JPH02284423A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02284423A
JPH02284423A JP10625389A JP10625389A JPH02284423A JP H02284423 A JPH02284423 A JP H02284423A JP 10625389 A JP10625389 A JP 10625389A JP 10625389 A JP10625389 A JP 10625389A JP H02284423 A JPH02284423 A JP H02284423A
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
hydrofluoric acid
buffered hydrofluoric
acid solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10625389A
Other languages
Japanese (ja)
Other versions
JP2522389B2 (en
Inventor
Koji Yamazaki
孝二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1106253A priority Critical patent/JP2522389B2/en
Publication of JPH02284423A publication Critical patent/JPH02284423A/en
Application granted granted Critical
Publication of JP2522389B2 publication Critical patent/JP2522389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics by removing a spontaneous oxidation film with a specific buffered hydrofluoric acid solution. CONSTITUTION:A buffered hydrofluoric acid solution is composed of ammonium fluoride, hydrogen fluoride, and water so that the content of hydrogen fluoride (hydrogen fluoride/ammonium fluoride + hydrogen fluoride (wt. ratio)) becomes less than 5% and its solution is placed in a buffered hydrofluoric acid solution tank 24. Then the sprayer 23 of buffered hydrofluoric acid allows the above solution to undergo a change to a misty state and such a misty gas is carried to a chamber 20 through a pipe 25. An Si wafer 21 on Si wafer supporting pins 22 is treated by the above misty gas to remove a spontaneous oxidation film. As the etching rate of a titanium silicide film towards a specific buffered hydrofluoric acid solution becomes smaller than that of a silicon oxide film, the small amount of the titanium silicide film is removed. Then the spontaneous oxidation film of the silicon surface is removed and characteristics of a semiconductor device is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に拡散層表面
上の一部にチタンシリサイド膜が形成されたシリコン半
導体装置の製造において、良好なシリコン半導体/金属
配線接続及びチタンシリザイド/金属配線接続を得るた
めのシリコン上及びチタンシリサイド上の自然シリコン
酸化膜の除去方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly in manufacturing a silicon semiconductor device in which a titanium silicide film is formed on a portion of the surface of a diffusion layer. The present invention relates to a method for removing native silicon oxide on silicon and titanium silicide to obtain semiconductor/metal interconnect connections and titanium silicide/metal interconnect connections.

〔従来の技術〕[Conventional technology]

従来、この種の自然酸化膜の除去方法としては、フッ化
水素と水との混合液により除去する方法か、又はフッ化
水素の含有率(フッ化水素/フッ化アンモニウム+フッ
化水素(重量比))が3〜5%であるようなフッ化アン
モニウム、フッ化水素、及び水とからなるバッファード
フッ酸溶液により除去する方法があった。
Conventionally, this type of natural oxide film has been removed by using a mixture of hydrogen fluoride and water, or by reducing the hydrogen fluoride content (hydrogen fluoride/ammonium fluoride + hydrogen fluoride (by weight)). There is a method of removing the fluorine using a buffered hydrofluoric acid solution consisting of ammonium fluoride, hydrogen fluoride, and water, with a ratio of 3 to 5%.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の自然酸化膜の除去方法で用いられている
フッ化水素と水との混合溶液又はバッファードフッ酸液
に対してはチタンシリサイド膜はエツチングされ、その
エツチングレートはシリコン1t41Jのエツチングレ
ートよりも高い。
The titanium silicide film is etched by a mixed solution of hydrogen fluoride and water or a buffered hydrofluoric acid solution used in the conventional natural oxide film removal method described above, and the etching rate is the same as that of silicon 1t41J. higher than

したがって、第3図のようにチタンシリサイド膜302
とシリコン表面303が混在する半導体基板上の自然酸
化膜を従来法によ除去する時、シリコン表面303上の
自然酸化膜の除去を十分に行うとチタンシリサイド膜3
02の除去量も多くなるという問題があり、これは半導
体装置の特性を劣下させる。
Therefore, as shown in FIG.
When removing the natural oxide film on the semiconductor substrate on which the silicon surface 303 and the silicon surface 303 coexist by the conventional method, if the natural oxide film on the silicon surface 303 is sufficiently removed, the titanium silicide film 3
There is a problem that the amount of 02 removed also increases, which deteriorates the characteristics of the semiconductor device.

したがって、チタンシリサイド膜の除去量をできるだけ
少なくするために、チタンシリサイド膜のエッチレート
がシリコン酸化膜のエッチレートよりも小さくなるよう
な、自然酸化膜の除去方法が望まれていた。
Therefore, in order to reduce the amount of titanium silicide film removed as much as possible, a method for removing the natural oxide film has been desired in which the etch rate of the titanium silicide film is lower than the etch rate of the silicon oxide film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の自然酸化膜の除去方法は、フッ化水素の含有率
がフッ化水素/フッ化アンモニウム+フッ化水素(重量
比)50.5%であるようなフッ化アンモニウム、フッ
化水素及び水とからなるバッファードフッ酸溶液を用い
る。
The natural oxide film removal method of the present invention uses ammonium fluoride, hydrogen fluoride and water whose hydrogen fluoride content is hydrogen fluoride/ammonium fluoride + hydrogen fluoride (weight ratio) 50.5%. A buffered hydrofluoric acid solution consisting of

シリコン酸化膜とチタンシリサイド膜とのエッチレート
の比のバッファードフッ酸溶液のフッ化水素含有率に対
する依存性を第4図に示す。この図かられかるように、
フッ化水素の含有率が0.5%以下ではチタンシリサイ
ド膜のエツチングレートはシリコン酸化膜のエツチング
レートよりも小さくなる。
FIG. 4 shows the dependence of the etch rate ratio of the silicon oxide film and the titanium silicide film on the hydrogen fluoride content of the buffered hydrofluoric acid solution. As you can see from this diagram,
When the content of hydrogen fluoride is 0.5% or less, the etching rate of the titanium silicide film is lower than the etching rate of the silicon oxide film.

したがって、フッ化水素の含有率0.5%以下のバッフ
ァードフッ酸溶液を用いることにより、チタンシリサイ
ド膜の除去量が従来よりも少なくして、シリコン表面上
の自然酸化膜が除去できる。
Therefore, by using a buffered hydrofluoric acid solution with a hydrogen fluoride content of 0.5% or less, the amount of titanium silicide film removed can be reduced compared to the conventional method, and the native oxide film on the silicon surface can be removed.

したがって、良好なシリコン半導体/金属配線接続、及
びチタンシリサイド/金属配線接続が得られ、半導体装
置の特性が向上するという効果がある。
Therefore, good silicon semiconductor/metal wiring connections and titanium silicide/metal wiring connections can be obtained, and the characteristics of the semiconductor device are improved.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(h)は本発明の第1の実施例を説明す
るための縦断面図である。
FIGS. 1(a) to 1(h) are longitudinal sectional views for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、Si基板10上にL
OCO8法により膜厚6000人の素子分離酸化膜11
を形成する。
First, as shown in FIG. 1(a), L is placed on the Si substrate 10.
Element isolation oxide film 11 with a thickness of 6000 using the OCO8 method
form.

次に、第1図(b)に示すように、Asイオンを70 
k eV、 5 X 1015c++r−2の条件で半
導体基板10に注入し、900℃の温度で30分間熱処
理し、不純物を活性化し、N+拡散層12を形成する。
Next, as shown in FIG. 1(b), As ions were added at 70%
The impurities are implanted into the semiconductor substrate 10 under the conditions of keV, 5 x 1015c++r-2, and heat treated at a temperature of 900°C for 30 minutes to activate the impurities and form the N+ diffusion layer 12.

次に、第1図(c)に示すようにCVD法により半導体
基板全面に膜厚500人の酸化膜13を形成した後、一
部のN+拡散層12上の酸化膜をリアクティブイオンエ
ツチングにより除去する。
Next, as shown in FIG. 1(c), an oxide film 13 with a thickness of 500 nm is formed on the entire surface of the semiconductor substrate by the CVD method, and then the oxide film on a part of the N+ diffusion layer 12 is etched by reactive ion etching. Remove.

次に、第1図(d)に示すように、スパッタ法により半
導体基板全面に膜厚1000人のTi膜14を形成する
Next, as shown in FIG. 1(d), a Ti film 14 having a thickness of 1,000 wafers is formed over the entire surface of the semiconductor substrate by sputtering.

次に、第1図(e)に示すように、窒素雰囲気の600
℃の熱処理により、酸化膜13におおわれていないN+
拡散層上にTiシリサイド膜15を形成し、板応Ti膜
14をアンモニア、過酸化水素、水の混合液により除去
する。
Next, as shown in FIG.
Due to the heat treatment at ℃, the N+ that is not covered with the oxide film 13
A Ti silicide film 15 is formed on the diffusion layer, and the plate-forming Ti film 14 is removed using a mixed solution of ammonia, hydrogen peroxide, and water.

次に、第1図(「)に示すように、CVD法により膜厚
6000人のボロンリンガラス(B P S G)膜1
6を半導体基板全面に形成した後、900℃30分の熱
処理によりBPSG膜16をリフローさせる。
Next, as shown in FIG.
6 is formed on the entire surface of the semiconductor substrate, the BPSG film 16 is reflowed by heat treatment at 900° C. for 30 minutes.

次に、第1図(g)に示すように、通常のリングラフイ
ー法により1μm径のコンタクト形成領域をパターニン
グ後、リアクティブイオンエツチングによりコンタクト
穴17を形成する。
Next, as shown in FIG. 1(g), a contact formation region with a diameter of 1 μm is patterned using the usual phosphorography method, and then a contact hole 17 is formed using reactive ion etching.

次に、第1図(h)に示すように、本発明の請求の範囲
に含まれるフッ化水素含有率0.5%のバッファードフ
ッ酸溶液にこの半導体基板を200秒入れ、Si表面の
自然酸化膜を除去する。その後、スパッタ法により半導
体基板全面にSi含有A418を形成し、通常のリソグ
ラフィ法により、バターニング後リアクティブイオンエ
ツチングにより配線を形成する。
Next, as shown in FIG. 1(h), this semiconductor substrate was placed in a buffered hydrofluoric acid solution with a hydrogen fluoride content of 0.5%, which is included in the scope of the claims of the present invention, for 200 seconds to remove the Si surface. Remove natural oxide film. Thereafter, Si-containing A418 is formed on the entire surface of the semiconductor substrate by sputtering, and wiring is formed by patterning and reactive ion etching by ordinary lithography.

このようにして、製作されたシリコン半導体装置におい
ては、チタンシリサイド膜15とSi含有アルミニウム
配線18とのコンタクト抵抗は3Ω、N+拡散層12と
Si含有アルミニウム配線18とのコンタクト抵抗は2
0Ωと良好なコンタクト特性が得られた。
In the silicon semiconductor device thus manufactured, the contact resistance between the titanium silicide film 15 and the Si-containing aluminum wiring 18 is 3Ω, and the contact resistance between the N+ diffusion layer 12 and the Si-containing aluminum wiring 18 is 2Ω.
Good contact characteristics of 0Ω were obtained.

また、自然酸化膜除去のエツチング時間を100秒から
300秒まで変えて、コンタクト抵抗の評価を行ったが
、上記と同様のコンタクト抵抗が得られた。したがって
、本発明のバッファードフッ酸溶液はエツチング時間の
マージンが広く、十分使用できるものと確認された。
Contact resistance was also evaluated by changing the etching time for removing the native oxide film from 100 seconds to 300 seconds, and the same contact resistance as above was obtained. Therefore, it was confirmed that the buffered hydrofluoric acid solution of the present invention has a wide etching time margin and can be used satisfactorily.

第2図は、本発明の第2の実施例で用いた、自然酸化膜
を除去する装置の縦断面図である。すなわち、第1の実
施例で作成した半導体装置の自然酸化膜を除去するプロ
セス(第1図(g))でこの装置を用いた。
FIG. 2 is a longitudinal sectional view of an apparatus for removing a native oxide film used in a second embodiment of the present invention. That is, this apparatus was used in the process of removing the natural oxide film of the semiconductor device produced in the first embodiment (FIG. 1(g)).

この装置を用いた処理プロセスを簡単に説明する。本発
明の特許請求の範囲に記されたバッファードフッ酸溶液
が入れられたバッファードフッ酸溶液タンク24中の溶
液をバッファードフッ酸霧状化装置23により霧状化し
、パイプ25によりこの霧状化した気体をチャンバー2
0に輸送する。
The treatment process using this device will be briefly explained. The buffered hydrofluoric acid solution in the buffered hydrofluoric acid solution tank 24 containing the buffered hydrofluoric acid solution described in the claims of the present invention is atomized by the buffered hydrofluoric acid atomizing device 23, and this mist is passed through the pipe 25. The converted gas is transferred to chamber 2.
Transport to 0.

この霧状化気体により、Siウェハ支えピン22上のS
iウェハー21を処理し、自然酸化膜を除去する。
This atomized gas causes the S on the Si wafer support pin 22 to
The i-wafer 21 is processed to remove the native oxide film.

この装置によれば、第1の実施例で得られたと同じ効果
が得られ、更に、消費されるバッファードフッ酸溶液は
低減されるという利点を有する。
According to this device, the same effects as obtained in the first embodiment can be obtained, and the additional advantage is that the consumed buffered hydrofluoric acid solution is reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、フッ化水素の含有率が0
.5%以下のバッファードフッ酸溶液に対するチタンシ
リサイド膜のエツチングレートはシリコン酸化膜のエツ
チングレートよりも小さくなるという特性を用いること
により、チタンシリサイド膜の除去量が従来よりも少な
くて、シリコン表面の自然酸化膜が除去できる。
As explained above, the present invention has a hydrogen fluoride content of 0.
.. By using the characteristic that the etching rate of a titanium silicide film in a buffered hydrofluoric acid solution of 5% or less is lower than that of a silicon oxide film, the amount of titanium silicide film removed is smaller than before, and the silicon surface can be removed. Natural oxide film can be removed.

したがって、良好なシリコン半導体/金属配線接続、及
びチタンシリサイド/金属配線接続が得られ、半導体装
置の特性が向上するという効果がある。
Therefore, good silicon semiconductor/metal wiring connections and titanium silicide/metal wiring connections can be obtained, and the characteristics of the semiconductor device are improved.

含有Aρ配線、21・・・・・・Siウェハ、20・・
・・・・チャンバー 22・・・・・・Siウェハ支え
ピン、23・・・・・・バッファードフッ酸溶液霧状化
装置、24・・・・・・バッファードフッ酸タンク、2
5・・・・・・パイプ。
Containing Aρ wiring, 21... Si wafer, 20...
... Chamber 22 ... Si wafer support pin, 23 ... Buffered hydrofluoric acid solution atomization device, 24 ... Buffered hydrofluoric acid tank, 2
5...Pipe.

代理人 弁理士  内 原   晋Agent: Patent Attorney Susumu Uchihara

【図面の簡単な説明】 第1図(a)〜(h)は本発明の第1の実施例を説明す
るためのシリコン半導体装置の縦断面図である。第2図
は本発明の第2の実施例に用いた自然酸化膜除去装置を
説明するための縦断面図である。 第3図は従来の技術の問題点を説明するために用いた、
シリコン半導体装置の縦断面図である。第4図は本発明
のバッファードフッ酸溶液の特性を説明するグラフであ
る。 11・・・・・・素子分離酸化膜、10・・・・・・S
i基板、12・・・・・・N+拡散層、13・・・・・
・酸化膜、14・・・・・・Ti膜、15・・・・・・
Tiシリサイド膜、16・・・・・・層間絶縁膜、17
・・・・・・コンタクト穴、18・・・・・・Si/7
コンタクト穴 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1(a) to 1(h) are longitudinal sectional views of a silicon semiconductor device for explaining a first embodiment of the present invention. FIG. 2 is a longitudinal cross-sectional view for explaining a natural oxide film removing apparatus used in a second embodiment of the present invention. Figure 3 is used to explain the problems of the conventional technology.
FIG. 2 is a longitudinal cross-sectional view of a silicon semiconductor device. FIG. 4 is a graph explaining the characteristics of the buffered hydrofluoric acid solution of the present invention. 11...Element isolation oxide film, 10...S
i-substrate, 12...N+ diffusion layer, 13...
・Oxide film, 14...Ti film, 15...
Ti silicide film, 16...Interlayer insulating film, 17
...Contact hole, 18...Si/7
Contact hole diagram 1

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面の一部にチタンシリサイド膜を
形成する工程と、フッ化水素の含有率 (フッ化水素/フッ化アンモニウム+フッ化水素(重量
比))が0.5%以下であるようなフッ化アンモニウム
、フッ化水素及び水とからなるバッファードフッ酸溶液
により上記半導体基板をエッチングする工程とを含むこ
とを特徴とする半導体装置の製造方法。
(1) The process of forming a titanium silicide film on a part of the surface of the semiconductor substrate and the hydrogen fluoride content (hydrogen fluoride/ammonium fluoride + hydrogen fluoride (weight ratio)) of 0.5% or less. A method for manufacturing a semiconductor device, comprising the step of etching the semiconductor substrate with a buffered hydrofluoric acid solution containing ammonium fluoride, hydrogen fluoride, and water.
(2)半導体基板に設けられた拡散層表面上の一部にチ
タンシリサイド膜を形成する工程と、前記半導体基板全
面に層間絶縁膜を形成する工程と、金属配線と前記拡散
層との接続及び、前記金属配線と前記チタンシリサイド
膜との接続をとるためのコンタクト穴を前記層間絶縁膜
に設ける工程と、フッ化水素の含有率(フッ化水素/フ
ッ化アンモニウム+フッ化水素(重量比))が0.5%
以下であるようなフッ化アンモニウム、フッ化水素、及
び水とからなるのバッファードフッ酸溶液により前記半
導体基板をエッチングする工程と、前記金属配線を形成
する工程とを含むことを特徴とする半導体装置の製造方
法。
(2) forming a titanium silicide film on a part of the surface of the diffusion layer provided on the semiconductor substrate; forming an interlayer insulating film on the entire surface of the semiconductor substrate; and connecting metal wiring and the diffusion layer; , a step of providing a contact hole in the interlayer insulating film for connecting the metal wiring and the titanium silicide film, and a hydrogen fluoride content (hydrogen fluoride/ammonium fluoride + hydrogen fluoride (weight ratio)). ) is 0.5%
A semiconductor characterized by comprising the following steps: etching the semiconductor substrate with a buffered hydrofluoric acid solution consisting of ammonium fluoride, hydrogen fluoride, and water; and forming the metal wiring. Method of manufacturing the device.
JP1106253A 1989-04-25 1989-04-25 Method for manufacturing semiconductor device Expired - Fee Related JP2522389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106253A JP2522389B2 (en) 1989-04-25 1989-04-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106253A JP2522389B2 (en) 1989-04-25 1989-04-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02284423A true JPH02284423A (en) 1990-11-21
JP2522389B2 JP2522389B2 (en) 1996-08-07

Family

ID=14428940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106253A Expired - Fee Related JP2522389B2 (en) 1989-04-25 1989-04-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2522389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215436A (en) * 1990-12-14 1992-08-06 Shin Etsu Handotai Co Ltd Washing of silicon and its apparatus
US6210489B1 (en) 1996-03-05 2001-04-03 Micron Technology, Inc. Methods and etchants for etching oxides of silicon with low selectivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215436A (en) * 1990-12-14 1992-08-06 Shin Etsu Handotai Co Ltd Washing of silicon and its apparatus
US6210489B1 (en) 1996-03-05 2001-04-03 Micron Technology, Inc. Methods and etchants for etching oxides of silicon with low selectivity
US6399504B1 (en) 1996-03-05 2002-06-04 Micron Technology, Inc. Methods and etchants for etching oxides of silicon with low selectivity

Also Published As

Publication number Publication date
JP2522389B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
JP2937817B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device
EP0032024B1 (en) Process for producing semiconductor devices, devices produced by the process, and circuits and articles including such devices
US5876796A (en) Process for selectively depositing a refractory metal silicide on silicon, and silicon wafer metallized using this process
JPH10223900A (en) Semiconductor device and its manufacture
JPH0381298B2 (en)
JP2903884B2 (en) Semiconductor device manufacturing method
KR100444811B1 (en) Method of forming a conductive silicide layer on a silicon comprising substrate and method of forming a conductive silicide contact
US5652172A (en) Method for controlling the etch profile of an aperture formed through a multi-layer insulator layer
JPH02284423A (en) Manufacture of semiconductor device
JP2002217414A (en) Semiconductor device and its manufacturing method
JPH0298133A (en) Cleaning method for semiconductor substrate
JPS61139026A (en) Production of semiconductor device
JPH11288923A (en) Trench forming method and manufacture thereof
JPH01187847A (en) Forming method for capacitor
RU1389603C (en) Method of manufacturing metallization of integral circuits
JPS6197825A (en) Manufacture of semiconductor device
JPH0799178A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01109727A (en) Semiconductor device and manufacture thereof
JPH07283218A (en) Interlayer film flattening method
JPH0232537A (en) Manufacture of semiconductor device
JPH03105916A (en) Manufacture of semiconductor device
JPH0817762A (en) Manufacture of semiconductor device
JPH0729852A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees