparatus
JP2000283222A (en) Base isolation device with damping system and base isolation structure using the device
JPS623563B2 (en)
JPH0468496B2 (en)
Yu et al. Cryostat engineering design and manufacturing of the EAST superconducting Tokamak