JPH02285672A - Solid-state image sensing device and its manufacture - Google Patents

Solid-state image sensing device and its manufacture

Info

Publication number
JPH02285672A
JPH02285672A JP1107079A JP10707989A JPH02285672A JP H02285672 A JPH02285672 A JP H02285672A JP 1107079 A JP1107079 A JP 1107079A JP 10707989 A JP10707989 A JP 10707989A JP H02285672 A JPH02285672 A JP H02285672A
Authority
JP
Japan
Prior art keywords
solid
layer
color filter
glass plate
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107079A
Other languages
Japanese (ja)
Inventor
Katsumi Yamamoto
克己 山本
Eizaburo Watanabe
渡辺 英三郎
Hidenobu Okada
岡田 英伸
Satoru Kamiyama
上山 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP1107079A priority Critical patent/JPH02285672A/en
Publication of JPH02285672A publication Critical patent/JPH02285672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Light Receiving Elements (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To facilitate the improvement of a protective function to the surface of a solid-state image sensing device, the prevention of irregular reflection due to bubbles in a molding resin and the like by a method wherein the device is manufactured into a structure, wherein filter layers having a plurality of hues obtained by dying a photosensitive resin with dyes, transparent intermediate layers and a protective layer are laminated in order on photodetecting parts on a substrate to form color filter parts and a glass plate is adhered on the upper surfaces of the color filter parts. CONSTITUTION:A solid-state image sensing device is manufactured into a structure, wherein filter layers 11, 9 and 13 having a plurality of hues obtained by dying a photosensitive resin with dyes, transparent intermediate layers 10 and 12 and a protective layer 14 are laminated in order on photodetecting parts 4 on a substrate 1 to form color filter parts and a glass plate 22 is adhered on the upper surfaces of the color filter parts. Moreover, in case the solid-state image sensing device like the above structure is manufactured, the manufacture is carried out so as to go through a process for forming laminatedly the above layers 10 and 12 and 14 by a coating means, a process for adhering the plate 22 on the upper surfaces of the color filter parts with the above layers 11, 9 and 13 laminated on them and a process for removing a region other than a region adhered with the plate 22 by dry etching.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、基板上の受光部に複数の色相のカラーフィル
タ層を段階的に形成した固体撮像素子及びその製造方法
に関するものである。
The present invention relates to a solid-state image sensor in which color filter layers of a plurality of hues are formed in stages on a light receiving portion on a substrate, and a method for manufacturing the same.

【従来技術】[Prior art]

一般にこの種のカラーフィルタ層を備えた固体撮像素子
としては、例えば特開昭55−19885号公報に開示
されたものが従来例として周知である。そして、この従
来例においては、複数の色相のカラーフィルタ層を段階
的に形成した例として、第4法(第4実施例に相当)に
詳細な説明が記載され、その具体的構成が同公報の第9
図及び第10図に示されている。しかしながら、その製
造方法及び工程、つまり半導体ウェハの電極部分及びス
クライブライン等も含めた製造工程等に関して、詳細に
は説明されていないので、−船釣な製造工程について第
4〜8図に基づき従来例を説明す・る。 第4図において、1は半導体ウェハ等のシリコン基板で
あり、該シリコン基板上にスクライブライン2に沿って
切断され、−個のチップとなる固体撮像素子3の領域が
多数個区画され、各固体撮像素子3の領域には、夫々多
数の受光部4及び電極部5が搭載されている。そして、
前記シリコン基板1上は第5(A)〜(E)図に示した
ように下地処理され、第6(A)〜(K)図に示したよ
うに着色フィルター処理がなされるのである。 第5 (^)〜([)図において、(A)図の様に受光
部4が隣設状態に凹陥しており、この凹陥している受光
部4を穴埋めするように、(B)図に示したように感光
性透明樹脂層6をスピンコードし、次に前記受光部4の
パターンに対応するマスク7を被着させて (C)図に
示したように露光し、専用の現像液で処理することによ
り (D)図に示したように各受光部4の感光性透明樹
脂層6がそれぞれ残って、その表面が略平坦になる。そ
して、その平坦な表面上に前記同様の感光性透明樹脂を
スピンコードし、ベース層8を形成して更にその表面を
平坦にする。この場合に前記電極部5は配線、即ちワイ
ヤーボンデングを行うために、前記ベース層8を除去し
て露出させ、又前記スクライブライン2の部分は各固体
撮像素子3を切断してチップにする際に、切削された樹
脂粉末が飛散して一面に付着し、その除去作業が困難で
あるため、スクライブライン上の感光性透明樹脂、即ち
ベース層8を除去して露出させである。 このように下地処理が成された後に、第6 (^)〜(
K)図に示した工程で着色フィルター層が形成される。 即ち、(A)図に示す下地処理されたシリコン基板1上
に (B)図に示したように第1層目のフィルタ層9と
なるゼラチンをスピンコードし、その第1層目のフィル
タ層9は一般に赤色にしであるので、その赤色のフィル
タ層9を形成する位置に対応して、その部分だけを残す
ようなパターンマスクを使用して、露光及び現像すると
 (C)図に示したように、前記受光部4の赤色に対応
するフィルタ層9だけが残る。この残ったフィルタ層9
を公知の染色手段により染色し、次に (D)図に示し
たように感光性透明樹脂により中間層10をスピンコー
ドし、電極部5及びスクライブライン2の部分が除去で
きるように、それに対応するパターンマスクを使用して
、露光及び現像すると ([)図に示したように、電極
部5及びスクライブライン2の部分に対応する部分のみ
が除去され、前記赤色フィルタ層9を含む全体が被覆さ
れた中間層10が形成される。 前記同様の工程によって、(F)〜(H)図に示したよ
うに、緑色フィルタ層11と中間層12とが順次形成さ
れ、更に (1)〜(に)図に示したように、青色フィ
ルタ層13と表面の保護層14とが順次形成されて、各
隣設する受光部4に夫々異なった色相のフィルタ層9.
11.13が夫々絶縁性のベース層8゜中間層10.1
2を介して段階的に積層され、その上部に保護層14が
形成された半導体ウェハをスクライブライン2に沿って
チップ状に切断することで、実質的なカラーフィルタ付
き固体撮像素子が形成される。 そして、チップ状に切断された固体撮像素子は、第7図
に示したように、各電極部5と複数本のリードフレーム
15との間にワイヤー16をボンデングすることにより
接続させ、その後に固体撮像素子とワイヤー16の全部
及びリードフレーム15の一部を透明樹脂17でモール
、ドし一個の製品としての固体撮像素子が完成する。
In general, as a solid-state image sensor equipped with this type of color filter layer, the one disclosed in, for example, Japanese Unexamined Patent Publication No. 19885-1985 is well known as a conventional example. In this conventional example, a detailed explanation is given in the fourth method (corresponding to the fourth embodiment) as an example in which color filter layers of a plurality of hues are formed stepwise, and the specific structure thereof is described in the same publication. 9th of
10. As shown in FIG. However, the manufacturing method and process, that is, the manufacturing process including the electrode part and scribe line of the semiconductor wafer, etc., are not explained in detail. Explain an example. In FIG. 4, reference numeral 1 denotes a silicon substrate such as a semiconductor wafer, on which a large number of regions of solid-state image sensing devices 3 are cut along scribe lines 2 to form - chips, and each A large number of light receiving sections 4 and electrode sections 5 are mounted in the area of the image sensor 3, respectively. and,
The surface of the silicon substrate 1 is subjected to surface treatment as shown in FIGS. 5A to 5E, and colored filter treatment is performed as shown in FIGS. 6A to 6K. 5. In Figures 5 (^) to ([), the light-receiving parts 4 are recessed adjacent to each other as shown in Figure (A), and the holes in the light-receiving parts 4 that are recessed are filled in as shown in Figure (B). The photosensitive transparent resin layer 6 is spin-coded as shown in FIG. By processing with (D), the photosensitive transparent resin layer 6 of each light receiving part 4 remains as shown in FIG. Then, a photosensitive transparent resin similar to that described above is spin-coded onto the flat surface to form a base layer 8, and the surface is further flattened. In this case, the electrode portion 5 is exposed by removing the base layer 8 for wiring, that is, wire bonding, and the scribe line 2 portion is formed by cutting each solid-state image sensor 3 into a chip. At this time, the cut resin powder scatters and adheres to the entire surface, making it difficult to remove it, so the photosensitive transparent resin on the scribe line, that is, the base layer 8, is removed and exposed. After the groundwork has been done in this way, the 6th (^)~(
K) A colored filter layer is formed in the steps shown in the figure. That is, gelatin, which will become the first filter layer 9 as shown in the figure (B), is spin-coded on the silicon substrate 1 that has been subjected to the surface treatment shown in the figure (A), and the first filter layer 9 is spin-coded. 9 is generally red, so if you use a pattern mask that leaves only that part corresponding to the position where the red filter layer 9 is to be formed, expose and develop it as shown in Figure (C). Only the filter layer 9 corresponding to the red color of the light receiving section 4 remains. This remaining filter layer 9
is dyed by a known dyeing method, and then the intermediate layer 10 is spin-coded with a photosensitive transparent resin as shown in Figure (D), and the electrode portion 5 and the scribe line 2 are removable. When exposed and developed using a pattern mask, only the portions corresponding to the electrode portions 5 and the scribe line 2 are removed, and the entire red filter layer 9 is covered, as shown in the figure. An intermediate layer 10 is formed. Through steps similar to the above, the green filter layer 11 and the intermediate layer 12 are sequentially formed as shown in Figures (F) to (H), and furthermore, as shown in Figures (1) to (B), a blue color filter layer 11 and an intermediate layer 12 are formed in sequence. A filter layer 13 and a surface protective layer 14 are sequentially formed, and each adjacent light receiving section 4 has a filter layer 9 of a different hue.
11.13 is an insulating base layer 8゜intermediate layer 10.1
By cutting the semiconductor wafers, which are laminated in stages through the wafers 2 and on which the protective layer 14 is formed, into chips along the scribe line 2, a substantial solid-state image sensor with a color filter is formed. . As shown in FIG. 7, the solid-state imaging device cut into chips is connected by bonding wires 16 between each electrode portion 5 and a plurality of lead frames 15, and then the solid-state imaging device is cut into chips. The image sensor, all of the wires 16, and a part of the lead frame 15 are molded and bonded with transparent resin 17 to complete a solid-state image sensor as a single product.

【発明が解決しようとする課題】[Problem to be solved by the invention]

前記従来例における固体撮像素子は、その表面に形成さ
れた保護層14がベース層8及び中間層10゜12と同
様の樹脂で形成されているので、平滑性及び耐薬品性に
劣り、表面の保護機能に問題点を有するばかりでなく、
リードフレーム接続後にチップ状の固体撮像素子を透明
樹脂でモールドした際、泡の発生が生じ乱反射が多くな
ると云う問題点も有している。又、従来例における製造
方法にあっても、電極部5及びスクライブライン2に対
応する部分を露出させるために、各フィルタ層の形成時
及び中間層並びに保護層形成時において、その都度露光
現像工程を夫々行っているため、工程数が多く作業性が
悪いばかりでなく、その都度露光現像工程によって、前
記電極部5及びスクライブライン2の近傍が第8図に示
した状態になる。つまり、露光現像工程をその都度行う
ことにより、積層されるベース層10.中間層12及び
保護層14が、各電極部及びスクライブラインに望む境
界部分が順次肉薄になり、他の部分が盛り上がって全体
的に歪みの生じたものとなっているのである。 従って、従来例においては、表面の保護機能の向上及び
モールド樹脂中の泡による乱反射の防止と、生産性の向
上並びに歪みの除去とに重大な課題を有している。 [課題を解決するための手段] 前記従来例における課題を解決する具体的手段として本
発明は、基板上の受光部に、感光性樹脂を染料で染色し
た複数の色相のフィルタ層と透明な中間層及び保護層と
を順次積層してカラーフィルタ部を形成し、該カラーフ
ィルタ部の上面にガラス板を貼着した固体撮像素子、並
びに基板上の受光部に、感光性樹脂を染料で染色した複
数の色相のフィルタ層と透明な中間層及び保護層とを順
次積層して固体撮像素子を製造する方法であって、前記
透明な中間層及び保護層はコート手段により積層して形
成する手段と、前記複数の色相のフィルタ層が積層され
たカラーフィルタ部の上面にガラス板を貼着させる手段
と、該ガラス板が貼着された領域以外の領域をドライエ
ツチングにより除去する手段を含むことを特徴とする固
体撮像素子の製造方法を提供するものであり、前記ガラ
ス板の存在により表面保護作用が一段と向上するばかり
でなく、モールド樹脂はガラス板を避けてモールドする
ため、泡の発生及び泡による乱反射の心配が全くなく、
更に前記中間層及び保護層の積層形成において、パター
ンマツチング及び露光現像処理が省略できるので、作業
性が向上すると共に、最終段階でドライエツチング工程
を行ってガラス板で覆われたカラーフィルタ部の領域以
外に積層した樹脂を除去するので、端子部及びスクライ
ブラインを簡単に露出させることができるのである。
In the solid-state imaging device in the conventional example, the protective layer 14 formed on the surface is made of the same resin as the base layer 8 and the intermediate layer 10, 12, so it has poor smoothness and chemical resistance, and the surface Not only does it have problems with its protection function, but
Another problem is that when a chip-shaped solid-state image sensor is molded with a transparent resin after being connected to a lead frame, bubbles are generated and diffused reflection increases. Moreover, even in the conventional manufacturing method, in order to expose the portions corresponding to the electrode portions 5 and the scribe lines 2, an exposure and development step is performed each time when forming each filter layer, intermediate layer, and protective layer. Since these steps are carried out individually, not only is the number of steps large and the workability is poor, but also the exposure and development steps each time result in the vicinity of the electrode section 5 and scribe line 2 being in the state shown in FIG. 8. That is, by performing the exposure and development process each time, the base layer 10. The intermediate layer 12 and the protective layer 14 are gradually thinned at the boundary portions where each electrode portion and the scribe line are located, and other portions are raised, resulting in distortion as a whole. Therefore, in the conventional example, there are serious problems in improving the surface protection function, preventing diffused reflection due to bubbles in the mold resin, improving productivity, and eliminating distortion. [Means for Solving the Problems] As a specific means for solving the problems in the conventional example, the present invention provides a light-receiving section on a substrate with filter layers of a plurality of hues made of photosensitive resin dyed with dyes and a transparent intermediate layer. A color filter section is formed by sequentially laminating layers and a protective layer, and a solid-state image sensor is formed by pasting a glass plate on the top surface of the color filter section, and a light-receiving section on the substrate is dyed with a photosensitive resin. A method for manufacturing a solid-state imaging device by sequentially laminating filter layers of a plurality of hues, a transparent intermediate layer, and a protective layer, the method comprising: forming the transparent intermediate layer and the protective layer by laminating them using a coating means; , comprising means for adhering a glass plate to the upper surface of the color filter portion on which the filter layers of the plurality of hues are laminated, and means for removing an area other than the area to which the glass plate is adhered by dry etching. The present invention provides a method for manufacturing a solid-state image sensor characterized by the presence of the glass plate, which not only further improves the surface protection effect, but also prevents the generation of bubbles and bubbles because the molding resin is molded avoiding the glass plate. There is no need to worry about diffused reflection caused by
Furthermore, in the lamination formation of the intermediate layer and the protective layer, pattern matching and exposure and development processing can be omitted, so work efficiency is improved, and a dry etching process is performed at the final stage to remove the color filter portion covered with the glass plate. Since the laminated resin is removed outside the area, the terminal portion and scribe line can be easily exposed.

【実施例1 次に本発明を図示の実施例により更に詳しく説明する。 尚、理解を容易にするため従来例と同一部分には同一符
号を付してその詳細は省略する。 第1図において、1は半導体ウェハ等のシリコン基板で
あり、該シリコン基板上にスクライブライン2に沿って
切断され、−個のチップとなる固体撮像素子3の領域が
多数個区画され、各固体撮像素子3の領域には、夫々多
数の受光部4及び電極部5が搭載されている。そして、
前記各隣設する受光部4には夫々穴埋め用の感光性透明
樹脂層6が充填され、その上にベース層8を設けて全体
を平坦にし、該ベース層上に異なった色相のフィルタ層
11.9.13が夫々絶縁性の中間層10.12を介し
て段階的に積層され、且つ上部の保護層14を積層した
構成は、前記従来例と同じである。 本願発明においては、前記保護層14におけるカラーフ
ィルタ部21の表面に更に平滑性を付与し、且つ表面を
保護するのために、ガラス板22を一体的に貼着させた
構成しに、前記スクライブライン2と電極部5との上部
には樹脂製のベース層、中間層及び保護層が存在しない
構成を有している。 又、各前記フィルタ層に関し、第1層目のフィルタ層1
1を緑色にし、第2層目のフィルタ層9が赤色で、第3
層目のフィルタ層13を青色に形成しである。尚、第2
層目と第3層目は入れ代わっても同じである。 前記構成の固体撮像素子を製造する方法に関し、第2図
(A)〜(1)に基づいて説明する。先ず、シリコン基
板1の各受光部4は、(A)図に示したように、感光性
透明樹脂層6により穴埋めされ、その表面を略平坦にし
、更にその平坦な表面上に前記従来例と同様に感光性透
明樹脂をスピンコードしてベース層8を形成したもので
ある。この場合に従来例と相違する点は、前記電極部5
及びスクライブライン2も一緒にベース層8で覆ってし
まい、露光及び現像工程を行わないことである。そこで
使用される感光性透明樹脂は、ネガ型感光性樹脂(商品
名rsANBo  AR−GJ 、三宝化学研究所製)
であり、約4,000〜6.000人の範囲の厚みで形
成される。 このように下地処理が成された後に、 (B)図に示し
た工程で第1層目のフィルタ層11となるじラチンをス
ピンコードする。この場合の層の厚みはは略io、oo
o〜13.000人である。その第1層目のフィルタ層
11を形成する位置に対応して、その部分だけが露光す
るようなパターンマスクを使用して、露光及び現像する
と (C)図に示したように、前記受光部4の緑色に対
応するフィルタ層11だけが残る。この残ったフィルタ
層11を公知の染色手段により緑色に染色すると、その
層の厚みが略15,000〜16.000人になる。 次に (D)図に示したように感光性透明樹脂により中
間層10をスピンコートし、前記同様に電極部5及びス
クライブライン2の部分をそのまま覆ってしまう。この
場合の中間層の厚みも、約4.000〜6.000人の
範囲の厚みで形成する。 前記第1層目の緑色のフィルタ層11及び中間層10を
形成した後に、その中間層10の上に ([)図に示し
たように、前記と同様の工程、即ちスピンコード、パタ
ーンニング露光、現像及び染色工程によって第2層目の
赤色のフィルタ層9を形成し、更に (F)図に示した
ように、中間層12をスピンコードして形成する。この
場合も、赤色のフィルタ層9の染色後の厚みが略15.
000〜16,000人で、中間@12の厚みは前記同
様に約4.000〜6.000人の範囲で、且つ電極部
5及びスクライブライン2の部分をそのまま覆うことも
同じである。 更に、前記同様の工程によって、CG)図に示したよう
に、中間層12の上部に受光部4に対応して青色フィル
タ層13を形成し、その上部に保護層14が順次形成さ
れ、結果的には各隣設する受光部4に夫々異なった色相
のフィルタ層11.9.13が夫々絶縁性のベース層8
.中間層10.12を介して段階的に積層され、その上
部に保護層14が形成され、且つ電極部5及びスクライ
ブライン2が前記絶縁性の樹脂層によって全面的に覆わ
れた半導体ウェハが得られるのである。そして、前記青
色フィルタ層13は略4.000人の厚みで形成され、
染色後は略6.000人の厚みになり、先に積層された
各色フィルタ層と中間層とにおける全体的な段差を少な
くするために、前記保護層14は略10゜000〜11
.000人の厚みにして、部分的な段差を吸収させ、実
質的に半導体ウェハの表面を略平坦に形成させる。 次に、前記保護層14の上部で且つカラーフィルタ部2
1の上部に、(H)図に示したように、約1闇の厚みの
ガラス板22を貼着して一体的に形成し、(1)図に示
したように、ドライエツチングすると、ガラス板22の
ない部分、即ちカラーフィルタ部21以外の領域に露出
している保護層14から中間層12゜10及びベース層
8が順次エツチングされて除去され、電極部5及びスク
ライブライン2が露出した状態になる。そして、半導体
ウェハをスクライブライン2に沿ってチップ状に切断す
ることで、カラーフィルタ付き固体撮像素子が形成され
る。 そして、第3図に示したようにくチップ状に切断された
カラーフィルタ付き固体撮像素子は、従来例と同様に、
各電極部5と複数本のリードフレーム15との間にワイ
ヤー16をボンデングすることにより接続させ、その後
に透明樹脂17でモールドするのであるが、前記従来例
と異なる点は、ガラス板22の上面を露出させ、そのガ
ラス板の縁部から側面とワイヤー16の全部及びリード
フレーム15の一部をモールドすることであり、それに
よってモールド樹脂による泡の問題点が解決されている
のである。更に、このモールド樹脂は、前記ガラス板2
2の上面を覆う訳ではないので、受光機能に全く寄与せ
ず、従って透明なモールド樹脂を使用する必要もないの
である。 又、前記したようにベース層、中間層及び保護層が最終
段階でドライエツチング手段により、カラーフィルタ部
21以外の領域全体に亘って除去されるので、それ等の
各層に使用される樹脂は高価な感光性樹脂を使用する必
要もなくなるのである。 【発明の効果】 以上説明したように本発明に係る固体撮像素子は、基板
上の受光部に、感光性樹脂を染料で染色した複数の色相
のフィルタ層と透明な中間層及び保護層とを順次積層し
てカラーフィルタ部を形成し、該カラーフィルタ部の上
面にガラス板を貼着した構成にしたので、固体撮像素子
の表面が平滑になり、しかもその表面層が無機質である
ので耐薬品性に優れ、保護機能が著しく向上すると云う
優れた効果を奏する。 又、本発明に係る固体撮像素子の製造方法は、基板上の
受光部に、感光性樹脂を染料で染色した複数の色相のフ
ィルタ層と透明な中間層及び保護層とを順次積層して固
体撮像素子を製造する方法であって、前記透明な中間層
及び保護層はコート手段により積層して形成する手段と
、前記複数の色相のフィルタ層が積層されICカラーフ
ィルタ部の上面にガラス板を貼着させる手段と、該ガラ
ス板が貼着された領域以外の領域をドライエツヂングに
より除去する手段を含む工程にしたことにより、前記中
間層及び保護層の積層形成において、パターンマツヂン
グ及び露光現像処理が省略できるので、作業性が向上す
ると共に、最終段階でドライエツチング工程を行って電
極部及びスクライブライン上の樹脂が除去されるので、
作業性に優れ、しかもガラス板の存在により全面的にそ
の表面が平坦になり歪みのない固体撮像素子を製造する
ことができると云う優れた効果を奏する。
Example 1 Next, the present invention will be explained in more detail with reference to the illustrated examples. In order to facilitate understanding, parts that are the same as those in the conventional example are given the same reference numerals and details thereof are omitted. In FIG. 1, reference numeral 1 denotes a silicon substrate such as a semiconductor wafer, on which a large number of regions of solid-state image sensing devices 3 are cut along scribe lines 2 to form - chips, and each A large number of light receiving sections 4 and electrode sections 5 are mounted in the area of the image sensor 3, respectively. and,
Each of the adjacent light-receiving parts 4 is filled with a photosensitive transparent resin layer 6 for filling holes, and a base layer 8 is provided thereon to make the whole flat, and filter layers 11 of different hues are formed on the base layer. .9 and 13 are laminated in stages through insulating intermediate layers 10 and 12, and the upper protective layer 14 is laminated, which is the same as the conventional example. In the present invention, in order to further impart smoothness to the surface of the color filter section 21 in the protective layer 14 and to protect the surface, the scriber is attached to the glass plate 22 integrally. The structure is such that there is no resin base layer, intermediate layer, or protective layer above the line 2 and the electrode section 5. Further, regarding each of the filter layers, the first filter layer 1
1 is green, the second filter layer 9 is red, and the third
The third filter layer 13 is formed in blue. Furthermore, the second
The layer and third layer remain the same even if they are switched. A method for manufacturing the solid-state image sensor having the above configuration will be explained based on FIGS. 2(A) to 2(1). First, as shown in Figure (A), each light receiving part 4 of the silicon substrate 1 is filled with a photosensitive transparent resin layer 6 to make its surface substantially flat, and then the conventional example and Similarly, the base layer 8 is formed by spin-coding a photosensitive transparent resin. In this case, the difference from the conventional example is that the electrode portion 5
The scribe line 2 is also covered with the base layer 8, and the exposure and development steps are not performed. The photosensitive transparent resin used therein is a negative type photosensitive resin (trade name: rsANBo AR-GJ, manufactured by Sanpo Chemical Research Institute).
It is formed with a thickness in the range of about 4,000 to 6,000 people. After the base treatment is completed in this manner, the same latin that will become the first filter layer 11 is spin-coded in the step shown in FIG. The layer thickness in this case is approximately io, oo
o ~ 13,000 people. When exposed and developed using a pattern mask that exposes only that portion corresponding to the position where the first filter layer 11 is to be formed, the light-receiving portion is exposed as shown in FIG. Only the filter layer 11 corresponding to green color 4 remains. When this remaining filter layer 11 is dyed green using a known dyeing method, the thickness of the layer becomes approximately 15,000 to 16,000. Next, as shown in the figure (D), the intermediate layer 10 is spin-coated with a photosensitive transparent resin to cover the electrode portion 5 and the scribe line 2 as described above. In this case, the thickness of the intermediate layer is also in the range of approximately 4,000 to 6,000 layers. After forming the first green filter layer 11 and the intermediate layer 10, the intermediate layer 10 is subjected to the same process as above, i.e., spin code, patterning exposure, as shown in the figure. , a second red filter layer 9 is formed by a developing and dyeing process, and an intermediate layer 12 is further formed by spin-coding as shown in FIG. In this case as well, the thickness of the red filter layer 9 after dyeing is approximately 15 mm.
000 to 16,000 people, and the thickness of the middle @ 12 is in the range of about 4,000 to 6,000 people as described above, and it is also the same that the electrode part 5 and the scribe line 2 are covered as they are. Furthermore, by the same process as described above, as shown in CG), a blue filter layer 13 is formed on the upper part of the intermediate layer 12 corresponding to the light receiving part 4, and a protective layer 14 is sequentially formed on the upper part of the blue filter layer 13. Specifically, filter layers 11, 9, and 13 of different hues are provided on each adjacent light-receiving section 4, respectively, and an insulating base layer 8 is provided.
.. A semiconductor wafer is obtained in which the intermediate layers 10 and 12 are laminated in stages, the protective layer 14 is formed on top of the intermediate layer 10, and the electrode portion 5 and the scribe line 2 are completely covered with the insulating resin layer. It will be done. The blue filter layer 13 is formed to have a thickness of about 4,000 people,
After dyeing, the thickness of the protective layer 14 is approximately 6,000 mm, and in order to reduce the overall level difference between the previously laminated filter layers of each color and the intermediate layer, the protective layer 14 has a thickness of approximately 10.000 to 11.0 mm.
.. The thickness of the semiconductor wafer is made to be approximately 1,000 mm thick to absorb partial differences in level, thereby making the surface of the semiconductor wafer substantially flat. Next, above the protective layer 14 and the color filter section 2
As shown in figure (H), a glass plate 22 having a thickness of about 1 mm is adhered to the top of the glass plate 1, and as shown in figure (1), dry etching is performed to form a glass plate. The intermediate layer 12° 10 and the base layer 8 are sequentially etched and removed from the protective layer 14 exposed in the area where the plate 22 is not present, that is, in the area other than the color filter part 21, and the electrode part 5 and the scribe line 2 are exposed. become a state. Then, by cutting the semiconductor wafer into chips along the scribe line 2, a solid-state image sensor with a color filter is formed. As shown in FIG. 3, the solid-state image sensor with a color filter cut into chips has the following characteristics as in the conventional example:
Each electrode part 5 and a plurality of lead frames 15 are connected by bonding wires 16, and then molded with transparent resin 17.The difference from the conventional example is that the upper surface of the glass plate 22 This method solves the problem of bubbles caused by the mold resin by exposing the glass plate and molding the entire wire 16 and part of the lead frame 15 from the edge of the glass plate to the side surface. Furthermore, this mold resin
Since it does not cover the upper surface of 2, it does not contribute to the light receiving function at all, and therefore there is no need to use transparent mold resin. Furthermore, as described above, the base layer, intermediate layer, and protective layer are removed by dry etching in the final stage over the entire area other than the color filter section 21, so the resin used for each of these layers is expensive. This eliminates the need to use photosensitive resin. Effects of the Invention As explained above, the solid-state image sensor according to the present invention includes filter layers of a plurality of hues made of photosensitive resin dyed with dye, a transparent intermediate layer, and a protective layer in the light receiving part on the substrate. Since the color filter section is formed by sequentially laminating layers and a glass plate is attached to the top surface of the color filter section, the surface of the solid-state image sensor becomes smooth, and since the surface layer is inorganic, it is chemical resistant. It has excellent properties and has the excellent effect of significantly improving its protective function. In addition, the method for manufacturing a solid-state image sensor according to the present invention includes sequentially stacking filter layers of a plurality of hues made of photosensitive resin dyed with dye, a transparent intermediate layer, and a protective layer on a light-receiving part on a substrate to form a solid-state image sensor. A method for manufacturing an image sensor, the method comprising: forming the transparent intermediate layer and the protective layer by laminating them using a coating means; and placing a glass plate on the top surface of the IC color filter section in which the filter layers of the plurality of hues are laminated. By adopting a process including a means for adhering the glass plate and a means for removing the area other than the area to which the glass plate is adhered by dry etching, pattern matting and exposure are not required in the lamination formation of the intermediate layer and the protective layer. Since development processing can be omitted, work efficiency is improved, and at the final stage, a dry etching process is performed to remove the resin on the electrode parts and scribe lines.
It has excellent workability, and the presence of the glass plate makes the entire surface flat, making it possible to manufacture a solid-state imaging device without distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る固体撮像素子の要部のみを拡大し
て示した断面図、第2図 (^)〜(I)は本発明に係
る色フィルタ層の製造工程を順次略示的に示した要部の
みの拡大断面図、第3図は本発明の固体撮像素子にリー
ドフレームを接続し樹脂モルトした状態の略示的断面図
、第4図は一般的な半導体ウェハの一部を拡大して示し
た略示的平面図、第5図(A)〜(E)は第4図のv−
v線に沿う断面に対応し、従来例にお(プる下地処理工
程を順次略示的に示した要部のみの拡大断面図、第6図
(A)〜(K)は第4図の■−■線に沿う断面に対応し
、従来例に係る色フィルタ層の製造工程を順次略示的に
示した要部のみの拡大断面図、第7図は従来例の固体撮
像素子にリードフレームを接続し樹脂モールドした状態
の略示的断面図、第8図は同従来例の電極部とスクライ
ブライン近傍とを更に拡大して示した略示的断面図であ
る。 1・・・・・・シリコン基板 2・・・スクライブライ
ン3・・・・・・撮像素子領域 4・・・・・・受光部
5・・・・・・電極部    6・・・・・・穴埋め用
樹脂7・・・・・・パターンマスク8・・・・・・ベー
ス層9・・・・・・赤色フィルタ層10.12・・・中
間層11・・・・・・緑色フィルタ層13・・・・・・
青色フィルタ層14・・・・・・保護層    21・
・・・・・カラーフィルタ部22・・・・・・ガラス板 特許出願人   凸版印刷株式会社
FIG. 1 is an enlarged cross-sectional view showing only the main parts of the solid-state image sensor according to the present invention, and FIGS. 2 (^) to (I) are sequential schematic illustrations of the manufacturing process of the color filter layer according to the present invention 3 is a schematic sectional view of the solid-state imaging device of the present invention connected to a lead frame and molded with resin, and FIG. 4 is a part of a general semiconductor wafer. FIGS. 5(A) to 5(E) are schematic plan views showing enlarged views of v- in FIG.
Corresponding to the cross section along line V, FIGS. 6(A) to 6(K) are enlarged cross-sectional views of only the main parts, sequentially schematically showing the base treatment steps in the conventional example. Corresponding to the cross section along the line ■-■, an enlarged cross-sectional view of only the main parts sequentially schematically showing the manufacturing process of the color filter layer according to the conventional example. Fig. 8 is a schematic cross-sectional view showing the electrode part and the vicinity of the scribe line of the conventional example in a further enlarged manner.1...・Silicon substrate 2...Scribe line 3...Image sensor area 4...Light receiving part 5...Electrode part 6...Polling resin 7... ... Pattern mask 8 ... Base layer 9 ... Red filter layer 10.12 ... Intermediate layer 11 ... Green filter layer 13 ...
Blue filter layer 14...Protective layer 21.
...Color filter section 22 ...Glass plate patent applicant Toppan Printing Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上の受光部に、感光性樹脂を染料で染色した
複数の色相のフィルタ層と透明な中間層及び保護層とを
順次積層してカラーフィルタ部を形成し、該カラーフィ
ルタ部の上面にガラス板を貼着した固体撮像素子。
(1) A color filter section is formed by sequentially laminating filter layers of a plurality of hues made of photosensitive resin dyed with dye, a transparent intermediate layer, and a protective layer on the light receiving section on the substrate, and A solid-state image sensor with a glass plate attached to the top surface.
(2)ガラス板の厚みを略1mmにした前記請求項(1
)記載の固体撮像素子。
(2) The above-mentioned claim (1) wherein the thickness of the glass plate is approximately 1 mm.
) solid-state imaging device.
(3)基板上の受光部に、感光性樹脂を染料で染色した
複数の色相のフィルタ層と透明な中間層及び保護層とを
順次積層して固体撮像素子を製造する方法であって、前
記透明な中間層及び保護層はコート手段により積層して
形成する手段と、前記複数の色相のフィルタ層が積層さ
れたカラーフィルタ部の上面にガラス板を貼着させる手
段と、該ガラス板が接着された領域以外の領域をドライ
エッチングにより除去する手段を含むことを特徴とする
固体撮像素子の製造方法。
(3) A method for manufacturing a solid-state imaging device by sequentially laminating filter layers of a plurality of hues made of a photosensitive resin dyed with a dye, a transparent intermediate layer, and a protective layer on a light receiving portion on a substrate, the method comprising: means for forming the transparent intermediate layer and the protective layer by laminating them using a coating means; means for adhering a glass plate to the upper surface of the color filter section on which the filter layers of the plurality of hues are laminated; and means for adhering the glass plate. 1. A method of manufacturing a solid-state imaging device, comprising: removing a region other than the removed region by dry etching.
JP1107079A 1989-04-26 1989-04-26 Solid-state image sensing device and its manufacture Pending JPH02285672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107079A JPH02285672A (en) 1989-04-26 1989-04-26 Solid-state image sensing device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107079A JPH02285672A (en) 1989-04-26 1989-04-26 Solid-state image sensing device and its manufacture

Publications (1)

Publication Number Publication Date
JPH02285672A true JPH02285672A (en) 1990-11-22

Family

ID=14449948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107079A Pending JPH02285672A (en) 1989-04-26 1989-04-26 Solid-state image sensing device and its manufacture

Country Status (1)

Country Link
JP (1) JPH02285672A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597317A (en) * 1982-07-05 1984-01-14 Fuji Photo Film Co Ltd Multicolor optical filter and its manufacture
JPS61123288A (en) * 1984-11-20 1986-06-11 Toshiba Corp Solid-state pick up device
JPH01227471A (en) * 1988-03-08 1989-09-11 Fujitsu Ltd Color filter for solid-state image sensing element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597317A (en) * 1982-07-05 1984-01-14 Fuji Photo Film Co Ltd Multicolor optical filter and its manufacture
JPS61123288A (en) * 1984-11-20 1986-06-11 Toshiba Corp Solid-state pick up device
JPH01227471A (en) * 1988-03-08 1989-09-11 Fujitsu Ltd Color filter for solid-state image sensing element

Similar Documents

Publication Publication Date Title
JPH05183142A (en) Manufacture of color image sensor with color filter
US6251700B1 (en) Method of manufacturing complementary metal-oxide-semiconductor photosensitive device
JP2000196053A (en) Image sensor and its manufacture
JPH03181904A (en) Color filter and manufacture thereof
US5155060A (en) Method for forming film of uniform thickness on semiconductor substrate having concave portion
JPS5817405A (en) Multicolored optical filter and its manufacture
JPH02285672A (en) Solid-state image sensing device and its manufacture
JPH02285673A (en) Solid-state image sensing device and its manufacture
JP2841037B2 (en) Manufacturing method of CCD solid-state imaging device
JP2943283B2 (en) Method for manufacturing solid-state imaging device
JP2540997B2 (en) Method of manufacturing solid-state image sensor
JPS62106404A (en) Color separating filter and its production
JPH0250441B2 (en)
JPS6055660A (en) Color solid-state image pickup device and manufacture thereof
JPS5814074B2 (en) Manufacturing method of color solid-state image sensor
JP2751375B2 (en) Solid-state imaging device
JPS5868970A (en) Color solid-state image sensing element and its manufacture
JPH023968A (en) Manufacture of solid-state colored image sensing element
JPS63155002A (en) Production of solid-state image pickup device
JPH10321828A (en) Manufacture of solid-state image pickup device
JP2663475B2 (en) Solid-state imaging device
KR900001796Y1 (en) Solid image device
JP2697002B2 (en) Method for manufacturing color solid-state imaging device
JPS63143504A (en) Production of solid state color image pickup device
JPS6321604A (en) Manufacture of color filter