JP3000106B2 - Cryostat - Google Patents

Cryostat

Info

Publication number
JP3000106B2
JP3000106B2 JP2109631A JP10963190A JP3000106B2 JP 3000106 B2 JP3000106 B2 JP 3000106B2 JP 2109631 A JP2109631 A JP 2109631A JP 10963190 A JP10963190 A JP 10963190A JP 3000106 B2 JP3000106 B2 JP 3000106B2
Authority
JP
Japan
Prior art keywords
tank
support member
support
seat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2109631A
Other languages
Japanese (ja)
Other versions
JPH046883A (en
Inventor
千鶴 須澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Japan Science and Technology Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2109631A priority Critical patent/JP3000106B2/en
Publication of JPH046883A publication Critical patent/JPH046883A/en
Application granted granted Critical
Publication of JP3000106B2 publication Critical patent/JP3000106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体ヘリウム等の冷媒を貯液するクライ
オスタットに関する。より詳しくは、真空槽内に収納す
る冷媒貯液槽(以下は単に冷媒槽と云う)の支持構造を
改善して外部熱侵入量の低減と、2つの槽の冷媒注入後
の位置関係の安定保持を可能ならしめたクライオスタッ
トに関する。
Description: TECHNICAL FIELD The present invention relates to a cryostat for storing a refrigerant such as liquid helium. More specifically, the support structure of a coolant storage tank (hereinafter simply referred to as a coolant tank) accommodated in a vacuum tank is improved to reduce the amount of external heat intrusion, and to stabilize the positional relationship between the two tanks after the coolant is injected. It relates to a cryostat that can be held.

〔従来の技術〕[Conventional technology]

クライオスタットにおいて真空槽内に冷媒槽を固定支
持する技術としては、実開昭63−124764号に示されるよ
うに、ボルト止めする支柱を用いて内外の槽を相互に連
結するもの、特願平1−113968号や特開昭63−261706号
のように支持部の構造材の熱収縮差を利用して組立を容
易にしたり、他の部品を保護したりするものがある。
As a technique for fixing and supporting a refrigerant tank in a vacuum tank in a cryostat, as shown in Japanese Utility Model Application Laid-Open No. 63-124766, a technique in which inner and outer tanks are connected to each other by using bolted posts, Japanese Patent Application Laid-Open No. 113968/1988 and Japanese Patent Application Laid-Open No. 63-261706 utilize the difference in thermal shrinkage of the structural material of the support portion to facilitate assembly and protect other parts.

また、特公昭63−66043号のように、支持部の熱伝達
距離に工夫を凝らしたものや、「FNL,米,フェルミ国立
研究所,SSCクライオスタット('1986,3月)」設計資料
のP72に示されるように、スプリング機構を設けてかな
り強固に冷媒槽とその中に収める超電導コイルを直接押
さえ込み支持するものもある。
In addition, as shown in JP-B-63-66043, the heat transfer distance of the support part was devised, and the FNL, U.S.A., Fermi National Laboratory, SSC cryostat ('March, 1986), P72 As shown in (2), there is a type in which a spring mechanism is provided to directly press and support the refrigerant tank and the superconducting coil housed in the refrigerant tank quite firmly.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のこの種の装置は、冷媒注入時の冷媒槽の冷却不
均衡の点について考慮されていなかったため、冷却途中
の大きな熱勾配(冷媒槽の構造材は低熱伝導率のFRP,ス
テンレス鋼が殆どであるため、冷媒接触部と非接触部間
の熱勾配が大きい)に起因した冷媒槽の変形により支持
材が無理な力を受けて予想外に変形することがある。
Conventional devices of this type did not consider the imbalance of cooling of the coolant tank during the injection of the coolant, so a large thermal gradient during cooling (the structural material of the coolant tank is mostly FRP with low thermal conductivity, stainless steel Therefore, the support may receive an excessive force and deform unexpectedly due to the deformation of the refrigerant tank caused by the large thermal gradient between the refrigerant contact portion and the non-contact portion.

このような変形があると、真空槽と冷媒槽の位置関係
が崩れ、超電導コイルを収納する場合にはそのコイル等
の心出しが難しくなってくる。
With such a deformation, the positional relationship between the vacuum tank and the refrigerant tank is broken, and when the superconducting coil is stored, it becomes difficult to center the coil and the like.

なお、支持材の強度を断面積を増加させるなどして高
めれば支持材の変形は抑制されるが、この方法を採ると
冷媒槽への熱侵入量が増えて冷媒の蒸発量増加につなが
る。
In addition, if the strength of the support is increased by increasing the cross-sectional area or the like, the deformation of the support is suppressed. However, if this method is adopted, the amount of heat entering the refrigerant tank increases, which leads to an increase in the amount of evaporation of the refrigerant.

また、冷媒槽を真空槽に吊り下げる構造も、支持材の
変形防止に有効であるが、この場合には固定点がないの
で冷媒槽の定置、冷却後の位置確認が困難になる。
A structure in which the refrigerant tank is suspended from the vacuum tank is also effective for preventing deformation of the support member. However, in this case, since there is no fixed point, it is difficult to place the refrigerant tank and confirm its position after cooling.

この発明の目的は、上述の諸問題を無くすることにあ
る。
An object of the present invention is to eliminate the above-mentioned problems.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題解決策としてこの発明においては、冷媒槽
をその槽の直下の位置基準点とその他の位置の複数個所
で真空槽との間に第1、第2支持材を設けて支持する。
また、位置基準点の第1支持材は上記2つの槽に対する
両端の取付けを共に剛構造の連結とし、その他の位置に
設ける第2支持材は、真空槽に対する連結を第2支持材
よりも低強度の可変形支持座を介しての連結とする。
In order to solve the above-mentioned problem, in the present invention, the first and second support members are provided between the vacuum tank at a plurality of positions at a position reference point immediately below the tank and at other positions.
The first support member at the position reference point has rigid connections at both ends of the two tanks, and the second support members provided at other positions have lower connections to the vacuum tank than the second support members. The connection is made through a variable-shaped support seat of high strength.

また、第2支持材の冷媒槽に対する連結を、冷媒槽に
設けた球面座に対して第2支持材を外周にクリアランス
を生じさせて貫通させ、かつ、上記球面座に第2支持材
側の対応した球面座を槽中心側で当接させた構造の軸直
角方向相対変位吸収部を介して行う。
Further, the connection of the second support member to the coolant tank is performed by passing the second support member through the spherical seat provided in the coolant tank with a clearance on the outer periphery thereof being generated, and the spherical seat on the second support material side is connected to the spherical seat. This operation is performed through a relative displacement absorbing section in a direction perpendicular to the axis having a structure in which a corresponding spherical seat is brought into contact with the center of the tank.

〔作用〕[Action]

冷媒槽が熱変形(収縮又は膨張)すると可変形支持座
が変形してその支持座で支えた第2支持材が冷媒槽に追
従する。従って第2支持材には無理な力が加わらず、熱
侵入防止の面で有利な例えば低断面積の支持材を用いて
もその変形が起こらない。
When the coolant tank thermally deforms (shrinks or expands), the deformable support seat is deformed, and the second support member supported by the support seat follows the coolant tank. Therefore, no excessive force is applied to the second support member, and even if a support member having a low cross-sectional area, which is advantageous in preventing heat intrusion, is used, its deformation does not occur.

また、位置基準点の第1支持材は両端が共に剛構造の
連結であるので、冷却後もこれを基準にして真空槽と冷
媒槽の位置関係が定まる。
Further, since both ends of the first support member at the position reference point are connected to each other in a rigid structure, the positional relationship between the vacuum tank and the refrigerant tank is determined based on the rigid support after cooling.

さらに、冷媒槽に対する第2支持材の連結を上記の構
造の軸方向相対変位吸収部を介して行ったので、槽の周
方向や捻れに対しても自在に対応でき、第2支持材によ
る支持安定性が損なわれることもない。
Further, since the connection of the second support member to the refrigerant tank is performed through the axial relative displacement absorbing portion having the above structure, the second support member can be freely adapted to the circumferential direction and torsion of the tank, and can be supported by the second support member. There is no loss of stability.

〔実施例〕〔Example〕

第1図に、横型円筒クライオスタットへの適用の一例
を示す。図の1は真空槽、2は冷媒槽、3は80k、20k等
の輻射熱シールド板、4は液体ヘリウム等の冷媒であ
る。
FIG. 1 shows an example of application to a horizontal cylindrical cryostat. 1 is a vacuum tank, 2 is a refrigerant tank, 3 is a radiant heat shield plate of 80k, 20k, etc., and 4 is a refrigerant of liquid helium or the like.

また、5は2の直下で1と2を連結する第1支持材、
6は5から周方向に任意角度ずれた位置で1と2を連結
する第2支持材であり、5はその1個を好ましくは2の
重心の真下に設けてある。また、6は図の場合、5から
120゜間隔をおいた中心対称位置に計2個設けてある。
5 is a first support member connecting 1 and 2 directly below 2;
Reference numeral 6 denotes a second support member that connects 1 and 2 at a position shifted by an arbitrary angle in the circumferential direction from 5, and 5 is preferably provided immediately below the center of gravity of 2. Also, 6 is from 5 in the case of the figure.
A total of two are provided at centrally symmetrical positions spaced 120 ° apart.

第1支持材5は、第2図に示すように、槽1、2に対
する両端の接続を共に剛構造の連結部(図は固定座7に
対してのねじ結合)によって行っている。これは第1支
持材による連結点を槽1、2の位置決めの基準となすた
めであり、このためには、第1支持材自身も熱収縮、膨
張の極力少ないもの、例えば、フィラメントワインディ
ングで製作したCFRPが好ましい。
As shown in FIG. 2, both ends of the first support member 5 are connected to the tanks 1 and 2 by connecting portions having a rigid structure (screw connection to the fixed seat 7 in the figure). This is because the connection point of the first support is used as a reference for positioning of the tanks 1 and 2. For this purpose, the first support itself is also made of a material having the least heat shrinkage and expansion, for example, manufactured by filament winding. Preferred is CFRP.

一方、第2支持材6は、第3図に示すように、真空槽
1の内面に可変形支持座8を固着して一端をその支持座
8にねじ結合するなどして固定し、他端は、軸直角方向
変位吸収能を有する可動連結部9を用いて冷媒槽2に連
結している。
On the other hand, as shown in FIG. 3, the second support member 6 has a deformable support seat 8 fixed to the inner surface of the vacuum chamber 1 and one end is fixed to the support seat 8 by screwing, and the other end is fixed. Are connected to the refrigerant tank 2 by using a movable connection portion 9 having a displacement absorption capability in a direction perpendicular to the axis.

この第2支持材は、断熱性を必要とするので、熱伝導
率の悪いステンレス、GFRP、又はCFRPを用いるが、その
強度は、可変形支持座8による応力緩和効果が得られる
ので剛構造の連結を行う場合よりも小さくてよい。
Since the second support member needs heat insulation, stainless steel, GFRP, or CFRP, which has poor thermal conductivity, is used. It may be smaller than in the case of connecting.

可変形支持座8は、第2支持座の形成材料を考えてそ
れよりも変形し易い材料で作る。この支持座8は、連結
部9と位置を入れ変えることもできるが、冷えると硬く
なって変形し難くなるので、図のように常温側、即ち、
真空槽側に設けるのがよい。
The deformable support seat 8 is made of a material which is more easily deformed in consideration of a material for forming the second support seat. The position of the support seat 8 can be interchanged with that of the connecting portion 9, but when cooled, the support seat 8 becomes hard and hardly deformed.
It is preferable to provide it on the vacuum tank side.

可動連結部9は、冷媒槽に固定した球面座10とナット
12に一体化して10に衝合させた可動球面座11とで構成
し、座11が軸直角方向の平面内において360゜どの方向
にも摺動できるようにしてある。また、支持材6が最大
限に変位した後にも球面座10、11に対しては第4図に示
すように非接触(接触すると伝熱距離が短くなるので好
ましくない)となるよう、それ等の座と支持材6との間
に充分なクリアランスが確保されている。
The movable connecting part 9 includes a spherical seat 10 fixed to the refrigerant tank and a nut.
It comprises a movable spherical seat 11 integrated with 12 and abutted against 10, so that the seat 11 can slide 360 degrees in a plane perpendicular to the axis. In addition, even after the support member 6 is displaced to the maximum, the spherical seats 10 and 11 are not in contact with each other as shown in FIG. Sufficient clearance is secured between the seat 6 and the support member 6.

この連結部9は、以下の理由で設けてある。即ち、支
持材6が5と180゜反対側にある場合には、6に加わる
応力は槽の半径方向の力のみであるのでこのような連結
部は必要でない。しかし、6が例えば図の位置にあると
冷媒槽の収縮、膨張時に冷媒槽との連結部は第3図にθ
で示す周方向にも変位し、当該部が剛構造の連結である
と変形する恐れがある。大型の槽ほどθ方向変位量が大
きくなるので変形する可能性が高い。
This connecting portion 9 is provided for the following reason. That is, when the support member 6 is on the opposite side of 180 from the member 5, such a connection is not necessary because the stress applied to the member 6 is only the radial force of the tank. However, when 6 is at the position shown in the figure, for example, when the refrigerant tank contracts and expands, the connection with the refrigerant tank becomes θ in FIG.
There is also a risk that the part will be displaced in the circumferential direction indicated by, and will be deformed if the part is a rigid structure connection. The larger the tank, the larger the amount of displacement in the θ direction, so the possibility of deformation is high.

そこで、その変形対策としてθ方向の変位量を球面座
の部分で吸収するようにしている。この工夫を施したこ
とによって第2支持材6の追従性は更に良くなり、冷媒
槽が円滑に収縮する。
Therefore, as a measure against the deformation, the amount of displacement in the θ direction is absorbed by the spherical seat. By taking this measure, the followability of the second support member 6 is further improved, and the refrigerant tank shrinks smoothly.

なお、実施例について冷媒槽2の外側に凹部13を設
け、その凹部内に連結部9を収めたのは、1、2間の支
持材を伝う部分の伝熱経路が長くなって熱侵入量が少な
くなるのからであるが、この構成は必要に応じて採用す
ればよい。
In the embodiment, the concave portion 13 was provided outside the refrigerant tank 2 and the connecting portion 9 was accommodated in the concave portion because the heat transfer path of the portion passing through the supporting material between the first and second portions became long, and the heat penetration amount However, this configuration may be adopted as needed.

このほか、支持材5、6は、実施例で中空のものを用
いたが中実のものであってもよい。
In addition, the support members 5 and 6 are hollow in the embodiment, but may be solid.

また、支持材6の設置数、取付け角も任意に定めてよ
い。
In addition, the number of support members 6 and the mounting angle may be arbitrarily determined.

〔効果〕〔effect〕

以上述べたように、この発明では、位置基準点以外の
個所に設ける第2支持材の真空槽に対する連結を可変形
支持座を用いて行い、冷媒槽と真空槽の熱応力による相
対変位量を上記可変形支持座の変形によって吸収するよ
うにしたので、また、場合によっては、冷媒槽との間も
軸直角方向変位吸収能を持つ連結部で連結するようにし
たので、第2支持材に無理な力がかからなくなる。
As described above, in the present invention, the connection of the second support member provided at a position other than the position reference point to the vacuum tank is performed using the variable support seat, and the relative displacement amount of the refrigerant tank and the vacuum tank due to thermal stress is determined. Since it was made to absorb by the deformation of the above-mentioned deformable support seat, and in some cases, it was made to connect also with the refrigerant tank by the connecting part which has a displacement absorption capability in the direction perpendicular to the axis. No excessive force is applied.

従って、第2支持材は断面積を減らして常温部からの
熱侵入量を減少させることが可能となり、冷媒の蒸発抑
制につながる。
Therefore, the second support member can reduce the cross-sectional area and reduce the amount of heat intrusion from the room temperature portion, which leads to suppression of evaporation of the refrigerant.

また、温度が最も早く落ちつく基準点の第1支持材
は、両端が共に剛構造の連結であるので、真空槽と冷媒
槽の位置関係が冷却後もその支持材を基準にして定ま
り、冷媒槽及びその内部に収める超電導コイル等の位置
決め、並びに位置管理が容易になる。
In addition, since the first support member at the reference point where the temperature falls fastest has rigid connections at both ends, the positional relationship between the vacuum tank and the refrigerant tank is determined based on the support member even after cooling, and the refrigerant tank In addition, the positioning of the superconducting coil and the like to be accommodated therein and the position management are facilitated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の一実施例の断面図、第2図は第1
支持材の連結部の拡大断面図、第3図は第2支持材の連
結部の拡大断面、第4図は第2支持材の変位状態を示す
断面図である。 1……真空槽、2……冷媒槽、 5……第1支持材、6……第2支持材、 7……固定座、8……可変形支持座、 9……可動連結部、10、11……球面座、 12……ナット、13……凹部。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG.
FIG. 3 is an enlarged cross-sectional view of the connecting portion of the supporting member, FIG. 3 is an enlarged cross-sectional view of the connecting portion of the second supporting member, and FIG. 4 is a cross-sectional view showing a displaced state of the second supporting member. DESCRIPTION OF SYMBOLS 1 ... Vacuum tank, 2 ... Refrigerant tank, 5 ... 1st support material, 6 ... 2nd support material, 7 ... Fixed seat, 8 ... Deformable support seat, 9 ... Movable connection part, 10 , 11 ... spherical seat, 12 ... nut, 13 ... recess.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 39/04 H01F 7/22 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 39/04 H01F 7/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水平配置の真空槽内に同心的に配置する冷
媒貯液槽を、その貯液槽の直下の位置基準点とその他の
位置の複数個所で真空槽との間に第1、第2支持材を設
けて支持し、さらに、上記位置基準点の第1支持材は上
記2つの槽に対する両端の取付けを共に剛構造の連結と
し、その他の位置に設ける第2支持材は、真空槽に対す
る連結を第2支持材よりも低強度の可変形支持座を介し
ての連結、冷媒貯液槽に対する連結を、冷媒貯液槽に設
けた球面座に対して第2支持材を外周にクリアランスを
生じさせて貫通させ、かつ、上記球面座に第2支持材側
の対応した球面座を貯液槽中心側で当接させた構造の軸
直角方向相対変位吸収部を介しての連結とするクライオ
スタット。
A refrigerant storage tank concentrically arranged in a horizontally arranged vacuum tank is provided between a vacuum reference tank at a plurality of positions other than a position reference point immediately below the storage tank and other positions. A second support member is provided and supported. Further, the first support member at the position reference point has rigid connections at both ends of the two tanks, and the second support member provided at other positions is a vacuum. The connection to the tank is made through a deformable support seat having a lower strength than the second support member, and the connection to the refrigerant storage tank is made by connecting the second support member to the outer periphery of the spherical seat provided in the refrigerant storage tank. A clearance is caused to penetrate, and a connection is made via a relative displacement absorption portion in a direction perpendicular to the axis of a structure in which a corresponding spherical seat on the second support material side is brought into contact with the spherical seat on the center side of the liquid storage tank. Cryostat.
JP2109631A 1990-04-24 1990-04-24 Cryostat Expired - Lifetime JP3000106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109631A JP3000106B2 (en) 1990-04-24 1990-04-24 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109631A JP3000106B2 (en) 1990-04-24 1990-04-24 Cryostat

Publications (2)

Publication Number Publication Date
JPH046883A JPH046883A (en) 1992-01-10
JP3000106B2 true JP3000106B2 (en) 2000-01-17

Family

ID=14515176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109631A Expired - Lifetime JP3000106B2 (en) 1990-04-24 1990-04-24 Cryostat

Country Status (1)

Country Link
JP (1) JP3000106B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013620B3 (en) * 2005-03-24 2006-07-27 Bruker Biospin Ag Cryostat device for storing cryogenic fluid in cryo container, has centering units loaded independent of temperature within device to constant pressure or traction within certain range of pressure or traction obtained at room temperature
GB2441795B (en) 2006-09-15 2010-06-02 Siemens Magnet Technology Ltd A supported superconducting magnet
WO2015068390A1 (en) * 2013-11-05 2015-05-14 昭和電線ケーブルシステム株式会社 Cryogenic cable termination connector
JP5757986B2 (en) * 2013-11-05 2015-08-05 昭和電線ケーブルシステム株式会社 Cryogenic cable termination connection

Also Published As

Publication number Publication date
JPH046883A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
WO2014028297A1 (en) Thermal straps for spacecraft
US4781034A (en) Cryogenic support system
US5083105A (en) Axial support system for a mr magnet
JP3000106B2 (en) Cryostat
US4599592A (en) Device for holding the housing of a superconducting magnet winding
JPH0559567B2 (en)
US6036422A (en) Roller washer bearing and method
EP0450971B1 (en) Superconductive magnet
US4459261A (en) Support structure for a core of a high temperature reactor
US6933817B2 (en) Support member for a superconducting magnet assembly
JP3349539B2 (en) Insulated support device
JPS61248403A (en) Cryostat
JPS6119089B2 (en)
JPS624304A (en) Superconducting coil apparatus
JP3647266B2 (en) Superconducting magnet device
JPS6133611Y2 (en)
JPH0747882Y2 (en) Cryogenic support device
JP2795102B2 (en) Cryogenic tank
JPS603555Y2 (en) superconducting coil
Parmley Unique cryogenic features of the Gravity Probe B (GP-B) experiment
JPS6227758Y2 (en)
JPS60148370A (en) Rotor of superconductive rotary electric machine
JPH0297004A (en) Superconductive magnet device
JPH0378791B2 (en)
JPH03104176A (en) Cryogenic vessel