JPH02285036A - Vacuum refining method for molten metal - Google Patents

Vacuum refining method for molten metal

Info

Publication number
JPH02285036A
JPH02285036A JP10452889A JP10452889A JPH02285036A JP H02285036 A JPH02285036 A JP H02285036A JP 10452889 A JP10452889 A JP 10452889A JP 10452889 A JP10452889 A JP 10452889A JP H02285036 A JPH02285036 A JP H02285036A
Authority
JP
Japan
Prior art keywords
molten metal
gas
vacuum refining
refining method
solid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10452889A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Toshio Takaoka
利夫 高岡
Yoshihiko Kawai
河井 良彦
Yusuke Shiratani
白谷 勇介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10452889A priority Critical patent/JPH02285036A/en
Publication of JPH02285036A publication Critical patent/JPH02285036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To execute vacuum refining of molten metal in a short time by adding solid compound containing gas component to molten metal, reducing the pressure after dissolving gas, generating fine gas bubble in the molten metal and trapping inclusion with this. CONSTITUTION:The gas of N2, etc., which is soluble in molten metal, is dissolved into the molten metal. At the same time of or after dissolving, the pressure is reduced and the fine gas bubbling is generated in the molten metal. The inclusion in the molten metal is trapped with this bubble and removed. In the vacuum refining method of the above molten metal, the solid compound containing the above gas component of e.g. the ferro manganese nitride containing about 6% N, is added to the molten metal to execute the above gas dissolving treatment. As the above adding method, the solid compound is pulverized under pressurizing and by injecting the gas using the soluble gas, etc., the refining can be executed. By this method, the dissolving of gas component is executed in the short time and the efficiency of the above vacuum refining method is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は溶融金属中の不純物・介在物を除去する真空
精錬法に関する。 〔従来の技術〕 本発明者等は溶融金属中の介在物除去効率を高めるため
、次のような提案を行なった。即ち、溶融金属に、これ
に可溶なガスをバブリングによって溶解せしめると共に
、減圧によって該溶融金属中に微細ガス気泡を発生させ
るというものである。この方法によれば溶融金属中の介
在物は微細なものまでこの気泡にトラップされて浮上す
ることになり、介在物除去能力が非常に高いものとなる
。 一方、本発明者等は、上記の介在物除去法における気泡
浮上の状態にヒントを得て、これを脱ガス精錬法および
スラグ精錬法に応用する開発を行なった。即ち、上記の
手順に従って溶融金属中に微細ガス気泡を発生せしめ、
その浮上により該溶融金属と雰囲気の界面或いは該溶融
金属と溶融スラグの界面をばたつかせてその反応界面積
を増大せしめるというものである。このガス気泡は溶融
金属全域から発生するため、上記界面のばたつきは該界
面全面に及ぶ。しかも、そのガス気泡は微細であり、且
つ多量に発生するため、上記反応界面積の増大は顕著な
ものとなり、脱ガス精錬、スラグ精錬による不純物除去
能力は非常に高いものとなる。 〔発明が解決しようとする問題点〕 いずれの精錬法も溶融金属中の介在物・不純物を除去し
、超清浄溶湯を得るには非常に効率の良い方法であるが
、溶融金属に、これに可溶なガスをバブリングによって
溶解せしめる処理時間が長く、介在物・不純物除去の処
理時間を含めた総処理時間は依然30分以上必要であり
、これを更に短縮せしめて効率化を図りたいという要請
があった。 本発明は以上の問題に鑑み創案されたものであり、上述
した真空精錬法におけるガス溶解処理を改善し、もって
処理時間の短縮を図ろうとするものである。 〔問題点を解決するための手段〕 そのため本発明は上述した介在物除去方法及び介在物・
不純物除去方法において、溶融金属に可溶なガス成分が
含まれる固体化合物を、該溶融金属に添加し、これによ
りガス溶解処理をしようとするものである。 ガスバブリングによってガス溶解処理を行なうこれまで
のガス添加方法では、仮に取鍋で溶鋼中にN2を添加す
る場合を考えると、溶湯中の[N)を400ppm増加
されるのに、通常のバブリング量(高々0.02N++
+”/+ain4)では15分以上要する。これに対し
本発明法では、例えばNを6%程度含む窒化フェロマン
ガンを添加するということであれば、溶湯中にこれを6
.’1kg/TON添加するだけでよく、歩留を考慮し
ても従来の添加方法より遥かに短い時間で添加すること
が可能である。 加圧下で以上の固体化合物の添加を行なえば、ガス成分
の溶は込み量が多く、又−旦溶は込んだものが再びガス
となって溶融金属から抜けるのを防いでくれる。 又、添加される固体化合物自身も粉状にしてあれば、溶
融金属に接触する固体化合物の被表面積の総和が増えて
、その溶は方も速くなるし、その時インジェクションを
用いて溶融金属中に吹き込めば、溶融金属全域で速やか
に溶は込むため効率的である。そして溶融金属に可溶な
ガスをインジェクションでの吹込みに用いれば、ガス溶
解処理の効率は更に高くなる。 〔実施例〕 以下本発明の具体的実施例につき説明する。 50TON (7) V A D設備内に溶6350T
ONを入れ、浸漬上吹ランスを用いて粉状の窒化フェロ
マンガン500kgを該溶鋼中に噴射し添加した。この
時キャリアガスにはArガスを用い、INm”/win
の流速で吹込んで、約6分でその吹込みを終了した。こ
の吹込み終了直後の溶鋼中の(N)は410ppmであ
った。その後1torrまで急速に減圧し。 20分間放置した。 一方、同じVAD設備内で507ON溶鋼に対し、同様
に浸漬上吹きランスを用いてN2ガスをINm”/@i
nでバブリングし、21分でそのバブリングを終了した
。このバブリング終了直後の溶鋼中の(N)は前述の本
発明例と等しく4αOppmであった。その後1tor
rまで急速に減圧し、20分間放置した。 下記衣は、上記2つの例を実施した際に減圧開始後20
分経過までの溶鋼中の(N)とT・
[Industrial Application Field] This invention relates to a vacuum refining method for removing impurities and inclusions in molten metal. [Prior Art] The present inventors have proposed the following in order to improve the efficiency of removing inclusions from molten metal. That is, a gas soluble in the molten metal is dissolved by bubbling, and fine gas bubbles are generated in the molten metal by reducing the pressure. According to this method, even minute inclusions in the molten metal are trapped by the bubbles and floated to the surface, resulting in extremely high inclusion removal ability. On the other hand, the present inventors got a hint from the bubble floating state in the above-mentioned inclusion removal method, and developed the application of this to a degassing refining method and a slag refining method. That is, according to the above procedure, fine gas bubbles are generated in the molten metal,
The floating causes the interface between the molten metal and the atmosphere or the interface between the molten metal and molten slag to flutter, thereby increasing the reaction interface area. Since these gas bubbles are generated from the entire area of the molten metal, the flutter at the interface extends over the entire area of the interface. Moreover, since the gas bubbles are fine and generated in large quantities, the reaction interface area increases significantly, and the ability to remove impurities by degassing refining and slag refining becomes extremely high. [Problems to be solved by the invention] Both refining methods are very efficient methods for removing inclusions and impurities in molten metal and obtaining ultra-clean molten metal. The processing time for dissolving soluble gas by bubbling is long, and the total processing time, including the processing time for removing inclusions and impurities, still requires more than 30 minutes, and there is a desire to further shorten this time and improve efficiency. was there. The present invention was devised in view of the above problems, and aims to improve the gas dissolution process in the vacuum refining method described above, thereby shortening the process time. [Means for solving the problem] Therefore, the present invention provides the above-mentioned method for removing inclusions and
In the impurity removal method, a solid compound containing a gas component soluble in the molten metal is added to the molten metal, thereby performing a gas dissolution treatment. In the conventional gas addition method, which performs gas dissolution treatment by gas bubbling, if we were to add N2 to molten steel in a ladle, the amount of [N] in the molten metal would be increased by 400 ppm, but the normal amount of bubbling would be (At most 0.02N++
+"/+ain4) requires 15 minutes or more. On the other hand, in the method of the present invention, for example, if ferromanganese nitride containing about 6% N is to be added, it is added to the molten metal for 6 minutes.
.. It is only necessary to add 1 kg/TON, and even considering the yield, it is possible to add in a much shorter time than the conventional addition method. By adding the above-mentioned solid compounds under pressure, a large amount of gaseous components will be dissolved, and it will also be possible to prevent what has already been dissolved to become gas again and escape from the molten metal. Also, if the solid compound itself to be added is in powder form, the total surface area of the solid compound that comes into contact with the molten metal will increase, and the melting will be faster. Blow-in is efficient because it melts quickly over the entire area of the molten metal. If a gas soluble in the molten metal is used for injection, the efficiency of the gas dissolution process will be further increased. [Examples] Specific examples of the present invention will be described below. 50TON (7) 6350T melted in V A D equipment
ON was turned on, and 500 kg of powdered ferromanganese nitride was injected into the molten steel using a submerged top blowing lance. At this time, Ar gas is used as the carrier gas, and INm''/win
The injection was completed in about 6 minutes. The (N) content in the molten steel immediately after this injection was completed was 410 ppm. After that, the pressure was rapidly reduced to 1 torr. It was left for 20 minutes. On the other hand, in the same VAD equipment, N2 gas was injected INm''/@i into 507ON molten steel using a submerged top blowing lance.
Bubbling was carried out for 21 minutes. Immediately after this bubbling was completed, the (N) in the molten steel was 4αOppm, which is the same as in the above-mentioned example of the present invention. Then 1tor
The pressure was rapidly reduced to r and left for 20 minutes. The following clothes were used for 20 minutes after the start of decompression when carrying out the above two examples.
(N) and T in molten steel until the elapse of minutes

〔0〕の変化を示し
ている。 この表から明らかなように溶鋼中の介在物除去能力は2
例とも略同様であった。しかし、本発明例ではガス溶解
処理として行なった窒化フェロマンガンの吹込みが約6
分で終了しており、後者のガスバブリング例のバブリン
グ時間より15分程度ガス溶解処理時間を短縮すること
が可能となった。 〔発明の効果〕 以上詳述した本発明の真空精錬法によれば、ガス溶解処
理時間を短縮することができるため、精錬処理時間を全
体として短くできるという優れた効果を有している。
It shows a change in [0]. As is clear from this table, the ability to remove inclusions in molten steel is 2.
It was almost the same as the example. However, in the example of the present invention, the injection of ferromanganese nitride performed as a gas dissolution treatment was approximately 6
It was possible to shorten the gas dissolution treatment time by about 15 minutes compared to the bubbling time in the latter gas bubbling example. [Effects of the Invention] According to the vacuum refining method of the present invention described in detail above, the gas dissolution treatment time can be shortened, so it has an excellent effect that the refining treatment time can be shortened as a whole.

Claims (6)

【特許請求の範囲】[Claims] (1)溶融金属中に、これに可溶なガスを溶解せしめ、
それと同時に或いはその後に減圧し、該溶融金属中に微
細ガス気泡を発生させ、この気泡にトラップさせて溶融
金属中の介在物を除去する溶融金属の真空精錬法におい
て、 上記のガス成分を含む固体化合物を該溶融金属に添加し
て前記ガス溶解処理を行なうことを特徴とする溶融金属
の真空精錬法。
(1) Dissolving a gas soluble in the molten metal,
In a vacuum refining method for molten metal, in which the pressure is reduced at the same time or after that, fine gas bubbles are generated in the molten metal, and the inclusions in the molten metal are removed by being trapped in the bubbles. A vacuum refining method for molten metal, characterized in that the gas dissolution treatment is performed by adding a compound to the molten metal.
(2)溶融金属中に、これに可溶なガスを溶解せしめ、
それと同時に或いはその後に減圧し、該溶融金属中に微
細ガス気泡を発生させ、この気泡にトラップさせて溶融
金属中の介在物を除去すると共に、該気泡の浮上により
溶融金属と雰囲気の界面および/または溶融金属と溶融
スラグの界面をばたつかせてそれぞれの反応界面積を増
大させ、溶融金属中の不純物を除去す溶融金属の真空精
錬法において、上記のガス成分を含む固体化合物を該溶
融金属に添加して前記ガス溶解処理を行なうことを特徴
とする溶融金属の真空精錬法。
(2) Dissolving a gas soluble in the molten metal,
At the same time or after that, the pressure is reduced to generate fine gas bubbles in the molten metal and trap them in the bubbles to remove inclusions in the molten metal. Alternatively, in a vacuum refining method for molten metal in which impurities in the molten metal are removed by flapping the interface between the molten metal and molten slag to increase their respective reaction interface areas, a solid compound containing the above-mentioned gas components is added to the molten metal. A vacuum refining method for molten metal, characterized in that the gas dissolution treatment is performed by adding molten metal to molten metal.
(3)特許請求の範囲第1項乃至第2項記載の溶融金属
の真空精錬法において、前記固体化合物の添加を加圧下
で行なうことを特徴とする特許請求の範囲第1項乃至第
2項記載の溶融金属の真空精錬法。
(3) In the vacuum refining method for molten metal according to claims 1 and 2, the solid compound is added under pressure. Vacuum refining method for molten metal as described.
(4)特許請求の範囲第1項乃至第3項記載の溶融金属
の真空精錬法において、前記固体化合物を粉状にして添
加することを特徴とする特許請求の範囲第1項乃至第3
項記載の溶融金属の真空精錬法。
(4) In the vacuum refining method for molten metal according to claims 1 to 3, the solid compound is added in the form of powder.
Vacuum refining method for molten metal as described in .
(5)前項記載の溶融金属の真空精錬法において、粉状
の固体化合物をインジェクションにより溶融金属中に噴
射添加することを特徴とする特許請求の範囲第4項記載
の溶融金属の真空精錬法。
(5) The vacuum refining method for molten metal according to claim 4, wherein a powdery solid compound is added by injection into the molten metal.
(6)前項記載の溶融金属の真空精錬法において、溶融
金属に可溶なガスを用いて、インジェクションにより粉
状の固体化合物を噴射添加せしめることを特徴とする特
許請求の範囲第5項記載の溶融金属の真空精錬法。
(6) In the vacuum refining method for molten metal described in the preceding paragraph, a powdery solid compound is added by injection using a gas soluble in the molten metal. Vacuum refining method for molten metal.
JP10452889A 1989-04-26 1989-04-26 Vacuum refining method for molten metal Pending JPH02285036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10452889A JPH02285036A (en) 1989-04-26 1989-04-26 Vacuum refining method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10452889A JPH02285036A (en) 1989-04-26 1989-04-26 Vacuum refining method for molten metal

Publications (1)

Publication Number Publication Date
JPH02285036A true JPH02285036A (en) 1990-11-22

Family

ID=14382995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10452889A Pending JPH02285036A (en) 1989-04-26 1989-04-26 Vacuum refining method for molten metal

Country Status (1)

Country Link
JP (1) JPH02285036A (en)

Similar Documents

Publication Publication Date Title
RU2237732C2 (en) Method of removing chromium and/or nickel from liquid slags
JPH02285036A (en) Vacuum refining method for molten metal
JPH01188619A (en) Method for rh vacuum degasification
JPS5822320A (en) Process for refining in ladle
JP2780342B2 (en) Vacuum degassing method for molten metal
JP3765266B2 (en) How to remove metal from vacuum degassing tank
JPH02270909A (en) Method for cleaning molten metal
KR100593685B1 (en) Seleclive Reduclion Method of BOF Slages
JPH02285037A (en) Slag refining method for molten metal
SU876730A1 (en) Method of killed steel production
SU443076A1 (en) Alloy Refining Method
JP2004211153A (en) Composite deoxidizer and method for treating molten steel and slag using this
JPS62205220A (en) Degassing and desulfurizing method for molten steel
JPH05287360A (en) Method for melting extremely low carbon steel
SU1585361A1 (en) Method of refining copper
SU929713A1 (en) Method for treating molten steel
JPH062896B2 (en) Denitrification of molten steel with rare earth metals
JPH06192723A (en) Method for denitrogenize-refining molten metal
JPH02290929A (en) Vacuum refining method for molten metal
KR100325102B1 (en) Method for reducing nitrogen content in steel melt or molten steel by hydrogen gas injection
JPS58141361A (en) Method for dephosphorizing silicon alloy
JPH05320739A (en) Vacuum refining method
JPH0995726A (en) Method for reforming slag
JPS62164815A (en) Method for denitrifying molten steel
JPS6021316A (en) Dephosphorizing method of molten steel