JPH022878A - Steam reforming catalyst for fuel cell - Google Patents

Steam reforming catalyst for fuel cell

Info

Publication number
JPH022878A
JPH022878A JP63220494A JP22049488A JPH022878A JP H022878 A JPH022878 A JP H022878A JP 63220494 A JP63220494 A JP 63220494A JP 22049488 A JP22049488 A JP 22049488A JP H022878 A JPH022878 A JP H022878A
Authority
JP
Japan
Prior art keywords
catalyst
steam reforming
fuel cell
carbon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63220494A
Other languages
Japanese (ja)
Other versions
JP2625170B2 (en
Inventor
▲むし▼合 彰
Akira Mushiai
Fumiya Ishizaki
石崎 文也
Tomoko Segawa
瀬川 朋子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP63220494A priority Critical patent/JP2625170B2/en
Publication of JPH022878A publication Critical patent/JPH022878A/en
Application granted granted Critical
Publication of JP2625170B2 publication Critical patent/JP2625170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a steam reforming catalyst having high activity, inhibiting the deposition of carbon and prolonging the service life by supporting Rh, Ru, Pd, Pt or an alloy thereof on a tetragonal or cubic zirconia carrier contg. yttria. CONSTITUTION:Rh, Ru, Pd, Pt or an alloy thereof is supported on a tetragonal or cubic zirconia carrier contg. a small amt. of yttria to obtain a steam reforming catalyst. This catalyst is incorporated into a fuel cell and performs efficient steam reforming of hydrocarbons to produce fuel for the cell. Since the catalyst inhibits the deposition of carbon, the service life is prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池用水蒸気改質触媒に係り、とりわけ活
性が高くかつ炭素付着を抑制して長寿命化を図った炭化
水素類の水蒸気改質触媒に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a steam reforming catalyst for fuel cells, and in particular to a steam reforming catalyst for hydrocarbons that has high activity and suppresses carbon deposition to extend its life. Regarding quality catalysts.

〔従来の技術〕[Conventional technology]

従来の代表的な水蒸気改質用触媒はアルカリ金属酸化物
、アルカリ土類金属酸化物またはシリカなどを含有する
アルミナ系担体にニッケルを担持させたものである。ニ
ッケルのほか、鉄、コバルト、白金、ロジウム、ルテニ
ウム、パラジウムなども触媒として利用できることが知
られている(例えば、特開昭50−126005号公報
、同61−260554号公報)。
A typical conventional catalyst for steam reforming is one in which nickel is supported on an alumina-based carrier containing an alkali metal oxide, an alkaline earth metal oxide, or silica. It is known that in addition to nickel, iron, cobalt, platinum, rhodium, ruthenium, palladium, and the like can also be used as catalysts (for example, JP-A-50-126005 and JP-A-61-260554).

また、ニッケル、コバルトあるいはルテニウムをジルコ
ニア担体に担持してなる触媒が炭化水素の水蒸気改質反
応において優れた性能を有することが報告されている(
特公昭43−12410号公報;五十嵐哲ほか’ Rh
/ ZrO2上でのn−ブタンの水蒸気改質反応」第5
8回触媒討論会(A)、4連B12.176〜177頁
:ほか)。
Additionally, it has been reported that catalysts made of nickel, cobalt, or ruthenium supported on a zirconia carrier have excellent performance in steam reforming reactions of hydrocarbons (
Special Publication No. 43-12410; Tetsu Igarashi et al.'Rh
/ “Steam reforming reaction of n-butane over ZrO2” No. 5
8th Catalyst Symposium (A), 4th series B12, pp. 176-177: etc.).

一方、水蒸気改質触媒は従来より石油、石油留分等の改
質用に広く工業的に利用されているが、最近、このよう
な水蒸気改質触媒を燃料電池の内部に設置して水素又は
水素、−酸化炭素を主体とするいわゆる燃料ガスに代え
て、炭化水素を原料として利用する燃料電池が提案され
ている(特開昭61−280554号公報)。
On the other hand, steam reforming catalysts have traditionally been widely used industrially for reforming petroleum, petroleum fractions, etc., but recently such steam reforming catalysts have been installed inside fuel cells to convert hydrogen or A fuel cell has been proposed that uses hydrocarbons as raw materials instead of so-called fuel gases mainly composed of hydrogen and carbon oxide (Japanese Patent Application Laid-Open No. 61-280554).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

アルミナにニッケルその他を担持してなる従来の触媒は
水蒸気/炭素(原料ガス中の炭素)モル比(S/C)が
小さい場合や、原料ガスとしてオレフィン類や重質炭化
水素などの比較的分子量の大きい原料を使用する場合に
は、炭素付着(コーキング)が著しく、原料ガス供給圧
力が増大し、ついには閉塞してしまうという欠点がある
。水蒸気/炭素比が高いことは反応に余分の水蒸気を必
要としていることであり、経済的に不利である。また、
原料ガス供給圧力の増大は系の負荷を高め、触媒が閉塞
すれば、触媒を交換、再生しなければならず、またその
ために反応を一旦停止するかあるいは反応を停止せずに
触媒を交換、再生するためには複雑な装置が必要になる
不都合がある。とりわけ、内部改質型燃料電池では触媒
の交換、再生はより困難をともなうので、触媒への炭素
付着はできるだけ抑制されることが望ましい。
Conventional catalysts made of alumina supporting nickel and other materials are used when the water vapor/carbon (carbon in the raw material gas) molar ratio (S/C) is small, or when the raw material gas is relatively molecular weight such as olefins or heavy hydrocarbons. When using a raw material with a large carbon content, there is a drawback that carbon adhesion (coking) is significant, the raw material gas supply pressure increases, and eventually clogging occurs. A high steam/carbon ratio requires extra steam for the reaction, which is economically disadvantageous. Also,
An increase in the raw material gas supply pressure increases the load on the system, and if the catalyst is clogged, the catalyst must be replaced or regenerated, and for this purpose, the reaction must be stopped temporarily or the catalyst must be replaced without stopping the reaction. There is a disadvantage that a complicated device is required for reproduction. In particular, in internal reforming fuel cells, it is more difficult to replace and regenerate the catalyst, so it is desirable to suppress carbon adhesion to the catalyst as much as possible.

また、水蒸気改質における反応効率は高いことが望まし
いことは当然であり、特に燃料電池では電池自体の効率
が燃料電池の実用化の重要な鍵となるものであるので、
燃料電池に設置した触媒の改質の効率が高いことがより
重要である。
Furthermore, it is natural that it is desirable for the reaction efficiency in steam reforming to be high, and especially in fuel cells, the efficiency of the cell itself is an important key to the practical application of the fuel cell.
It is more important that the reforming efficiency of the catalyst installed in the fuel cell is high.

そこで、本発明は水蒸気改質の効率が高くかつ炭素付着
の少ない燃料電池用水蒸気改質触媒を提供することを目
的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a steam reforming catalyst for fuel cells that has high steam reforming efficiency and exhibits less carbon deposition.

〔課題を解決する手段〕[Means to solve problems]

本発明は、上記目的を達成するために、燃料電池に内設
され、炭化水素類を改質して電池燃料を生成するための
、イツトリアを含有する正方晶系又は立方晶系ジルコニ
ア担体にロジウム、ルテニウム、パラジウム、白金又は
これらの合金を担持して成る燃料電池用水蒸気改質触媒
を提供する。
In order to achieve the above object, the present invention provides rhodium in a tetragonal or cubic zirconia carrier containing ittria, which is installed inside a fuel cell and used to reform hydrocarbons to produce cell fuel. The present invention provides a steam reforming catalyst for fuel cells, which supports ruthenium, palladium, platinum, or an alloy thereof.

本発明者の研究によれば、イツトリア(Y2O2)を添
加した正方晶系又は立方晶系ジルコニア担体を用いた触
媒は従来の触媒と比べてより優れた水蒸気改π触媒性能
を有し、燃料電池用水蒸気改質触媒として優れているこ
とが見い出された。イツトリアを少量含有する正方晶系
又は立方晶系ジルコニアは部分安定化ジルコニアとして
知られ、また酸素イオン導電率が高いことが知られてい
るので、これが水の酸素イオンの活性化や炭素付着(コ
ーキング)抑制の効果と関係しているのではないかと推
測される。
According to the research conducted by the present inventors, a catalyst using a tetragonal or cubic zirconia support doped with yttria (Y2O2) has superior steam reforming catalytic performance compared to conventional catalysts, and It was found that it is excellent as a steam reforming catalyst. Tetragonal or cubic zirconia containing a small amount of ittria is known as partially stabilized zirconia and is known to have high oxygen ion conductivity. ) It is speculated that this may be related to the effect of inhibition.

イツトリアの含有量は0,5〜20mo1%、より好ま
しくは1.5〜10mo1%の範囲内が好ましい。イツ
トリアの含有量が多くなりすぎると結晶系が安定化しな
い。一方イットリアの含有量が少ないとイツトリア含有
の効果がなくなる。
The content of ittria is preferably in the range of 0.5 to 20 mol%, more preferably 1.5 to 10 mol%. If the content of ittria becomes too large, the crystal system will not be stabilized. On the other hand, if the yttria content is low, the effect of yttria content is lost.

イツトリアを含有する正方晶系又は立方晶系ジルコニア
の製造は、所定割合のイツトリアとジルコニアの粉末混
合物を焼成することによって、あるいはジルコニア化合
物を用いた共沈法、加水分解法又はアルコキシド法によ
って、行なうことができる。好ましいのは共沈法である
。特にイツトリウムクロライド(YCム)およびジルコ
ニウムオキシクロライド(ZrOCl2)を用いた共沈
法が好適である。
The production of tetragonal or cubic zirconia containing ittria is carried out by firing a powder mixture of ittria and zirconia in a predetermined ratio, or by a coprecipitation method using a zirconia compound, a hydrolysis method, or an alkoxide method. be able to. Preferred is the coprecipitation method. Particularly suitable is a coprecipitation method using yttrium chloride (YCum) and zirconium oxychloride (ZrOCl2).

本発明においてイツトリアを含有する正方晶系又は立方
晶系ジルコニア担体に担持する水蒸気改質用触媒金属と
しては従来より優れた水蒸気改質用触媒として知られて
いるロジウム、ルテニウム、パラジウム、白金、又はこ
れらの合金を用いるが特にロジウム又はルテニウムが好
ましい、イツトリア含有ジルコニア担体に担持する触媒
金属の量は、特に限定するわけではないが、担体と金属
の合計重量に対して0.01〜10重量%の範囲内が好
ましく、より好ましくは0.1〜3重量%である。金属
量が多すぎると不経済であり、一方金属量が少なすぎる
と活性が低く炭化水素類の改質が不充分となる。
In the present invention, the catalyst metal for steam reforming supported on the tetragonal or cubic zirconia support containing ittria is rhodium, ruthenium, palladium, platinum, or The amount of the catalyst metal supported on the yttria-containing zirconia support using these alloys, preferably rhodium or ruthenium, is not particularly limited, but is 0.01 to 10% by weight based on the total weight of the support and metal. It is preferably within the range of 0.1 to 3% by weight, more preferably 0.1 to 3% by weight. If the amount of metal is too large, it will be uneconomical, while if the amount of metal is too small, the activity will be low and the reforming of hydrocarbons will be insufficient.

イツトリア含有ジルコニア担体に触媒金属を担持する方
法は慣用方法に従うことができるが、通常、含浸法が採
用される。本発明において用いる触媒担体は一般に円柱
状、リング状又は粒子状であるが、必ずしもそれに限定
されない。繊維状あるいは三次元構造体でもよく、さら
には他の担体との複合構造物として用いることもできる
。内部改質用触媒としては粒径の小さい粒状の触媒担体
が好ましい。
The catalyst metal can be supported on the yttria-containing zirconia support by any conventional method, but an impregnation method is usually employed. The catalyst carrier used in the present invention is generally cylindrical, ring-shaped, or particulate, but is not necessarily limited thereto. It may be a fibrous or three-dimensional structure, and it can also be used as a composite structure with other carriers. As the internal reforming catalyst, a granular catalyst carrier with a small particle size is preferable.

本発明において水蒸気改質反応とは、次の反応式で示さ
れるものである。
In the present invention, the steam reforming reaction is represented by the following reaction formula.

CH,+ [20= Co + 3H2Co + II
□0=CO□+11□ 反応温度は一最に300〜1000℃であるが、700
°C以下でもコーキングしにくいので内部改質型燃料電
池用の改質触媒として好適である。
CH, + [20= Co + 3H2Co + II
□0=CO□+11□ The reaction temperature is 300 to 1000°C, but 700°C
Since it is difficult to cause coking even at temperatures below .degree. C., it is suitable as a reforming catalyst for internal reforming fuel cells.

反応圧力は、約0.01kg/ cm2c+−50kg
/ cm2G、特に好ましくは約0.1kg/ cm2
G〜30kg/ cm2Gである。
Reaction pressure is approximately 0.01kg/cm2c+-50kg
/ cm2G, particularly preferably about 0.1 kg/cm2
G~30kg/cm2G.

S/Cは小さい方が望ましいが、コーキングの問題を回
避するには1.2以上とするのが好ましい。
Although it is desirable that S/C be smaller, it is preferably 1.2 or more to avoid the problem of coking.

本発明の触媒が有効である水蒸気改質反応は従来より公
知のすべての水蒸気改質反応、特に本発明と同じロジウ
ム、ルテニウム等の金属をセラミック担体に担持した触
媒を利用して行なわれるすべての水蒸気改質反応である
が、例えば、LNGやLPGなどの軽質炭化水素含有ガ
ス、ナフサや灯油などの石油留分や、石炭液化油など主
として炭化水素、特に分子量のあまり大きくない炭化水
素(01〜C2゜程度)からなる原料ガスの水蒸気接触
分解による水素、−酸化炭素、二酸化炭素、あるいは低
分子量炭化水素(メタン、エタン等)の生成反応である
。原料ガスは好ましくは炭化水素のみからなるが、微量
の異成分を含んでいてもよい。異成分としてのイオウ化
合物は原料がナフサの場合0.5ppm以下が望ましく
、原料が灯油の場合は50 ppm以下とするのが望ま
しい。原料から異成分を除去するには水素化脱硫などの
精製手段が採用される。
The steam reforming reaction for which the catalyst of the present invention is effective includes all conventionally known steam reforming reactions, especially all those conducted using a catalyst in which the same metal as the present invention, such as rhodium or ruthenium, is supported on a ceramic carrier. Although it is a steam reforming reaction, for example, gases containing light hydrocarbons such as LNG and LPG, petroleum fractions such as naphtha and kerosene, and mainly hydrocarbons such as coal liquefied oil, especially hydrocarbons with a not very large molecular weight (01 to This is a reaction that produces hydrogen, carbon oxide, carbon dioxide, or low molecular weight hydrocarbons (methane, ethane, etc.) by steam catalytic cracking of a raw material gas consisting of carbon (about 2°C). The raw material gas preferably consists of only hydrocarbons, but may contain trace amounts of other components. The content of sulfur compounds as a foreign component is desirably 0.5 ppm or less when the raw material is naphtha, and desirably 50 ppm or less when the raw material is kerosene. Purification methods such as hydrodesulfurization are employed to remove foreign components from raw materials.

また、内部改質型燃料電池では水蒸気のほかに酸素や空
気が混入していると、電極の劣化や触媒活性の低下、さ
らには水素への転化率の低下等の問題が生ずるので好ま
しくない。
Further, in an internal reforming fuel cell, if oxygen or air is mixed in with water vapor, it is not preferable because problems such as deterioration of the electrodes, reduction in catalyst activity, and further reduction in the conversion rate to hydrogen will occur.

なお、原料の比重は、0,80以下、好ましくは0.7
5以下で、C78重量比は6.5以下、好ましくは6.
0以下の炭化水素類が用いられる。
Note that the specific gravity of the raw material is 0.80 or less, preferably 0.7
5 or less, and the C78 weight ratio is 6.5 or less, preferably 6.5 or less.
Zero or less hydrocarbons are used.

本発明の触媒は、特に内部改質型燃料電池への適用に適
している。改質(転換)効率が高くかつ炭素付着(コー
キング)を抑制する効果があるからである1本発明の用
途を限定するわけではないが、溶融炭酸塩型燃料電池で
は電解質の溶融炭酸塩が飛散して触媒表面に付着し、触
媒成分の溶出による活性低下が指摘されているが、本発
明の触媒は炭酸塩に対して安定であることが確認されて
おり、この型の燃料電池への適用にも有用である。燃料
電池内への触媒の設置は、通常、燃料ガス流路の壁面に
触媒を付着して行なわれる。
The catalyst of the present invention is particularly suitable for application in internal reforming fuel cells. This is because the reforming (conversion) efficiency is high and it has the effect of suppressing carbon deposition (coking).1 Although the application of the present invention is not limited, in the molten carbonate fuel cell, the molten carbonate of the electrolyte is scattered. It has been pointed out that the catalyst adheres to the catalyst surface and the activity decreases due to the elution of catalyst components, but the catalyst of the present invention has been confirmed to be stable against carbonates, and its application to this type of fuel cell. It is also useful. A catalyst is usually installed in a fuel cell by attaching the catalyst to the wall of a fuel gas flow path.

〔実施例〕〔Example〕

(実施例1) 肱嫌へ胛1 共沈法によって得た3モル%または8モル%のイツトリ
アを含有する正方晶系ジルコニア粉末を加圧成形し、ペ
レット(10mmφX3mm)とした。
(Example 1) Tetragonal zirconia powder containing 3 mol % or 8 mol % ittria obtained by a coprecipitation method was press-molded to form pellets (10 mmφ×3 mm).

これを1ooo℃、3時間焼成した後、粉砕、分級をし
て、6〜16メツシユの大きさの触媒担体(細孔容積0
.2cc/g)を得た0次に、これを塩化ロジウム水溶
液に24時間浸漬してから取り出し、乾燥後、500℃
、1時間焼成して、0.5u+t%のロジウムを含有す
る触媒を得た。
After calcining this at 100°C for 3 hours, it was crushed and classified to form a catalyst carrier with a size of 6 to 16 meshes (pore volume 0).
.. Next, this was immersed in an aqueous rhodium chloride solution for 24 hours, taken out, dried, and heated at 500°C.
, and calcined for 1 hour to obtain a catalyst containing 0.5 u+t% rhodium.

3モル%及び8モル%イツトリアを含有する正方晶系ジ
ルコニアを担体とする触媒をそれぞれ触媒A、触媒Bと
する。
Catalysts having tetragonal zirconia as carriers containing 3 mol % and 8 mol % ittria are referred to as catalyst A and catalyst B, respectively.

反応jLfL 炭化水素原料として、脱硫処理された軽質ナフサ(比重
0.702、C/H重量比5,52、イオウ分500r
Jb以下)を用い、650℃、0.2kg/cm2Gで
、スチーム/カーボン(S/C)モル比及び原料供給空
間速度(G)ISv)を次の通り変化させて、反応を行
なった。
Reaction jLfL Desulfurized light naphtha (specific gravity 0.702, C/H weight ratio 5.52, sulfur content 500r) was used as a hydrocarbon raw material.
Jb or less), the reaction was carried out at 650° C. and 0.2 kg/cm 2 G while changing the steam/carbon (S/C) molar ratio and the raw material supply space velocity (G) ISv) as follows.

S/Cモル比   3〜1.5 GHSV        8,000〜12,000こ
れらの反応生成物をガスクロマトグラフィーで定量分析
した結果を表1及び表2に示す。
S/C molar ratio 3-1.5 GHSV 8,000-12,000 Tables 1 and 2 show the results of quantitative analysis of these reaction products by gas chromatography.

ここで、未転化率とは原料の炭化水素に対しC2以上の
炭化水素が未転化(残留)した割合をいい、コーキング
の尺度を示す。
Here, the unconverted ratio refers to the ratio of unconverted (remained) hydrocarbons of C2 or higher to the hydrocarbons of the raw material, and indicates a measure of coking.

(比較例1) 比較のために、ナフサ用として市販されている水蒸気改
質触媒x、y、zを使用して、それぞれ上記の反応試験
を繰り返した。結果を同じく表1及び表2に示す。
(Comparative Example 1) For comparison, the above reaction tests were repeated using commercially available steam reforming catalysts x, y, and z for naphtha. The results are also shown in Tables 1 and 2.

なお、触媒x、y、zは下記の組成からなるものであっ
た。
Note that the catalysts x, y, and z had the following composition.

ムを担持したのと同様の手順でイツトリアを含有しない
ジルコニア担体にロジウムを担持して触媒Pを調製し、
上記の反応試験を繰り返した。結果を同じく表1及び表
2に示す。
Catalyst P was prepared by supporting rhodium on a zirconia support not containing itria in the same manner as in the case of supporting rhodium.
The reaction test described above was repeated. The results are also shown in Tables 1 and 2.

以下余白 成分   XY Ni    11.1  16.2 ^1203  88.9 .24.7 Mg0   − ・ 10.7 Ca0       19.3 に20       6.7 SiOz       19.0 15.6 25.7 11.9 16.1 6.2 13.6 また、イツトリア含有ジルコニア担体にロジウ表1、表
2を参照すると、本発明の実施例である触媒A、Bによ
れば、Ni/八jへzO−系触媒(触媒X)及びNi複
合酸化物系触媒(Y、Z)と比べて、特に原料供給空間
速度を高めた場合に転換率の向上が認められ、またS/
Cを低くしても水蒸気供給所要圧力が上昇したりさらに
は触媒が閉塞することがない効果が認められる。また、
Rh/ZrO□系触媒(触媒P)と比べても、H2/ 
c (燃料電池の燃料であるH2の生成効率)が向上す
る効果が認められる。
Below are the margin components: XY Ni 11.1 16.2 ^1203 88.9 . 24.7 Mg0 − ・ 10.7 Ca0 19.3 to 20 6.7 SiOz 19.0 15.6 25.7 11.9 16.1 6.2 13.6 In addition, Rhodium Table 1 was applied to the ittria-containing zirconia carrier. , Table 2 shows that according to catalysts A and B, which are examples of the present invention, compared to the Ni/8j to ZO-based catalyst (catalyst X) and the Ni composite oxide-based catalyst (Y, Z), , an improvement in the conversion rate was observed especially when the raw material supply space velocity was increased, and S/
Even if C is lowered, there is an effect that the required pressure for steam supply does not increase and the catalyst does not become clogged. Also,
Compared to Rh/ZrO□-based catalyst (catalyst P), H2/
The effect of improving c (the production efficiency of H2, which is the fuel of the fuel cell) was observed.

(実施例2) 実施例1で調製した触媒A (3モル%イツトリア含有
ジルコニアにロジウム担持)を8〜16メツシユに破砕
し、その4.6gを秤量し、650℃の溶融炭酸塩(L
 i / K = 62 / 38 )70g中に浸漬
した。
(Example 2) Catalyst A (rhodium supported on zirconia containing 3 mol% ittria) prepared in Example 1 was crushed into 8 to 16 meshes, 4.6 g of the mesh was weighed, and molten carbonate (L
i/K = 62/38) immersed in 70 g.

そして2日後、4日後、7日後の触媒成分の溶出量を測
定した。
Then, the elution amount of the catalyst component was measured after 2 days, 4 days, and 7 days.

結果を第1図に示す。図より、ジルコニアは殆んど溶出
せず、イツトリウムは面かに溶出するが、7日目で約2
5ppmの程度であることが見られる。
The results are shown in Figure 1. The figure shows that zirconia hardly elutes, and yttrium elutes on the surface, but about 2
It is seen that the amount is on the order of 5 ppm.

従って、Rh/Y20.含有ZrO2触媒は溶融炭酸塩
に対して安定であることが認められる。
Therefore, Rh/Y20. The ZrO2-containing catalyst is found to be stable towards molten carbonate.

(比較例2) 比較例1で調製した触媒Y(複合酸化物にニッケル担持
)を実施例2と同様に破砕し、その5.0gを秤量し、
実施例2と同様に溶融炭酸塩に浸漬し、触媒成分の溶出
量を測定した。
(Comparative Example 2) Catalyst Y (nickel supported on composite oxide) prepared in Comparative Example 1 was crushed in the same manner as in Example 2, and 5.0 g of it was weighed.
The sample was immersed in molten carbonate in the same manner as in Example 2, and the amount of the catalyst component eluted was measured.

結果を第2図に示す0図より、アルカリ土類金属の溶出
が顕著であり、M、は全体の26%、Caは59%が溶
出した。
The results are shown in Figure 2, which shows that alkaline earth metals were eluted significantly, with 26% of the total eluted M and 59% of the eluted Ca.

(実施例3) 実施例1と同様にして3モル%のイツトリアを含有する
正方晶系ジルコニア触媒担体(粉末状)を調製し、その
12.0gを塩化ルテニウム水溶液に浸漬し、煮沸含浸
した。含浸処理を2回繰り返して0.5wt%(触媒基
準)のルテニウムをイツトリア含有ジルコニア担体上に
担持した。これを120℃で乾燥した後、500℃で2
時間焼成した。
(Example 3) A tetragonal zirconia catalyst carrier (powder) containing 3 mol % of ittria was prepared in the same manner as in Example 1, and 12.0 g of it was immersed in an aqueous ruthenium chloride solution and impregnated by boiling. The impregnation process was repeated twice to support 0.5 wt % (based on the catalyst) of ruthenium on the ittria-containing zirconia support. After drying this at 120℃, it was heated to 500℃ for 2 hours.
Baked for an hour.

この触媒を用いて実施例1に記載したと同様の反応試験
を行なった。但し、GHSVを8000とし、S/Cを
3〜1.5と変化させた。
A reaction test similar to that described in Example 1 was conducted using this catalyst. However, the GHSV was set to 8000, and the S/C was varied from 3 to 1.5.

結果を表3に示す。The results are shown in Table 3.

以下余白 表3より、本発明の触媒は触媒金属としてルテニウムを
用いた場合にも優れた反応効率、炭素付着の抑制、高い
水素生成効率を有し、有用であることが示されている。
From Table 3 below, it is shown that the catalyst of the present invention has excellent reaction efficiency, suppresses carbon deposition, and high hydrogen production efficiency even when ruthenium is used as the catalyst metal, and is useful.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、反応効率に優れかつ低い水蒸気/炭素
比でも炭素付着が大幅に抑制された、水素生成効率が高
い水蒸気改質用触媒が提供され、内部改質型燃料電池用
触媒として好適である。
According to the present invention, a steam reforming catalyst with high hydrogen production efficiency, which has excellent reaction efficiency and significantly suppresses carbon deposition even at a low steam/carbon ratio, is provided, and is suitable as a catalyst for internal reforming fuel cells. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の触媒の溶融炭酸塩中での成分溶出量の
変化を示すグラフ図、第2図は比較例における第1図と
同様のグラフ図である。
FIG. 1 is a graph showing changes in the amount of components eluted from the catalyst of the example in the molten carbonate, and FIG. 2 is a graph similar to FIG. 1 in the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1、燃料電池に内設され、炭化水素類を改質して電池燃
料を生成するための、イットリアを含有する正方晶系又
は立方晶系ジルコニア担体にロジウム、ルテニウム、パ
ラジウム、白金又はこれらの合金を担持して成る燃料電
池用水蒸気改質触媒。
1. Rhodium, ruthenium, palladium, platinum, or an alloy thereof on a tetragonal or cubic zirconia carrier containing yttria, which is installed in a fuel cell and used to reform hydrocarbons to produce cell fuel. A steam reforming catalyst for fuel cells that supports
JP63220494A 1988-03-12 1988-09-05 Steam reforming catalyst for fuel cells Expired - Fee Related JP2625170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220494A JP2625170B2 (en) 1988-03-12 1988-09-05 Steam reforming catalyst for fuel cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5737188 1988-03-12
JP63-57371 1988-03-12
JP63220494A JP2625170B2 (en) 1988-03-12 1988-09-05 Steam reforming catalyst for fuel cells

Publications (2)

Publication Number Publication Date
JPH022878A true JPH022878A (en) 1990-01-08
JP2625170B2 JP2625170B2 (en) 1997-07-02

Family

ID=26398409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220494A Expired - Fee Related JP2625170B2 (en) 1988-03-12 1988-09-05 Steam reforming catalyst for fuel cells

Country Status (1)

Country Link
JP (1) JP2625170B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125354A (en) * 1980-02-08 1981-10-01 Agfa Gevaert Ag Hydroxyalkanesulfonic acid sulfoalkyl esters
JPH0243950A (en) * 1988-08-04 1990-02-14 Satoru Igarashi Catalyst for steam modification of hydrocarbon
WO2001072932A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell
US7419733B2 (en) 2001-12-19 2008-09-02 Sanyo Electric Co., Ltd. Fuel cell system having a burner with a flame detection rod therein

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125354A (en) * 1980-02-08 1981-10-01 Agfa Gevaert Ag Hydroxyalkanesulfonic acid sulfoalkyl esters
JPH022878B2 (en) * 1980-02-08 1990-01-19 Agfa Gevaert Ag
JPH0243950A (en) * 1988-08-04 1990-02-14 Satoru Igarashi Catalyst for steam modification of hydrocarbon
JPH064135B2 (en) * 1988-08-04 1994-01-19 哲 五十嵐 Hydrocarbon steam reforming catalyst
WO2001072932A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell
JP2001279276A (en) * 2000-03-29 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
US7419733B2 (en) 2001-12-19 2008-09-02 Sanyo Electric Co., Ltd. Fuel cell system having a burner with a flame detection rod therein
US7651800B2 (en) 2001-12-19 2010-01-26 Sanyo Electric Co., Ltd. Fuel cell system

Also Published As

Publication number Publication date
JP2625170B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
CA2332964C (en) Ruthenium-containing catalyst and process for reforming organic feedstock using the catalyst
US7592290B2 (en) Supported catalyst for stream methane reforming and autothermal reforming reactions
EP0414573B1 (en) Steam reforming catalyst for hydrocarbon and method for manufacturing the same
EP1732688B1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
CA2170408A1 (en) Catalyst and process for the production of hydrogen and/or methane
KR101365787B1 (en) Process conditions for pt-re bimetallic water gas shift catalysts
KR20130074393A (en) Catalyst for efficient co2 conversion and method for preparing thereof
Jang et al. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells
JPH09500054A (en) Catalyst for producing syngas
KR20010101612A (en) Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
WO2008127492A2 (en) Sulfur-tolerant and carbon-resistant catalysts
JP2625170B2 (en) Steam reforming catalyst for fuel cells
JPH05168924A (en) Steam reforming catalyst
US20050025701A1 (en) Steam reforming catalyst composition and process
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JPH06104002A (en) Internal reform type fused carbonate fuel cell
KR20190135799A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP4418063B2 (en) Method for producing hydrogen
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
US10525449B2 (en) Process for preparing a nickel-based catalyst, the nickel-based catalyst, and use thereof in a steam reforming process
JP2733784B2 (en) Hydrocarbon steam reforming reactor
US4929585A (en) Mixed-solid solution tri-metallic oxide/sulfide catalyst and process for its preparation
JP2001172651A (en) Fuel oil for fuel cell
JPH10216521A (en) Catalyst for reforming hydrocarbon with steam
US5002752A (en) Process for hydroforming hydrocarbon liquids

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees