JPH02284548A - Communication system - Google Patents

Communication system

Info

Publication number
JPH02284548A
JPH02284548A JP1104763A JP10476389A JPH02284548A JP H02284548 A JPH02284548 A JP H02284548A JP 1104763 A JP1104763 A JP 1104763A JP 10476389 A JP10476389 A JP 10476389A JP H02284548 A JPH02284548 A JP H02284548A
Authority
JP
Japan
Prior art keywords
signal
pulse position
chirp
pulse
inputted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1104763A
Other languages
Japanese (ja)
Other versions
JP2672146B2 (en
Inventor
Yasusaburou Idekura
靖三郎 出藏
Tetsuo Sakanaka
徹雄 坂中
Haruo Konno
晴夫 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1104763A priority Critical patent/JP2672146B2/en
Priority to US07/512,261 priority patent/US5113278A/en
Publication of JPH02284548A publication Critical patent/JPH02284548A/en
Application granted granted Critical
Publication of JP2672146B2 publication Critical patent/JP2672146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/026Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse time characteristics modulation, e.g. width, position, interval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/103Chirp modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6912Spread spectrum techniques using chirp
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To secure transmission reliability almost similar to a conventional example without losing information which a pulse position has by transmitting and receiving a signal having information on the pulse position though chirp conversion. CONSTITUTION:The output of a pulse position modulator 1 is inputted to a balance modulator 2, and is converted into a waveform appropriate for converting the signal which has been pulse position-modulated into a chirp signal, is inputted to an expansion chirp converting element 3. Then, prescribed band components are expanded in the direction of a time base, and are outputted to a transmission line through an amplifier A. The signal received from the transmission line on the other hand is inputted to a compression chirp converting element 4, and the chirp signal is inversely converted into a pulse position modulation wave and it is inputted to a pulse position demodulator 5. It inversely converts the balance modulator 2 on a transmission-side and it demodulates the pulse position modulation wave into an original analogue or digital signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は通信方式、特に入力信号を所定の変復調処理を
介して送受信する通信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a communication system, and particularly to a communication system in which input signals are transmitted and received through predetermined modulation and demodulation processing.

[従来の技術] 従来より、「1」、「O」の2値のデジタル信号を所定
の符号に変換して送受信する場合、第11図(a)のよ
うに「l」、「o」の2値デジタル信号にチャープ変換
素子31によりそれぞれチャープ信号csの有無を対応
させる変調方式、あるいは第11図(b)のように「1
」、「o」の2値デジタル信号にチャープ変換素子31
.41によりそれぞれ異なるパターンのチャープ信号c
s1.csOを対応させる変調方式が知られている。
[Prior Art] Conventionally, when converting binary digital signals of "1" and "O" into predetermined codes and transmitting and receiving them, as shown in FIG. 11(a), "l" and "o" are A modulation method in which the chirp conversion element 31 corresponds to the presence or absence of a chirp signal cs to a binary digital signal, or a modulation method that corresponds to the presence or absence of a chirp signal cs as shown in FIG. 11(b).
”, chirp conversion element 31 into binary digital signals of “o”
.. Chirp signal c with different patterns depending on 41
s1. A modulation method that supports csO is known.

第1I図(a)、(b)の右側は、上記方式により形成
された変調信号を示しており、チャープ信号cs、cs
1.csoは、入力信号(矩形波パルス)をチャープ変
換素子31あるいは41により周波数成分をそれぞれ異
なる伸長特性により時間軸方向に伸長させたたものであ
る。特に第11図(b)では、チャープ変換素子31.
41によりそれぞれチャープ信号csl、csOが形成
され、それを加算することにより図の右側の出力信号を
得ている。
The right side of FIG. 1I (a) and (b) shows the modulated signals formed by the above method, and the chirp signals cs, cs
1. The cso is an input signal (rectangular wave pulse) whose frequency components are expanded in the time axis direction by the chirp conversion element 31 or 41 using different expansion characteristics. In particular, in FIG. 11(b), the chirp conversion element 31.
41 respectively form chirp signals csl and csO, and by adding them, the output signal on the right side of the figure is obtained.

[発明が解決しようとする課題] 上記の2つの従来例のうち、第11図(a)の方式では
デジタル信号の符号「1」および「0」にチャーブ信号
の有無を対応させているので、符号「1」および「0」
の分離、識別に不確実な点があり、たとえば復調の際、
伝送路の雑音などの影響で符号「0」を「1」と判定し
てしまう可能性があった。
[Problems to be Solved by the Invention] Of the two conventional examples described above, in the method shown in FIG. 11(a), the presence or absence of a chirb signal corresponds to the codes "1" and "0" of the digital signal. Code "1" and "0"
There are uncertainties in the separation and identification of
There was a possibility that the code "0" would be determined as "1" due to the influence of noise on the transmission path.

この問題を解決すべく、第11図(b)のような方式が
考えられたのであるが、この方式では図から明らかなよ
うに異なった変換パターンをもつチャーブ変換素子が必
要であり、また受信側でも当然複数パターンのチャーブ
信号を検出可能な逆変換素子を必要とするため、第11
図(a)の方式に比して回路構造が複雑かつ大型、高価
になりがちであるという問題があった。
In order to solve this problem, a method as shown in Figure 11(b) was devised, but as is clear from the figure, this method requires chirb conversion elements with different conversion patterns, and also Of course, since an inverse conversion element capable of detecting multiple patterns of chirp signals is required on the
There is a problem in that the circuit structure tends to be more complex, larger, and more expensive than the method shown in FIG. 3(a).

本発明の課題は、以」二の問題を解決し、簡単安価な構
成によりチャーブ信号変換を利用して確実な情報伝送を
行なえる通信方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the following two problems and to provide a communication system that can perform reliable information transmission using Chilb signal conversion with a simple and inexpensive configuration.

[課題を解決するだめの手段] 以上の課題を解決するために、本発明においては、入力
信号を所定の変復調処理を介して送受信する通信方式に
おいて、送信側においては入力信号をパルス位置変調方
式により変調し、この変調信号の周波数成分をそれぞれ
異なる伸長特性により時間軸に伸長して得たにチャーブ
信号を形成して送信し、一方、受信側では受信したチャ
ブ信号の周波数成分を前記の異なる伸長特性にそれぞれ
対応する逆特性の圧縮特性により圧縮し、その後パルス
位置復調を行なうことにより原信号を再生する構成を採
用した。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, in a communication system in which an input signal is transmitted and received through predetermined modulation/demodulation processing, the input signal is transmitted and received on the transmitting side using a pulse position modulation method. The frequency components of this modulated signal are each expanded in the time axis using different expansion characteristics to form a chirb signal and transmitted. On the other hand, on the receiving side, the frequency components of the received chub signal are modulated by the different expansion characteristics. We adopted a configuration in which the original signal is reproduced by compressing it using compression characteristics that are inverse characteristics corresponding to the expansion characteristics, and then performing pulse position demodulation.

[作 用] 以上の構成によれば、入力信号をパルス位置変調した接
界なる周波数/時間特性を有するヂャブ信号に変換して
送信し、一方受信側では受信したチャーブ信号を逆変換
した後パルス位置復調することで原信号を再生すること
ができる。
[Function] According to the above configuration, an input signal is converted into a pulse position modulated chirb signal having a frequency/time characteristic called tangent and is transmitted, while on the receiving side, the received chirb signal is inversely converted and then pulsed. The original signal can be reproduced by position demodulating.

[実施例] 以下、図面に示す実施例に基づき、本発明の詳細な説明
する。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図(a)、(b)に、それぞれ本発明を採用した送
信装置おにび受信装置の基本構造を例示する。
FIGS. 1(a) and 1(b) illustrate the basic structures of a transmitting device and a receiving device adopting the present invention, respectively.

第1図(a)において、符号1は人力されたアナログ信
号または2値のデジタル信号を表現する直列パルスをパ
ルス位置変調するパルス位置変調器である。
In FIG. 1(a), reference numeral 1 denotes a pulse position modulator that modulates the pulse position of a series pulse representing a manually inputted analog signal or a binary digital signal.

パルス位置変調器lの出力は平衡変調器2に入力される
が、この平衡変調器2はパルス位置変調器1により生成
されたパルス位置変調された信号を効率よくチャーブ信
号に変換するのに適した波形に変換する。
The output of the pulse position modulator l is input to a balanced modulator 2, which is suitable for efficiently converting the pulse position modulated signal generated by the pulse position modulator 1 into a chirp signal. Convert to a waveform.

平衡変調器2の出力は伸長用チャーブ変換素子3に人力
され、時間軸方向にその所定の帯域成分が伸長される。
The output of the balanced modulator 2 is inputted to an expansion Chilb conversion element 3, and a predetermined band component thereof is expanded in the time axis direction.

伸長用チャープ変換素子3の出力は増幅器Aを介して伝
送路に出力される。
The output of the expansion chirp conversion element 3 is outputted to the transmission line via the amplifier A.

方、第1図(b)において、伝送路から受信された信号
(第1図(a)の回路の出力)は、増幅器Aで所定レベ
ルまで増幅された後、圧縮用チャーブ変換素子4に入力
される。圧縮用チャーブ変換素子4はチャーブ信号をパ
ルス位置変調波に逆変換し、その出力はパルス位置復調
器5に人力される。
On the other hand, in FIG. 1(b), the signal received from the transmission path (output of the circuit in FIG. 1(a)) is amplified to a predetermined level by amplifier A, and then input to the compression Chilb conversion element 4. be done. The compression chirb conversion element 4 inversely converts the chirb signal into a pulse position modulated wave, and its output is input to the pulse position demodulator 5 .

パルス位置復調器5は、送信側の平衡変調2に2の逆変
換を行なうもので、パルス位置変調波を元のアナログな
いしデジタル信号に復調する。
The pulse position demodulator 5 performs inverse conversion of the balanced modulation 2 on the transmission side, and demodulates the pulse position modulated wave into the original analog or digital signal.

第2図、第3図に第1図(a)、(b)のパルス位置変
調器l、パルス位置復調器5の変調および復調動作をそ
れぞれ例示する。
2 and 3 illustrate the modulation and demodulation operations of the pulse position modulator 1 and the pulse position demodulator 5 shown in FIGS. 1(a) and 1(b), respectively.

まず、パルス位置変調器lのパルス位置変調動作を説明
する。
First, the pulse position modulation operation of the pulse position modulator 1 will be explained.

第2図において符号aは、パルス位置変調器1に人力さ
れる入力信号を示している。ここでは、説明を容易にす
るためパルス位置変調器lの入力信号としてアナログ信
号を示している。
In FIG. 2, reference numeral a indicates an input signal manually input to the pulse position modulator 1. In FIG. Here, for ease of explanation, an analog signal is shown as the input signal of the pulse position modulator l.

第2図において符号すは、パルス位置変調器1に内蔵さ
れる発振器が発生ずるのこぎり波で、このこぎり波とカ
ー人力波形を加算することにより符号Cの波形を得る。
In FIG. 2, symbol A is a sawtooth wave generated by an oscillator built in the pulse position modulator 1, and a waveform of symbol C is obtained by adding this sawtooth wave and Kerr's manual waveform.

次に、パルス位置変調器l内部の比較回路を用い、所定
のスライスレベルと符号Cの信号を比較ス信号dを得る
Next, using a comparison circuit inside the pulse position modulator l, a predetermined slice level and a signal of code C are compared to obtain a signal d.

さらに、信号dをパルス位置変調器lに内蔵される微分
回路に通し、信号eを得た後、これを上記とは別の比較
回路により所定のスライスレベルと比較した上増幅し、
スライスレベルよりも信号eのレベルが大きい時にハイ
レベルとなる信号fを得る。
Furthermore, after passing the signal d through a differentiation circuit built in the pulse position modulator l to obtain a signal e, this is compared with a predetermined slice level by a comparison circuit different from the above, and then amplified.
A signal f that becomes high level when the level of the signal e is higher than the slice level is obtained.

次に、パルス位置復調器5の復調動作を説明する。Next, the demodulation operation of the pulse position demodulator 5 will be explained.

第3図において符号aは、上記手順によりパルス位置変
調された信号であり、この信号はパルス位置復調器5に
内蔵される発振器が出力する符号すのような逆のこぎり
波と加算され、信号Cを得る。
In FIG. 3, symbol a is a signal pulse position modulated by the above procedure, and this signal is added to an inverse sawtooth wave such as symbol A output from the oscillator built in the pulse position demodulator 5, and the signal a is get.

続いて、信号Cを所定のクリップレベルによりクリップ
させると、符号dのようなパルス振幅変調された信号を
得る。この信号dを低域フィルタを通すことにより破線
で示した原信号を得ることができる。
Subsequently, when the signal C is clipped by a predetermined clip level, a pulse amplitude modulated signal as shown by code d is obtained. By passing this signal d through a low-pass filter, the original signal shown by the broken line can be obtained.

第4図に異なるパルス位置変調および復調方式として、
入力信号がデジタル信号の場合に適用できるパルス位置
変復調処理を示す。
Figure 4 shows different pulse position modulation and demodulation methods.
The pulse position modulation and demodulation processing that can be applied when the input signal is a digital signal is shown.

第4図において符号aは人力される直列2値のデジタル
信号で、この信号を1ビツトづつ取り込み、累積加算す
ることにより、第4図(b)のデータ信号(和分信号)
bを得る。累積の際、下1桁の1ビツトのみが信号とし
て使用される。
In Fig. 4, symbol a is a manually inputted serial binary digital signal, and by taking in this signal one bit at a time and cumulatively adding it, the data signal (summation signal) shown in Fig. 4(b) is obtained.
get b. During accumulation, only one bit of the last digit is used as a signal.

さらに、破線で示すように1タイムスロツトを設定し、
信号すの「l」、ないし「0」の2値に応じてそれぞれ
タイムスロットの前半ないし後半にそれぞれ短いパルス
を発生させることにより、パルス位置変調波形Cを得る
ことができる。
Furthermore, set one time slot as shown by the dashed line,
The pulse position modulation waveform C can be obtained by generating short pulses in the first half or the second half of the time slot, respectively, depending on the binary value of the signal "l" or "0".

一方、符号Cの変調波形が入力された場合には、この信
号に同期して発生させたタイムスロット信号を基準に、
短パルスがスロットの前半ないし後半のいずれに発生し
ているかを判定し、信号dを得ることができる。
On the other hand, when a modulated waveform of code C is input, based on the time slot signal generated in synchronization with this signal,
It is possible to determine whether the short pulse occurs in the first half or the second half of the slot, and obtain the signal d.

さらに、この信号dを1タイムスロツト分遅延させ、信
号eを得、信号dとeを用いて位相検波を行なうことに
より復調信号fを得ることができる。
Further, this signal d is delayed by one time slot to obtain a signal e, and by performing phase detection using the signals d and e, a demodulated signal f can be obtained.

次に送受信装置のチャープ変換素子の構造を示す。Next, the structure of the chirp conversion element of the transmitter/receiver is shown.

第5図(a)〜(e)は送信側のチャープ変換素子3の
構成例を示したものである。
FIGS. 5(a) to 5(e) show examples of the configuration of the chirp conversion element 3 on the transmitting side.

チャープ変換素子3は、第5図(a)に示すようにピエ
ゾ効果を有する圧電基板33cの上に櫛形電極(以下I
DTという)33a、33bを配置した構造であり、信
号入力部のIDT33aに電気信号を印加すると圧電効
果によって機械的振動が発生し、振動の表面波が基板3
3c上を伝播する。
The chirp conversion element 3 includes a comb-shaped electrode (hereinafter referred to as I) on a piezoelectric substrate 33c having a piezo effect as shown in FIG. 5(a).
When an electric signal is applied to the IDT 33a of the signal input section, mechanical vibration is generated due to the piezoelectric effect, and the surface waves of the vibration are transmitted to the substrate 3.
Propagates on 3c.

この表面波は出力部のIDT33bに達すると再び電気
信号に変換される。出力側IDT33bは電極間隔で決
まる振動周波数に同調して電気信号を発生するが、図の
ように出力部IDT33bの間隔は人力IDT33aか
ら離れるにしたがって密に変化しているため、周波数に
よって出力信号の遅延時間が異なる。
When this surface wave reaches the IDT 33b of the output section, it is converted into an electric signal again. The output-side IDT 33b generates an electrical signal in tune with the vibration frequency determined by the electrode spacing, but as shown in the figure, the spacing of the output-side IDT 33b changes densely as it moves away from the human-powered IDT 33a, so the output signal varies depending on the frequency. Different delay times.

すなわち、信号中の異なる周波数成分は時間的に分離さ
れる。この伸長用チャープ変換素子の人力周波数に対す
る出力の振幅と遅延の特性は第5図(b)および(C)
のようになっている。すなわち、少なくとも周波数f1
からf2までの領域において周波数特性はフラットで、
一方前記の電極配置により周波数flからr2に向かっ
て直線的に遅延時間が増大(tl〜t 2.)する。
That is, different frequency components in the signal are separated in time. The output amplitude and delay characteristics with respect to the human input frequency of this extension chirp conversion element are shown in Figures 5 (b) and (C).
It looks like this. That is, at least the frequency f1
The frequency characteristics are flat in the region from to f2,
On the other hand, due to the electrode arrangement described above, the delay time increases linearly from frequency fl toward r2 (tl to t2.).

したがって、伸長用チャーブ変換素子3にflからf2
の間に広がるスペクトル成分を持つ高周波成分を含む第
5図(d)のような矩形波パルス状の信号を入力すると
、第5図(e)のように時間間隔t1からt2の間に周
波数がflからf2に連続的に変化する波形(チャーブ
信号)に伸長されて出力されることになる。
Therefore, from fl to f2
When a rectangular wave pulse-like signal as shown in Fig. 5(d) containing a high frequency component with a spectral component spread between The signal is expanded into a waveform (chirp signal) that continuously changes from fl to f2 and is output.

方、第1図(b)の圧縮用チャープ変換素子4は第6図
(a)に示すように、伸縮用チャープ変換素子3とはI
DT43a、43bの粗密が逆の構造となっているので
、第6図(b)に示すように伸長用チャープ変換素子と
振幅特性は同じだが、第6図(C)に示すように周波数
flからf2の間で遅延特性は逆になっている。
On the other hand, the compression chirp conversion element 4 in FIG. 1(b) is different from the expansion/contraction chirp conversion element 3 as shown in FIG. 6(a).
Since the density of the DT43a and DT43b is reversed, the amplitude characteristics are the same as those of the decompression chirp conversion element as shown in Fig. 6(b), but the amplitude characteristics are different from the frequency fl as shown in Fig. 6(C). The delay characteristics are reversed between f2.

したがって、伸長用チャーブ変換素子3で発生させた第
6図(d)のような時間間隔tlからt2の間に周波数
がflからf2に連続的に変化するチャープ信号の入力
に対しては第6図(e)のようなパルス信号が再生され
る。
Therefore, for the input of the chirp signal generated by the expansion chirp conversion element 3 whose frequency changes continuously from fl to f2 during the time interval tl to t2 as shown in FIG. A pulse signal as shown in Figure (e) is reproduced.

第5図の伸長用チャーブ変換素子への入力信号としては
、たとえば第7図に示すようにパルス幅1/Hの単一パ
ルス波に周波数fOの信号を乗算したものであり、近似
的に第5図(b)あるいは第6図(b)のようなスペク
トル成分をもつ。
The input signal to the expansion chirb conversion element in FIG. 5 is, for example, a single pulse wave with a pulse width of 1/H multiplied by a signal with a frequency fO as shown in FIG. It has spectral components as shown in FIG. 5(b) or FIG. 6(b).

一方、チャーブ信号からパルス信号への変換利1−Iは
−fヤーブ(13−J−の継続時間と帯域幅の積(BT
積)で評価できる。BT積は通常1よりもはるかに大き
く、たとえばB= 10MHz、T=20nsとすると
BT=200となり、チャーブ信号はその電力のBT倍
の尖頭電力を持つパルス信号に圧縮されることになり、
S/N比は大幅に改善されることになる。
On the other hand, the conversion profit from chirb signal to pulse signal 1-I is -f yab (13-J- product of duration and bandwidth (BT
product). The BT product is usually much larger than 1. For example, if B = 10 MHz and T = 20 ns, then BT = 200, and the chirb signal will be compressed into a pulse signal with a peak power that is BT times its power.
The S/N ratio will be significantly improved.

情報伝送においては、まず、第1図(21)の送信装置
のパルス位置変調器lで人力アナログ信号あるいはデジ
タル信号によりパルス位置変調を行ない、さらに平衡変
調器2により第7図のような波形を得た後、チャーブ信
号に変換し、一方策1図(b)の受信装置ではチャーブ
信号をパルス位置変調波に逆変換した波形でパルス位置
復調を行ない元のアナログ信号またはデジタル信号を再
生することになる。
In information transmission, first, the pulse position modulator 1 of the transmitting device shown in FIG. After obtaining the signal, convert it to a chirb signal, and use the receiver shown in Figure 1 (b) to perform pulse position demodulation using the waveform inversely converted from the chirb signal to a pulse position modulated wave to reproduce the original analog signal or digital signal. become.

特にチャーブ信号の変復調処理においては、第5図およ
び第6図の(b)、(C)に示すようなチャープ変換素
子の入力144周波数に対する出力の振幅と遅延特性に
より、パルス信号をチャープ変換したのち 元のパルス
(l’3 ’シに逆変換してもパルスの位置がもつ情報
が失われることがないので、2値の情報の1つが変化し
てしまう恐れがなく、従来例のうち2値信号に異なるチ
ャーブ信号を割り当てる例とほぼ同等あるいはそれ以上
の伝送信頼性を確保できる。
In particular, in the modulation and demodulation processing of chirp signals, the pulse signal is chirp-converted based on the amplitude and delay characteristics of the output with respect to the input 144 frequency of the chirp conversion element as shown in FIGS. 5 and 6 (b) and (C). Even if the pulse is later converted back to the original pulse (l'3'), the information of the pulse position is not lost, so there is no risk of one of the binary information changing; It is possible to ensure transmission reliability that is almost the same as or better than the example in which different chirp signals are assigned to value signals.

また、受信側の圧縮用チャープ変換素子は素子の特性と
同一のパターンの一致を検出するものであるため、)斡
チャーブ信号の継続期間よりもパルスの繰り返し周期の
方が短いためチャーブ信号が時間軸」二で重畳していて
も問題なく復調が可能である。
In addition, since the compression chirp conversion element on the receiving side detects a match with the same pattern as the characteristics of the element, the chirp signal is Even if the signals are superimposed on the second axis, demodulation is possible without any problem.

以上に示したように、上記実施例によれば、ノイズなど
の外乱に影響されることなく、送受信装置において単一
のチャープ変換手段を用いる簡単安価な構成により確実
に情報伝送を行なうことができる。
As shown above, according to the above embodiment, information can be reliably transmitted using a simple and inexpensive configuration using a single chirp conversion means in the transmitter/receiver device without being affected by disturbances such as noise. .

上記実施例においては主として信号の変復調部だけを示
しであるが、この方式は有線通信にも無線通信にも適用
が可能であるのはいうまでもない。また、電気信号を光
信号に変換(E10変換)する装置と光信号を電気信号
に変換(0/E変換)する装置とを併用することによっ
て、本方式を光通信にも適用することができる。
In the above embodiment, only the signal modulation/demodulation section is shown, but it goes without saying that this system can be applied to both wired and wireless communications. Additionally, by using a device that converts electrical signals into optical signals (E10 conversion) and a device that converts optical signals into electrical signals (0/E conversion), this method can also be applied to optical communications. .

第8図は本方式の応用例で、光ファイバを伝送路として
用いた通信方式の実施例である。図中符号6は半導体レ
ーザ素子などを用いたIE / 0変換器、符号7はP
INフ4トダイオードなどを用いた0/E変換器、符号
8は光ファイバを示している。このような構成によれば
、上記のように主として受信S/N比の改善が可能で、
長距離の通信を行なえるようになる。なお、第8図にお
いて符号81は第1図(a)の送信側回路、符号82は
第1図(b)の受信側回路をそれぞれ示している。
FIG. 8 shows an application example of this system, which is an example of a communication system using an optical fiber as a transmission path. In the figure, numeral 6 is an IE/0 converter using a semiconductor laser element, etc., and numeral 7 is a P
An O/E converter using an IN foot diode or the like, and reference numeral 8 indicates an optical fiber. According to such a configuration, as described above, it is possible to mainly improve the reception S/N ratio,
Becomes able to communicate over long distances. In FIG. 8, reference numeral 81 indicates the transmitting side circuit of FIG. 1(a), and reference numeral 82 indicates the receiving side circuit of FIG. 1(b).

第9図は本方式を光ビーム通信に適用した例である。図
において符号6は半導体レーザ素子などからなるE10
変換器、符号7はPINフォトダイオードなどからなる
0/E変換器、符号9は光ビームを示す。このような構
成によれば、特にlkm以」二の長距離の光ビーム通信
の場合は降雨などの気象条件や大気の揺らぎ、外乱光の
変動などによる信号の減衰や変動などの影響を強く受け
るため、本方式の外乱難行の除去効果によって通信の信
頼性を大きく改善できる。第9図において、符号81.
82は第8図同様にそれぞれ第1図(a)、(b)の送
信側および受信側回路を示す。
FIG. 9 shows an example in which this method is applied to optical beam communication. In the figure, reference numeral 6 is an E10 consisting of a semiconductor laser element, etc.
The converter 7 is an O/E converter made of a PIN photodiode or the like, and 9 is a light beam. With such a configuration, especially in the case of long-distance optical beam communication of less than 1 km, it is strongly affected by signal attenuation and fluctuations due to weather conditions such as rainfall, atmospheric fluctuations, and fluctuations in ambient light. Therefore, the reliability of communication can be greatly improved by the effect of removing disturbance disturbances in this method. In FIG. 9, reference numeral 81.
Similarly to FIG. 8, 82 indicates the transmitting side and receiving side circuits of FIGS. 1(a) and 1(b), respectively.

さらに、第9図の構成は、第1O図のように光拡散通信
にも使用できる。第1O図では、送信側のE10変換器
の投光部は、適当な光学系を用いることにより拡散光l
Oを投射するように構成する。拡散光は、図示のように
第9図と同様の複数の受信装置により受光される。
Furthermore, the configuration of FIG. 9 can also be used for light diffusion communication as shown in FIG. 1O. In Figure 1O, the light emitting part of the E10 converter on the transmitting side uses a suitable optical system to illuminate the diffused light.
It is configured to project O. The diffused light is received by a plurality of receiving devices similar to those shown in FIG. 9 as shown.

このような構成では、拡散光により受信範囲を拡大する
ことが可能である。また、この光拡散により受信装置で
受光される光信号が微弱になるが、上述のようにチャー
プ逆変換時に得られる変換ゲインによる符号識別の信頼
性向上により、従来例と同じ送信パワーを用いる場合で
もより伝送の信頼性を向上できる。
With such a configuration, it is possible to expand the reception range using diffused light. In addition, the optical signal received by the receiving device becomes weak due to this light diffusion, but as mentioned above, the reliability of code identification is improved by the conversion gain obtained during chirp inverse conversion, so when using the same transmission power as the conventional example. However, transmission reliability can be further improved.

[発明の効果] 以−Lから明らかなように、本発明によれば、入力信号
を所定の変復調処理を介して送受信する通信方式におい
て、送信側においては入力信号をパルス位置変調方式に
より変調し、この変調信号の周波数成分をそれぞれ異な
る伸長特性により時間軸に伸長して得たル餐妥チャーブ
信号を形成して送信し、一方、受信側では受信したチャ
ープ信号の周波数成分を前記の異なる伸長特性にそれぞ
れ対応する逆特性の圧縮特性により圧縮し、その後パル
ス位置復調を行なうことにより原信号を再生する構成を
採用しているので、入力信号をパルス位置変調した接界
なる周波数/時間特性を有するチャープ信号に変換して
送信し、一方受信側では受信したチャープ信号を逆変換
した後パルス位置復調することで原信号を再生すること
ができる。
[Effects of the Invention] As is clear from the following, according to the present invention, in a communication system in which an input signal is transmitted and received through predetermined modulation/demodulation processing, the input signal is modulated by a pulse position modulation method on the transmitting side. , the frequency components of this modulated signal are expanded in the time axis using different expansion characteristics to form and transmit a chirp chirp signal, while on the receiving side, the frequency components of the received chirp signal are expanded in the different expansion characteristics as described above. The structure is such that the original signal is reproduced by compressing it using the compression characteristic of the inverse characteristic corresponding to each characteristic, and then performing pulse position demodulation. On the receiving side, the received chirp signal is inversely converted and then pulse position demodulated to reproduce the original signal.

特に、パルス位置に関して情報をもつ信号をチャープ変
換を介して送受信するため、パルスの位置をもつ情報が
失われることがなく、従来例のうち2値信号に異なるチ
ャーブ信号を割り当てる例とは(ぼ同様の伝送信頼性を
確保できる。また、チャーブ変換を用いる利点としては
、符号識別能カが高く、また復調の際にチャープ信号圧
縮によりみかけ上の信号電力増大が生じ、S/N比を向
上させることができるため、通信の信頼性を高めること
ができる。特に、伝送路での送信電力の制限や、外乱ノ
イズが多いなどの制約があっても、通信の信頼性を確保
できる、などが挙げられる。
In particular, since signals with information on pulse positions are transmitted and received via chirp conversion, the information on pulse positions is not lost. Similar transmission reliability can be ensured.Additionally, the advantage of using chirp transform is that it has high code discrimination ability, and during demodulation, chirp signal compression causes an apparent increase in signal power, improving the S/N ratio. In particular, communication reliability can be ensured even if there are restrictions such as transmission power limitations on the transmission path or large amounts of disturbance noise. Can be mentioned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の通信方式による送信側装置の構
造を示したブロック図、第1図(b)は本発明の通信方
式による受信側装置の構造を示したブロック図、第2図
は第1図(a)の構成におけるパルス蕪位置七動作を示
した波形図、第3図は第1図(b)の構成におけるパル
ス位置復調動作を示した波形図、第4図はデジタル信号
のパルス位置変調および復調方法を示した波形図、第5
図(a)〜(e)および第6図(a)〜(e)はそれぞ
れ伸長用、圧縮用のチャープ変換素子の構造と特性を示
す説明図、第7図はチャープ変換素子への大カバルス波
形を示す波形図、第8図〜第10図は本発明の通信方式
の異なる実施例な示すブロック図、第11図(a)、(
b)は異なる往来方式を示した説明図である。 1−−−パルス位置変調器  2−平衡変調器3・・−
伸長用チャープ変換素子 4−・・圧縮用チャープ変換素子 5・・−パルス位置復調器 6・・・E10変換器   7・・・O/E変換器8・
・・光ファイバ    9・・−光ビーム10・・−拡
散光 O 2O ℃ Φ r\=3 一〇 h         t2 伸4シ則ナセーフ′/lj灸i+fL宮←月〔6第5図 第6図 スn1色し大の破什行2 第7図 に4広淫n泊イ各への民・駒什1!z(しにブ’cr−
,りl第10図 纜ファイバjV菖へグば’cF目イクJEカ′・シ名フ
リ7りi第8図 珀ビーム涌イきへの人・距Vり1を庁、しfこブb、7
7図M9図
FIG. 1(a) is a block diagram showing the structure of a transmitting side device according to the communication method of the present invention, FIG. 1(b) is a block diagram showing the structure of a receiving side device according to the communication method of the present invention, and FIG. The figure is a waveform diagram showing the pulse position demodulation operation in the configuration of Figure 1 (a), Figure 3 is a waveform diagram showing the pulse position demodulation operation in the configuration of Figure 1 (b), and Figure 4 is a waveform diagram showing the pulse position demodulation operation in the configuration of Figure 1 (b). Waveform diagram showing signal pulse position modulation and demodulation method, 5th
Figures (a) to (e) and Figures 6 (a) to (e) are explanatory diagrams showing the structure and characteristics of the chirp conversion element for expansion and compression, respectively, and Figure 7 is a large caballus to the chirp conversion element. Waveform diagrams showing waveforms, FIGS. 8 to 10 are block diagrams showing different embodiments of the communication system of the present invention, and FIGS.
b) is an explanatory diagram showing different traffic methods. 1--Pulse position modulator 2-Balance modulator 3...-
Chirp conversion element for expansion 4 - Chirp conversion element for compression 5 - Pulse position demodulator 6 - E10 converter 7 - O/E converter 8 -
・・Optical fiber 9・・・Light beam 10・・・Diffused light O 2O ℃ Φ r\=3 10h t2 Extension 4 C rule na safe'/lj moxibustion i + fL Miya ← Moon [6 Figure 5 Figure 6 S N1 color and large destruction 2 Figure 7 shows 4 wide n nights and 1 piece of people and pieces for each! z(Shinibu'cr-
, ri l Figure 10 fiber j V irises to ' c F eye cum JE Ka' , Shi name pretend 7ri i Figure 8 珀 beam cum to the person, distance V ri 1, agency, and f b, 7
Figure 7M9 Figure

Claims (1)

【特許請求の範囲】 1)入力信号を所定の変復調処理を介して送受信する通
信方式において、 送信側においては入力信号をパルス位置変調方式により
変調し、この変調信号の周波数成分をそれぞれ異なる伸
長特性により時間軸に伸長して得たチャープ信号を形成
して送信し、 一方、受信側では受信したチャープ信号の周波数成分を
前記の異なる伸長特性にそれぞれ対応する逆特性の圧縮
特性により圧縮し、その後パルス位置復調を行なうこと
により原信号を再生することを特徴とする通信方式。
[Claims] 1) In a communication system in which an input signal is transmitted and received through predetermined modulation/demodulation processing, the input signal is modulated by a pulse position modulation method on the transmitting side, and the frequency components of the modulated signal are each modulated with different expansion characteristics. On the receiving side, the frequency components of the received chirp signal are compressed using the inverse compression characteristics corresponding to the different expansion characteristics, and then A communication method characterized by reproducing the original signal by performing pulse position demodulation.
JP1104763A 1989-04-26 1989-04-26 Communication system, communication system, transmitter and receiver Expired - Fee Related JP2672146B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1104763A JP2672146B2 (en) 1989-04-26 1989-04-26 Communication system, communication system, transmitter and receiver
US07/512,261 US5113278A (en) 1989-04-26 1990-04-20 Communication system and apparatus using chip signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104763A JP2672146B2 (en) 1989-04-26 1989-04-26 Communication system, communication system, transmitter and receiver

Publications (2)

Publication Number Publication Date
JPH02284548A true JPH02284548A (en) 1990-11-21
JP2672146B2 JP2672146B2 (en) 1997-11-05

Family

ID=14389523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104763A Expired - Fee Related JP2672146B2 (en) 1989-04-26 1989-04-26 Communication system, communication system, transmitter and receiver

Country Status (2)

Country Link
US (1) US5113278A (en)
JP (1) JP2672146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537850A (en) * 2017-10-19 2020-12-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Transmitters, network nodes, methods and computer programs for transmitting binary information

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065752B2 (en) * 1991-12-02 2000-07-17 キヤノン株式会社 Optical space communication device
EP0545647B1 (en) * 1991-12-02 2001-10-24 Canon Kabushiki Kaisha Measuring apparatus
US5387867A (en) * 1993-07-26 1995-02-07 The United States Of America As Represented By The Dept. Of Health And Human Services Pulsed low frequency EPR spectrometer and imager
US5353303A (en) * 1993-10-04 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Technique for increasing the data rate in a spread spectrum data link
US5663824A (en) * 1993-11-02 1997-09-02 Lucent Technologies Inc. Optical modulators as monolithically integrated optical isolators
DE69425000T2 (en) * 1994-02-28 2000-12-07 Ibm METHOD AND DEVICE FOR WIRELESS OPTICAL TRANSMISSION
US5969839A (en) * 1995-07-10 1999-10-19 Fuji Electric Co., Ltd. Optical communications device
JPH0823310A (en) * 1994-07-11 1996-01-23 Fuji Electric Co Ltd Optical signal transmitter
JP2798129B2 (en) * 1996-08-26 1998-09-17 日本電気株式会社 Transmitter and receiver for chirp spread spectrum signal multiplexer
US5825815A (en) * 1996-09-11 1998-10-20 Winbond Electronics Corp. Dual UART device with a reduced package pin number
JP2755296B2 (en) * 1996-10-18 1998-05-20 日本電気株式会社 Spread spectrum signal multiplexer
DE19646746C2 (en) * 1996-11-01 2003-09-18 Nanotron Technologies Gmbh Transmission method for wireless communication with an implanted medical device
DE19646745C2 (en) 1996-11-01 1999-07-08 Nanotron Ges Fuer Mikrotechnik Transfer procedure and arrangement for carrying out the procedure
DE19646747C1 (en) * 1996-11-01 1998-08-13 Nanotron Ges Fuer Mikrotechnik Method for the wireless transmission of a message imprinted on a signal
JP3748652B2 (en) 1997-02-27 2006-02-22 富士通株式会社 Optical transmission system using inline amplifier
JPH10242909A (en) 1997-02-27 1998-09-11 Fujitsu Ltd Optical transmission system
US6070060A (en) * 1998-03-04 2000-05-30 Edelman; Seymour Frequency and frequency rate of change radio broadcasting and other types of communications systems
US6396866B1 (en) * 1998-05-01 2002-05-28 Trw Inc. Symmetric chirp communications acquisition method and apparatus
JP4398590B2 (en) 1998-08-21 2010-01-13 エボロジクス ゲー・エム・ベー・ハー Information transmission method and system suitable therefor
GB9917880D0 (en) * 1999-07-30 1999-09-29 Roke Manor Research Fast data modulator
US7173551B2 (en) * 2000-12-21 2007-02-06 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US6759983B2 (en) 2001-03-28 2004-07-06 Strategic Analysis, Inc. Method and device for precise geolocation of low-power, broadband, amplitude-modulated signals
US7307569B2 (en) * 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7149256B2 (en) * 2001-03-29 2006-12-12 Quellan, Inc. Multilevel pulse position modulation for efficient fiber optic communication
CA2442922A1 (en) * 2001-04-04 2002-10-17 Quellan, Inc. Method and system for decoding multilevel signals
US20030030873A1 (en) * 2001-05-09 2003-02-13 Quellan, Inc. High-speed adjustable multilevel light modulation
US6683440B2 (en) 2001-05-29 2004-01-27 Canon Kabushiki Kaisha Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting apparatus, and storage medium in which a software program of said detecting method is stored
US20030142741A1 (en) * 2002-01-30 2003-07-31 Rf Saw Components, Incorporated Modulation by phase and time shift keying and method of using the same
AU2003211094A1 (en) * 2002-02-15 2003-09-09 Quellan, Inc. Multi-level signal clock recovery technique
US6816101B2 (en) * 2002-03-08 2004-11-09 Quelian, Inc. High-speed analog-to-digital converter using a unique gray code
US20030198478A1 (en) * 2002-04-23 2003-10-23 Quellan, Inc. Method and system for generating and decoding a bandwidth efficient multi-level signal
US7035361B2 (en) * 2002-07-15 2006-04-25 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US7094204B2 (en) * 2002-08-23 2006-08-22 Siemens Medical Solutions Usa, Inc. Coded excitation imaging for use with bipolar, unipolar and other waveforms
WO2004045078A2 (en) * 2002-11-12 2004-05-27 Quellan, Inc. High-speed analog-to-digital conversion with improved robustness to timing uncertainty
US6937108B2 (en) * 2003-03-11 2005-08-30 M/A-Com, Inc. Methods and apparatus for offset chirp modulation
US7804760B2 (en) * 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
KR101109847B1 (en) * 2003-08-07 2012-04-06 ?란 인코포레이티드 Method and system for crosstalk cancellation
KR20060084851A (en) * 2003-09-15 2006-07-25 알에프 소 콤포넌츠 인코포레이티드 Saw identification tag discrimination methods
ATE488068T1 (en) * 2003-11-17 2010-11-15 Quellan Inc METHOD AND SYSTEM FOR CANCELING ANTENNA INTERFERENCE
US7616700B2 (en) * 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
US7515835B1 (en) * 2004-10-25 2009-04-07 Hrl Laboratories, Llc System, method and apparatus for clockless PPM optical communication
US7725079B2 (en) * 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US7522883B2 (en) * 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US20060293644A1 (en) * 2005-06-21 2006-12-28 Donald Umstadter System and methods for laser-generated ionizing radiation
WO2007127369A2 (en) * 2006-04-26 2007-11-08 Quellan, Inc. Method and system for reducing radiated emissions from a communications channel
CN101198156B (en) 2006-12-08 2012-10-31 昂达博思公司 System and method for managing radio base station switch information
CN101197599A (en) * 2006-12-08 2008-06-11 昂达博思公司 Method and apparatus for power control of radio communication system
US20090003484A1 (en) * 2007-06-29 2009-01-01 Wei Li Device and method for communication using hybrid modulation
US7831113B1 (en) * 2007-10-18 2010-11-09 Hrl Laboratories, Llc Optical pulse position modulator with chirp compensation
JP6643035B2 (en) 2015-10-09 2020-02-12 キヤノン株式会社 Electronic equipment, control method and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329981B2 (en) * 1971-10-29 1978-08-24
US4793000A (en) * 1985-10-22 1988-12-20 Canon Kabushiki Kaisha Light signal receiver
US4918751A (en) * 1987-10-05 1990-04-17 The University Of Rochester Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers
US4928316A (en) * 1988-02-04 1990-05-22 Bell Communications Research, Inc. Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses
JPH024077A (en) * 1988-06-21 1990-01-09 Canon Inc Light communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537850A (en) * 2017-10-19 2020-12-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Transmitters, network nodes, methods and computer programs for transmitting binary information

Also Published As

Publication number Publication date
US5113278A (en) 1992-05-12
JP2672146B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JPH02284548A (en) Communication system
US8090033B2 (en) Differential orthogonal modulation method and apparatus using repetition time interval difference of chirp signal
US5105294A (en) Digital communicating method and apparatus
JP3493414B2 (en) Method for wireless information transmission
US5081642A (en) Reciprocal saw correlator method and apparatus
DE3872966D1 (en) ECHOCOMPENSATION.
US3667046A (en) Voice transmission and receiving system employing pulse duration modulations with a suppressed clock
US4661819A (en) Doppler tolerant binary phase coded pulse compression system
US4184056A (en) Fault locating system for optical telecommunications
EP0097981A1 (en) Transmission system for the transmission of binary data symbols
US3393363A (en) Amplifying means employing pulse width modulation
US7133621B1 (en) Optical communication with phase encoding and phase shifting
US3492576A (en) Differential phase modulated communication system
US5038363A (en) Correlation processing device using a surface acoustic wave convolver
RU2085046C1 (en) Digital data transmission system
JPH01319343A (en) Digital communication system
US6594056B1 (en) Receiver for use in a transmission system for spectral-coded data as well as a method
US7515835B1 (en) System, method and apparatus for clockless PPM optical communication
Ghassemlooy Pulse position modulation spectral investigation
JPS6356507B2 (en)
JP2536138B2 (en) Communication system
SU866754A1 (en) Frequency-manipulated signal receiver
SU109765A1 (en) Method for increasing noise immunity of radio lines with pulse modulation
US8526829B1 (en) System, method and apparatus for clockless PPM optical communications
SU1195461A1 (en) System for repeating call tone via channel with delta modulation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees