JP2001279276A - Method for producing fuel oil for fuel cell and hydrogen for fuel cell - Google Patents

Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Info

Publication number
JP2001279276A
JP2001279276A JP2000090392A JP2000090392A JP2001279276A JP 2001279276 A JP2001279276 A JP 2001279276A JP 2000090392 A JP2000090392 A JP 2000090392A JP 2000090392 A JP2000090392 A JP 2000090392A JP 2001279276 A JP2001279276 A JP 2001279276A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
volume
fuel oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000090392A
Other languages
Japanese (ja)
Inventor
Hiroto Matsumoto
寛人 松本
Tadashi Kesen
忠 氣仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000090392A priority Critical patent/JP2001279276A/en
Priority to PCT/JP2001/002649 priority patent/WO2001072932A1/en
Priority to AU2001244626A priority patent/AU2001244626A1/en
Publication of JP2001279276A publication Critical patent/JP2001279276A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject fuel oil capable of efficiently producing hydrogen without affecting a reforming catalyst and fuel cell electrodes, and to provide a method for efficiently producing hydrogen for fuel cells by catalytic partial oxidation of the above fuel oil. SOLUTION: This fuel oil for fuel cells contains 1-50 vol.% of olefin compound(s). The method for producing hydrogen for fuel cells comprises catalytic partial oxidation treatment of the above fuel oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用燃料油
及び燃料電池用水素の製造方法に関する。さらに詳しく
は、本発明は、水素を効率よく製造し得ると共に、改質
触媒や燃料電池電極に対して悪影響を及ぼすことのない
燃料電池用燃料油、及びこの燃料油を用い、接触部分酸
化処理により燃料電池用水素を効率よく製造する方法に
関するものである。
The present invention relates to a method for producing fuel oil for fuel cells and hydrogen for fuel cells. More specifically, the present invention provides a fuel cell fuel oil that can efficiently produce hydrogen and does not adversely affect reforming catalysts and fuel cell electrodes, and a contact partial oxidation treatment using the fuel oil. And a method for efficiently producing hydrogen for a fuel cell.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のガソ
リン、ナフサ、灯油などの炭化水素油の使用が研究され
ている。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
Hydrogen sources include liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel derived from natural gas, and carbonization of petroleum-based gasoline, naphtha, kerosene, etc. The use of hydrogen oil has been studied.

【0003】燃料電池を民生用や自動車用などに利用す
る場合、上記石油系炭化水素油、特にガソリンは常温常
圧で液状であって、保管及び取扱いが比較的容易である
上、エネルギー密度が高く、しかもガソリンスタンドや
販売店など、供給システムが整備されていることから、
水素源として有利である。しかしながら、ガソリンはメ
タノールなどに比較して改質が困難であり、しかも、そ
れを改質して水素を製造する際の改質触媒の寿命が短い
などの欠点を有している。
When a fuel cell is used for consumer or automobile use, the above petroleum hydrocarbon oil, especially gasoline, is liquid at normal temperature and normal pressure, is relatively easy to store and handle, and has a low energy density. It is expensive and has a well-developed supply system such as gas stations and retailers.
It is advantageous as a hydrogen source. However, gasoline has disadvantages such as difficulty in reforming as compared with methanol and the like, and short life of the reforming catalyst when reforming the gas to produce hydrogen.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
状況下で、水素を効率よく製造し得ると共に、改質触媒
や燃料電池電極に対して悪影響を及ぼすことのない燃料
電池用燃料油、及びこの燃料油を用い、接触部分酸化処
理により燃料電池用水素を効率よく製造する方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a fuel oil for a fuel cell which can efficiently produce hydrogen under such circumstances and which does not adversely affect a reforming catalyst or a fuel cell electrode. It is another object of the present invention to provide a method for efficiently producing hydrogen for a fuel cell by catalytic partial oxidation using the fuel oil.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、オレフィン化
合物を特定の割合で含むガソリンやナフサなどの石油系
炭化水素油が、燃料電池用燃料油として、その目的に適
合し得ること、そして上記石油系炭化水素油を接触部分
酸化処理することにより、水素を効率よく製造し得るこ
とを見出した。本発明は、かかる知見に基づいて完成し
たものである。すなわち、本発明は、オレフィン化合物
1〜50容量%を含有することを特徴とする燃料電池用
燃料油を提供するものである。本発明はまた、上記燃料
油を接触部分酸化処理することを特徴とする燃料電池用
水素の製造方法をも提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, petroleum hydrocarbon oils such as gasoline and naphtha containing an olefin compound at a specific ratio have been developed. It has been found that the fuel oil for a battery can be adapted for the purpose, and that the petroleum hydrocarbon oil can be produced efficiently by subjecting it to a catalytic partial oxidation treatment. The present invention has been completed based on such findings. That is, the present invention provides a fuel oil for a fuel cell, comprising 1 to 50% by volume of an olefin compound. The present invention also provides a method for producing hydrogen for a fuel cell, comprising subjecting the fuel oil to a catalytic partial oxidation treatment.

【0006】[0006]

【発明の実施の形態】本発明の燃料油は、オレフィン化
合物を1〜50容量%の割合で含むことが必要である。
このオレフィン化合物の含有量が1容量%未満では接触
部分酸化処理において、反応促進効果が発揮されず、本
発明の目的が達せられない。一方、オレフィン化合物の
含有量が50容量%を超えるとその量の割には反応促進
効果があまり発揮されない上、接触部分酸化処理におい
て、触媒上への炭素の析出が著しくなり、該触媒が急激
に劣化する。接触部分酸化処理における反応促進効果及
び触媒の劣化抑制効果などの面から、該オレフィン化合
物の含有量は、5〜30容量%の範囲が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel oil of the present invention must contain an olefin compound at a ratio of 1 to 50% by volume.
When the content of the olefin compound is less than 1% by volume, the effect of accelerating the reaction is not exhibited in the contact partial oxidation treatment, and the object of the present invention cannot be achieved. On the other hand, if the content of the olefin compound exceeds 50% by volume, the reaction promoting effect is not so much exhibited for the amount, and the deposition of carbon on the catalyst becomes remarkable in the catalytic partial oxidation treatment. Deteriorates. The content of the olefin compound is preferably in the range of 5 to 30% by volume from the viewpoints of a reaction promoting effect and a catalyst deterioration suppressing effect in the catalytic partial oxidation treatment.

【0007】このオレフィン化合物としては、その種類
については特に制限はないが、炭素数5〜10の直鎖
状、分岐状あるいは環状の脂肪族オレフィン類が好まし
く用いられる。このオレフィン化合物は単一物質であっ
てもよいし、混合物であってもよい。このオレフィン化
合物を含有する基材としては、例えば接触分解ガソリン
や重合ガソリンを好ましく挙げることができる。接触分
解ガソリンには、オレフィン分が、通常30〜40容量
%の割合で含まれている。また、接触分解装置や熱分解
装置で副生されるプロピレンやブテンなどの軽質オレフ
ィンを重合して得られた重合ガソリンには90容量%以
上のオレフィン化合物を含む場合もある。
The type of the olefin compound is not particularly limited, but linear, branched or cyclic aliphatic olefins having 5 to 10 carbon atoms are preferably used. The olefin compound may be a single substance or a mixture. Preferred examples of the base material containing the olefin compound include, for example, catalytic cracking gasoline and polymerization gasoline. Catalytic cracking gasoline typically contains an olefin content of 30 to 40% by volume. Further, a polymerized gasoline obtained by polymerizing a light olefin such as propylene or butene by-produced in a catalytic cracking unit or a thermal cracking unit may contain 90% by volume or more of an olefin compound.

【0008】本発明においては、上記オレフィン化合物
又はこのオレフィン化合物を含む基材を、他の非オレフ
ィン系基材あるいは非オレフィン系化合物と混合し、オ
レフィン化合物の含有量を前記範囲に制御し、燃料油と
して用いることができる。この際使用する非オレフィン
系基材としては、例えば脱硫軽質ナフサ、脱硫重質ナフ
サ、異性化ナフサ、あるいはアルキレートなどが挙げら
れる。これらの非オレフィン系基材は、単独で用いても
よく、二種以上を組み合わせて用いてもよい。本発明の
燃料油としては、脱硫軽質ナフサ及び/又は脱硫重質ナ
フサと重合ガソリンとからなるものが好ましく用いられ
る。この場合、脱硫軽質ナフサ及び/又は脱硫重質ナフ
サと重合ガソリンとの割合は、オレフィン化合物の含有
量が前記範囲であるように調整すればよいが、さらに硫
黄分を低減させる点から、重合ガソリンの添加量は20
〜30容量%であることが好ましい。
In the present invention, the olefin compound or a base material containing the olefin compound is mixed with another non-olefin base material or a non-olefin compound to control the content of the olefin compound within the above range, Can be used as oil. Examples of the non-olefin base material used in this case include desulfurized light naphtha, desulfurized heavy naphtha, isomerized naphtha, and alkylate. These non-olefin-based substrates may be used alone or in combination of two or more. As the fuel oil of the present invention, one comprising desulfurized light naphtha and / or desulfurized heavy naphtha and polymerized gasoline is preferably used. In this case, the ratio of the desulfurized light naphtha and / or the desulfurized heavy naphtha to the polymerized gasoline may be adjusted so that the content of the olefin compound is in the above range, but from the viewpoint of further reducing the sulfur content, the polymerized gasoline is used. Is 20
It is preferable that the content is 30 to 30% by volume.

【0009】本発明の燃料油においては、硫黄分濃度は
0.5重量ppm以下が好ましい。該燃料油は、次の改
質工程において、改質触媒の存在下に部分酸化改質処理
されるが、この際使用する改質触媒は、燃料油中の硫黄
分によって被毒するため、触媒寿命の点から、燃料油中
の硫黄分濃度を0.1重量ppm以下にすることが肝要
である。したがって、硫黄分濃度が0.5重量ppmを
超えると、煩雑な脱硫プロセスを設置することが必要と
なる。硫黄分濃度が0.5重量ppm以下であれば、例
えばニッケル系や鉄系の通常用いられる硫黄吸着剤を改
質工程の前流に設置し、これを通過させるだけで、所望
の硫黄濃度まで、容易に脱硫することができる。
[0009] In the fuel oil of the present invention, the sulfur concentration is preferably 0.5 ppm by weight or less. The fuel oil is partially oxidized and reformed in the next reforming step in the presence of a reforming catalyst. However, the reforming catalyst used at this time is poisoned by the sulfur content in the fuel oil. From the viewpoint of life, it is important that the sulfur concentration in the fuel oil be 0.1 ppm by weight or less. Therefore, when the sulfur concentration exceeds 0.5 ppm by weight, it is necessary to install a complicated desulfurization process. If the sulfur concentration is 0.5 wtppm or less, for example, a nickel-based or iron-based commonly used sulfur adsorbent is installed upstream of the reforming step, and is simply passed therethrough to reach a desired sulfur concentration. , Can be easily desulfurized.

【0010】本発明の燃料電池用水素の製造方法におい
ては、前記燃料油を接触部分酸化処理して水素を製造す
る。燃料電池用水素の製造方法としては、部分酸化改質
と水蒸気改質による方法があるが、本発明の燃料油を用
いる場合、水蒸気改質法では、少量のオレフィン化合物
の存在により、触媒上への炭素析出が促進されると共
に、触媒量を少量化し得るような反応性の向上があまり
認められない。したがって、本発明においては、部分酸
化改質法が採用される。この部分酸化改質処理において
用いられる改質触媒としては特に制限はなく、従来炭化
水素油の部分酸化改質触媒として知られている公知のも
のの中から、任意のものを適宜選択して用いることがで
きる。このような部分酸化改質触媒としては、例えば適
当な担体に、ニッケルやジルコニウム、あるいはルテニ
ウム、ロジウム、白金などの貴金属を担持したものを挙
げることができる。上記担持金属は一種担持させてもよ
く、二種以上を組み合わせて担持させてもよい。これら
の触媒の中で、ルテニウムを担持させたもの(以下、ル
テニウム系触媒と称す。)が好ましい。
In the method for producing hydrogen for a fuel cell according to the present invention, the fuel oil is subjected to a catalytic partial oxidation treatment to produce hydrogen. As a method for producing hydrogen for fuel cells, there are methods based on partial oxidation reforming and steam reforming. In the case of using the fuel oil of the present invention, the steam reforming method involves the presence of a small amount of an olefin compound, so Is promoted, and there is not much improvement in reactivity such that the amount of catalyst can be reduced. Therefore, in the present invention, a partial oxidation reforming method is employed. There is no particular limitation on the reforming catalyst used in this partial oxidation reforming treatment, and any one of known catalysts conventionally known as partial oxidation reforming catalysts for hydrocarbon oils may be appropriately selected and used. Can be. As such a partial oxidation reforming catalyst, for example, a catalyst in which a noble metal such as nickel, zirconium, ruthenium, rhodium, or platinum is supported on a suitable carrier can be exemplified. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable.

【0011】このルテニウム系触媒の場合、ルテニウム
の担持量は、担体基準で0.05〜20重量%の範囲が
好ましい。この担持量が0.05重量%未満では、部分
酸化改質活性が充分に発揮されないおそれがあり、一方
20重量%を超えるとその担持量の割には触媒活性の向
上効果があまり認められず、むしろ経済的に不利とな
る。触媒活性及び経済性などを考慮すると、このルテニ
ウムのより好ましい担持量は0.05〜15重量%であ
り、特に0.1〜2重量%の範囲が好ましい。このルテ
ニウムを担持する場合、所望により、他の金属と組み合
わせて担持することができる。該他の金属としては、例
えばジルコニウム、コバルト、マグネシウムなどが挙げ
られる。
In the case of this ruthenium-based catalyst, the amount of ruthenium supported is preferably in the range of 0.05 to 20% by weight based on the carrier. If the supported amount is less than 0.05% by weight, the partial oxidation reforming activity may not be sufficiently exhibited. On the other hand, if it exceeds 20% by weight, the effect of improving the catalytic activity is not so much recognized for the supported amount. But rather at an economic disadvantage. Taking into account the catalytic activity and economic efficiency, the more preferable amount of the supported ruthenium is 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight. When the ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium.

【0012】一方、担体としては、耐熱性の無機酸化物
が好ましく、具体的にはアルミナ、シリカ、ジルコニ
ア、マグネシア及びこれらの混合物などが挙げられる。
これらの中で、特にアルミナ及びジルコニアが好適であ
る。部分酸化改質処理における反応条件としては、通常
圧力:常圧〜5MPa、温度:400〜1100℃、酸
素(O2 )/炭素モル比:0.2〜0.8、液時空間速
度(LHSV):0.1〜100h-1の条件が採用され
る。また、水蒸気を導入する場合は、水蒸気/炭素モル
比が0.4〜4程度になるように導入する。本発明の燃
料電池用水素の製造方法においては、オレフィン化合物
を1〜50容量%の割合で含む燃料油を用いることによ
り、改質触媒の寿命に悪影響を及ぼすことなく、反応性
が高められるので、改質触媒量が少なくてすみ、装置の
小型化が可能となる。
On the other hand, the carrier is preferably a heat-resistant inorganic oxide, and specific examples thereof include alumina, silica, zirconia, magnesia, and mixtures thereof.
Of these, alumina and zirconia are particularly preferred. The reaction conditions in the partial oxidation reforming treatment are as follows: normal pressure: normal pressure to 5 MPa, temperature: 400 to 1100 ° C., oxygen (O 2 ) / carbon molar ratio: 0.2 to 0.8, liquid hourly space velocity (LHSV) ): The condition of 0.1 to 100 h -1 is adopted. When introducing steam, the steam is introduced so that the steam / carbon molar ratio is about 0.4 to 4. In the method for producing hydrogen for a fuel cell of the present invention, by using a fuel oil containing an olefin compound in a ratio of 1 to 50% by volume, the reactivity can be increased without adversely affecting the life of the reforming catalyst. In addition, the amount of the reforming catalyst can be reduced, and the apparatus can be downsized.

【0013】[0013]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。 実施例1 オレフィン分を含まない脱硫軽質ナフサに、オレフィン
化合物として、1−ヘキセン(特級試薬)を、全量に基
づき20容量%の割合で添加した。この際の硫黄分濃度
は0.3重量ppmであった。次いで、これを、ニッケ
ル系の吸着脱硫剤(珪藻土担体にニッケルを50重量%
担持)を用い、流通式の反応装置で常圧、120℃、L
HSV 0.5h-1の条件にて脱硫処理を行い、硫黄分
濃度0.1重量ppm未満の脱硫油を得た。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 1-hexene (special grade reagent) as an olefin compound was added to desulfurized light naphtha containing no olefin at a ratio of 20% by volume based on the total amount. At this time, the sulfur concentration was 0.3 ppm by weight. Next, this was added to a nickel-based adsorptive desulfurizing agent (50% by weight of nickel on a diatomaceous earth carrier).
At normal pressure, 120 ° C, L
A desulfurization treatment was performed under the conditions of HSV 0.5 h -1 to obtain a desulfurized oil having a sulfur concentration of less than 0.1 ppm by weight.

【0014】次に、上記脱硫油を用い、以下に示す方法
により部分酸化改質処理を行った。流通式反応装置及び
ルテニウム系触媒(アルミナ担体にルテニウムを0.5
重量%、コバルトを1.0重量%、ジルコニウムを酸化
物換算で5重量%、マグネシウムを酸化物換算で2重量
%担持)を用い、まず、触媒を600℃で、1時間水素
還元したのち、上記脱硫油、予熱して気化させた水蒸気
及び空気を流通させ、酸素/炭素モル比0.4、水蒸気
/酸素モル比1.3、LHSV3.0h-1、常圧の条件
下に、炉の加熱温度を450℃にセットして、5時間反
応を行った。反応中の生成ガスの組成、生成ガス量を測
定した結果、該脱硫油の転化率は100%であった。ま
た、この際の水素濃度は、窒素を除いた乾ガス組成で6
2容量%であり、メタン濃度は3容量%であった。な
お、転化率は、ガスクロマトグラフィーによる生成ガス
組成と導入した脱硫油の流量より下式により求めた。 転化率(%)=(A/B)×100 〔上記式において、A=生成したガス中のC1種のモル
流量(COモル濃度+CO2 モル濃度+CH4 モル濃度
(いずれも反応器出口における濃度))、B=反応器入
口側の脱硫油の炭素モル濃度である。〕 さらに、反応中の触媒層内の温度分布を測定したとこ
ろ、触媒層入口でシャープな発熱パターンを示し、最高
点の温度は630℃であった。5時間反応を行ったのち
の炭素析出率は0%であり、全く炭素の析出は認められ
なかった。なお、炭素析出率(%)は、〔(炭素析出層
の長さ)/(全触媒層の長さ)〕×100により算出し
た。
Next, the above desulfurized oil was subjected to a partial oxidation reforming treatment by the method described below. Flow type reactor and ruthenium-based catalyst (ruthenium 0.5
% By weight, 1.0% by weight of cobalt, 5% by weight of zirconium in terms of oxides, and 2% by weight of magnesium in terms of oxides). The desulfurized oil, steam and air preheated and vaporized are allowed to flow, and the oxygen / carbon molar ratio is 0.4, the steam / oxygen molar ratio is 1.3, the LHSV is 3.0 h -1 , and the furnace is heated to normal pressure. The heating temperature was set at 450 ° C., and the reaction was performed for 5 hours. As a result of measuring the composition of the generated gas and the amount of the generated gas during the reaction, the conversion of the desulfurized oil was 100%. The hydrogen concentration at this time was 6% by dry gas composition excluding nitrogen.
The concentration was 2% by volume, and the methane concentration was 3% by volume. The conversion was determined by the following equation from the composition of the gas produced by gas chromatography and the flow rate of the introduced desulfurized oil. Conversion (%) = (A / B) × 100 [In the above formula, A = molar flow rate of C1 species in the generated gas (CO molar concentration + CO 2 molar concentration + CH 4 molar concentration (all concentrations at the outlet of the reactor) )), B = carbon molarity of the desulfurized oil on the reactor inlet side. Further, when the temperature distribution in the catalyst layer during the reaction was measured, a sharp heat generation pattern was shown at the entrance of the catalyst layer, and the temperature at the highest point was 630 ° C. After performing the reaction for 5 hours, the carbon deposition rate was 0%, and no carbon deposition was observed. The carbon deposition rate (%) was calculated by [(length of carbon deposition layer) / (length of total catalyst layer)] × 100.

【0015】実施例2 実施例1において、1−ヘキセンの添加量を20容量%
から5容量%に変更した以外は、実施例1と同様にして
実施した。その結果、脱硫油の転化率は100%であ
り、水素濃度は60容量%、メタン濃度は4容量%、最
高点温度は610℃であった。また、5時間後の炭素析
出率は0%であった。
Example 2 In Example 1, the amount of 1-hexene was changed to 20% by volume.
The procedure was performed in the same manner as in Example 1 except that the volume was changed to 5% by volume. As a result, the conversion of the desulfurized oil was 100%, the hydrogen concentration was 60% by volume, the methane concentration was 4% by volume, and the maximum temperature was 610 ° C. The carbon deposition rate after 5 hours was 0%.

【0016】実施例3 実施例1において、1−ヘキセンの添加量を20容量%
から40容量%に変更した以外は、実施例1と同様にし
て実施した。その結果、脱硫油の転化率は100%であ
り、水素濃度は64容量%。メタン濃度は1容量%、最
高点温度は650℃であった。また、5時間後の炭素析
出率は2%であり、水素生成量は増えるが、やや炭素析
出が認められた。 実施例4 実施例1において、1−ヘキセンの代わりに重合ガソリ
ンを用いた以外は、実施例1と同様にして実施した。重
合ガソリンは、プロピレンを原料とし、合成ゼオライト
を触媒として製造されたものを用いた。その組成は、オ
レフィン分94重量%、パラフィン分3重量%、芳香族
分3重量%であった。その結果、脱硫油の転化率は10
0%であり、水素濃度は64容量%。メタン濃度は1容
量%、最高点温度は640℃であった。また、5時間後
の炭素析出率は0%であり、全く炭素の析出は認められ
なかった。
Example 3 In Example 1, the amount of 1-hexene was changed to 20% by volume.
The procedure was performed in the same manner as in Example 1 except that the volume was changed to 40% by volume. As a result, the conversion of the desulfurized oil was 100%, and the hydrogen concentration was 64% by volume. The methane concentration was 1% by volume, and the highest point temperature was 650 ° C. In addition, the carbon deposition rate after 5 hours was 2%, and although the amount of generated hydrogen increased, slight carbon deposition was observed. Example 4 Example 4 was carried out in the same manner as in Example 1, except that polymerized gasoline was used instead of 1-hexene. Polymerized gasoline was produced using propylene as a raw material and using synthetic zeolite as a catalyst. The composition was 94% by weight of olefin, 3% by weight of paraffin, and 3% by weight of aromatic. As a result, the conversion of desulfurized oil was
0%, and the hydrogen concentration was 64% by volume. The methane concentration was 1% by volume and the maximum temperature was 640 ° C. The carbon deposition rate after 5 hours was 0%, and no carbon deposition was observed.

【0017】比較例1 実施例1において、1−ヘキセンを添加しなかったこと
以外は、実施例1と同様にして実施した。その結果、脱
硫油の転化率は100%であり、水素濃度は56容量
%、メタン濃度は10容量%であった。実施例に比較す
ると、メタンの生成量が多く、かつ水素の生成量が低
い。また、触媒層の温度分布を見ると、発熱パターンが
実施例に比較すると緩やかになり、最高点の温度は56
0℃にとどまった。このことから、オレフィン化合物を
添加すると、発熱反応が触媒層入口で急激に起こり、発
熱による温度上昇も大きくなることから、水素生成反応
が促進され、メタンの生成が抑制されていると解釈でき
る。なお、5時間後の炭素析出率は0%であった。
Comparative Example 1 The procedure of Example 1 was repeated, except that 1-hexene was not added. As a result, the conversion of the desulfurized oil was 100%, the hydrogen concentration was 56% by volume, and the methane concentration was 10% by volume. Compared to the examples, the production amount of methane is large and the production amount of hydrogen is low. Looking at the temperature distribution of the catalyst layer, the heat generation pattern became gentler than that of the example, and the temperature at the highest point was 56%.
Stayed at 0 ° C. From this, it can be interpreted that, when the olefin compound is added, an exothermic reaction occurs rapidly at the entrance of the catalyst layer, and the temperature rise due to the exothermic reaction also increases. Therefore, it can be interpreted that the hydrogen production reaction is promoted and the production of methane is suppressed. The carbon deposition rate after 5 hours was 0%.

【0018】比較例2 実施例1において、1−ヘキセンの添加量を20容量%
から60容量%に変更した以外は、実施例1と同様にし
て実施した。その結果、脱硫油の転化率は100%であ
り、水素濃度は64容量%、メタン濃度は1容量%、最
高点温度は650℃であった。また、5時間後の炭素析
出率は12%であった。
Comparative Example 2 In Example 1, the amount of 1-hexene added was 20% by volume.
The procedure was performed in the same manner as in Example 1 except that the volume was changed from 60% to 60% by volume. As a result, the conversion of the desulfurized oil was 100%, the hydrogen concentration was 64% by volume, the methane concentration was 1% by volume, and the maximum temperature was 650 ° C. The carbon deposition rate after 5 hours was 12%.

【0019】[0019]

【発明の効果】本発明の燃料電池用燃料油は、水素を効
率よく製造することができ、しかも改質触媒や燃料電池
電極に対して、悪影響を及ぼすことがない。また、この
燃料油を用いることにより、改質触媒の寿命に悪影響を
及ぼすことなく、反応性が高められるので、改質触媒量
が少なくてすみ、装置の小型化が可能となる。
According to the fuel oil for a fuel cell of the present invention, hydrogen can be efficiently produced, and further, there is no adverse effect on the reforming catalyst and the fuel cell electrode. Further, by using this fuel oil, the reactivity can be increased without adversely affecting the life of the reforming catalyst, so that the amount of the reforming catalyst can be reduced and the apparatus can be downsized.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA03 EA06 EA07 EC03 4G069 AA15 BA01B BA06B BC51B BC67B BC70A BC70B CC07 CC32 4H013 CB02 5H027 AA02 BA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA03 EA06 EA07 EC03 4G069 AA15 BA01B BA06B BC51B BC67B BC70A BC70B CC07 CC32 4H013 CB02 5H027 AA02 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 オレフィン化合物1〜50容量%を含有
することを特徴とする燃料電池用燃料油。
1. A fuel oil for a fuel cell, comprising 1 to 50% by volume of an olefin compound.
【請求項2】 オレフィン化合物5〜30容量%を含有
する請求項1記載の燃料電池用燃料油。
2. The fuel oil for a fuel cell according to claim 1, which contains 5 to 30% by volume of an olefin compound.
【請求項3】 脱硫軽質ナフサ及び/又は脱硫重質ナフ
サと重合ガソリンとからなる請求項1記載の燃料電池用
燃料油。
3. The fuel oil for a fuel cell according to claim 1, comprising desulfurized light naphtha and / or desulfurized heavy naphtha and polymerized gasoline.
【請求項4】 硫黄分濃度が0.5重量ppm以下であ
る請求項1記載の燃料電池用燃料油。
4. The fuel oil for a fuel cell according to claim 1, wherein the sulfur content is 0.5 ppm by weight or less.
【請求項5】 請求項1ないし4のいずれかに記載の燃
料油を接触部分酸化処理することを特徴とする燃料電池
用水素の製造方法。
5. A method for producing hydrogen for a fuel cell, comprising subjecting the fuel oil according to claim 1 to a catalytic partial oxidation treatment.
【請求項6】 接触部分酸化処理をルテニウム系触媒の
存在下に行う請求項5記載の燃料電池用水素の製造方
法。
6. The method for producing hydrogen for a fuel cell according to claim 5, wherein the catalytic partial oxidation treatment is performed in the presence of a ruthenium-based catalyst.
JP2000090392A 2000-03-29 2000-03-29 Method for producing fuel oil for fuel cell and hydrogen for fuel cell Pending JP2001279276A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000090392A JP2001279276A (en) 2000-03-29 2000-03-29 Method for producing fuel oil for fuel cell and hydrogen for fuel cell
PCT/JP2001/002649 WO2001072932A1 (en) 2000-03-29 2001-03-29 Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell
AU2001244626A AU2001244626A1 (en) 2000-03-29 2001-03-29 Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090392A JP2001279276A (en) 2000-03-29 2000-03-29 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2001279276A true JP2001279276A (en) 2001-10-10

Family

ID=18606003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090392A Pending JP2001279276A (en) 2000-03-29 2000-03-29 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Country Status (3)

Country Link
JP (1) JP2001279276A (en)
AU (1) AU2001244626A1 (en)
WO (1) WO2001072932A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022878A (en) * 1988-03-12 1990-01-08 Tonen Corp Steam reforming catalyst for fuel cell
JPH07196301A (en) * 1993-11-29 1995-08-01 Shell Internatl Res Maatschappij Bv Catalytic partial oxidation of hydrocarbon
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH0971789A (en) * 1995-07-06 1997-03-18 Idemitsu Kosan Co Ltd Unleaded gasoline
JPH10121064A (en) * 1996-10-22 1998-05-12 Idemitsu Kosan Co Ltd Unleaded gasoline
JPH10271706A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Power unit and electric vehicle
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022878A (en) * 1988-03-12 1990-01-08 Tonen Corp Steam reforming catalyst for fuel cell
JPH07196301A (en) * 1993-11-29 1995-08-01 Shell Internatl Res Maatschappij Bv Catalytic partial oxidation of hydrocarbon
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH0971789A (en) * 1995-07-06 1997-03-18 Idemitsu Kosan Co Ltd Unleaded gasoline
JPH10121064A (en) * 1996-10-22 1998-05-12 Idemitsu Kosan Co Ltd Unleaded gasoline
JPH10271706A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Power unit and electric vehicle
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor

Also Published As

Publication number Publication date
WO2001072932A1 (en) 2001-10-04
AU2001244626A1 (en) 2001-10-08

Similar Documents

Publication Publication Date Title
JP4597366B2 (en) Catalytic hydrogen generation
US6299995B1 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
JP5276010B2 (en) Petroleum-based thermal neutral reforming process using multicomponent catalysts
Suzuki et al. Steam reforming of kerosene on Ru/Al2O3 catalyst to yield hydrogen
Palm et al. Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds
KR100596286B1 (en) Catalyst and process for reforming hydrocarbon
US4693882A (en) Steam reforming utilizing sulfur tolerant catalyst
KR101078521B1 (en) Method of desulfurizing a hydrocarbon by partial oxidation
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP4330846B2 (en) Process for preparing low sulfur reformate gas for use in fuel cell systems
EP1426432A1 (en) Method for desulfurization and reforming of hydrocarbon stock
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4490533B2 (en) Fuel oil for fuel cells
JP2001279276A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
US11472700B2 (en) Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
JP2002316043A (en) Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell
JP2591971B2 (en) Hydrogen production method for distributed fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JPH0665602B2 (en) Hydrogen production method for distributed fuel cell
EP2289846A2 (en) Method for obtaining hydrogen
JPH07115842B2 (en) Hydrogen production method for distributed fuel cell
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
CN104093684A (en) Method and system for purifying an ethylene-containing gas stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831