JPH02283783A - Fine, sintered alumina abrasive made by using fine high-purity alpha-alumina powder prepared from aluminum ammonium carbonate, and manufacture of the same abrasive - Google Patents
Fine, sintered alumina abrasive made by using fine high-purity alpha-alumina powder prepared from aluminum ammonium carbonate, and manufacture of the same abrasiveInfo
- Publication number
- JPH02283783A JPH02283783A JP19795289A JP19795289A JPH02283783A JP H02283783 A JPH02283783 A JP H02283783A JP 19795289 A JP19795289 A JP 19795289A JP 19795289 A JP19795289 A JP 19795289A JP H02283783 A JPH02283783 A JP H02283783A
- Authority
- JP
- Japan
- Prior art keywords
- abrasive
- alumina
- fine
- ammonium carbonate
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000000843 powder Substances 0.000 title claims abstract description 27
- IOGARICUVYSYGI-UHFFFAOYSA-K azanium (4-oxo-1,3,2-dioxalumetan-2-yl) carbonate Chemical compound [NH4+].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O IOGARICUVYSYGI-UHFFFAOYSA-K 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000000227 grinding Methods 0.000 claims description 49
- 239000003082 abrasive agent Substances 0.000 claims description 25
- 239000006061 abrasive grain Substances 0.000 claims description 25
- 238000005245 sintering Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 16
- 238000010304 firing Methods 0.000 claims description 11
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 18
- 239000002245 particle Substances 0.000 abstract description 18
- 239000002270 dispersing agent Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 239000011163 secondary particle Substances 0.000 abstract description 3
- 239000011164 primary particle Substances 0.000 abstract description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 235000012501 ammonium carbonate Nutrition 0.000 abstract 1
- 239000001099 ammonium carbonate Substances 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- 239000011230 binding agent Substances 0.000 description 15
- 239000002002 slurry Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000005388 borosilicate glass Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229920001353 Dextrin Polymers 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 235000019425 dextrin Nutrition 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100145155 Escherichia phage lambda cIII gene Proteins 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Sealing Material Composition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は砥石、研摩布紙等として利用されるアルミナ質
研摩材特に砥粒、及びその製法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alumina abrasive material, particularly abrasive grains, used as a grindstone, coated abrasive paper, etc., and a method for producing the same.
[従来技術及び課題]
従来、アルミナ質研摩材は、アルミナ原11ヲ11を気
炉で溶融する方法(溶融法)、又は原料の融点より充分
に低い温度で焼結する方法(焼結法)によって製造され
ていた。これらの場合、省エネルギーの見地からは焼結
法が好ましい。焼結法の典型例としては、ボーキサイト
粉を原料として用い、これを射出成形した後、 150
0−1600’cで焼成し、砥粒を製造する方法がある
が、−船釣にこの砥粒は、スラブ研削等の重研削にしが
利用されていない。従って、溶融法の砥粒は省エネルギ
ーの見地からは難点がありながら、一般の精密研削では
比較的研削性能に優れる砥粒が得られるので多用される
。[Prior Art and Problems] Conventionally, alumina abrasives have been produced using a method of melting alumina raw materials 11 to 11 in an air furnace (melting method), or a method of sintering at a temperature sufficiently lower than the melting point of the raw materials (sintering method). was manufactured by. In these cases, the sintering method is preferred from the viewpoint of energy saving. A typical example of the sintering method is to use bauxite powder as a raw material, and after injection molding,
There is a method of producing abrasive grains by firing at 0-1600'c, but this abrasive grain is not used for heavy grinding such as slab grinding in boat fishing. Therefore, although abrasive grains produced by the fusion method have drawbacks from the viewpoint of energy saving, they are often used in general precision grinding because they yield abrasive grains with relatively excellent grinding performance.
近年、より低温で焼結されたアルミナ質研摩材を得るた
めに2種々の研究、提案がなされている。例えば、特開
昭58−32369には、原料(アルミナ−水和物)を
−旦ゲル化した後、焼成することが開示されている。し
かし、この方法によって得られた砥粒は研摩布紙として
は有効であるが。In recent years, two types of research and proposals have been made to obtain alumina abrasives sintered at lower temperatures. For example, JP-A-58-32369 discloses that a raw material (alumina hydrate) is first gelled and then fired. However, the abrasive grains obtained by this method are effective as a coated abrasive paper.
研削砥石用としては不向きである。It is not suitable for use as a grinding wheel.
本発明は上記従来技術とは全く別異の手段によって、精
密研削に好ましく利用できる高硬度。The present invention provides high hardness that can be preferably used for precision grinding by means completely different from the above-mentioned conventional technology.
高純度、高密度なアルミナ質研摩材を開発することを目
的とする。The aim is to develop high-purity, high-density alumina abrasives.
[課題の解決手段]
本発明者は、従来の焼結法の一般的な原料であるアルミ
ナ水和物(ベーマイト系)とは全く別異の原料のアルミ
ニウムアンモニウム炭酸塩より製造した高純度易焼結性
α−アルミナ微粉を成形し焼結するか又は加圧焼結(ホ
ットプレス法またはHIP法)させる事によって緻密で
、かつサブミクロンの結晶粒子を持つ研摩砥粒を製造す
ることができ、かつその砥粒を用いて製造した研削砥石
や研摩布紙の研削性能が優れている事を見い出したもの
である。即ち2本発明は上述の課題を下記手段によって
解決した。[Means for solving the problem] The present inventor has developed a high-purity, easy-to-sinter product made from aluminum ammonium carbonate, which is a completely different raw material from alumina hydrate (boehmite type), which is a common raw material for conventional sintering methods. Abrasive grains with dense and submicron crystal grains can be produced by molding and sintering the crystallized α-alumina fine powder or by pressure sintering (hot press method or HIP method). Furthermore, it has been discovered that the grinding wheels and abrasive paper produced using the abrasive grains have excellent grinding performance. That is, the present invention has solved the above-mentioned problems by the following means.
(1)アルミニウムアンモニウム炭酸塩を熱分解してな
る微細α−アルミナ粉体を原料とし、 1400’c以
下の温度で焼結することを特徴とするアルミナ質焼結研
摩材の製造方法。(1) A method for producing an alumina sintered abrasive material, which uses fine α-alumina powder obtained by thermally decomposing aluminum ammonium carbonate as a raw material, and sintering it at a temperature of 1400'C or less.
(2)アルミニウムアンモニウム炭酸塩を熱分解してな
る微細α−アルミナ粉体を原料とし、 1400’C以
下の温度で加圧焼結させることを特徴とするアルミナ質
焼結研摩材の製造方法。特に、加圧焼結するにあたり、
六方晶窒化ホウ素(HB N)粒を圧搾用媒体として混
合する製造方法。(2) A method for producing an alumina-based sintered abrasive material, which uses fine α-alumina powder obtained by thermally decomposing aluminum ammonium carbonate as a raw material and sinters it under pressure at a temperature of 1400'C or less. In particular, when performing pressure sintering,
A manufacturing method in which hexagonal boron nitride (HBN) grains are mixed as a squeezing medium.
(3)上記製法によって純度99.8%以上、平均結晶
粒径0.1〜1.OJZm (好ましく ハ0.2〜1
.On) 。(3) By the above manufacturing method, the purity is 99.8% or more, and the average crystal grain size is 0.1-1. OJZm (preferably Ha0.2~1
.. On).
対理論相対密度95%以上(密度3.80g/cJ以上
に相当)、及び硬度210Pa以上の特性を有するアル
ミナ質研摩材が得られ、これを研摩粒として用いてなる
研削砥石又は研摩布紙は極めて優れた研削性能を有する
。An alumina abrasive material having a relative density of 95% or more relative to theory (equivalent to a density of 3.80 g/cJ or more) and a hardness of 210 Pa or more can be obtained, and a grinding wheel or coated abrasive paper made using this as abrasive grains can be obtained. It has extremely excellent grinding performance.
[好適な実施態様及び作用]
A−1,研摩材の製法(手段1)
本発明の手段1の製造方法において、加圧成形、射出成
形でもよいが、下記鋳込み成形法をもって製造すれば、
工程的にも簡便であり、低コストであるため、工業的量
産の見地からも好ましいので、以下にその鋳込み法によ
る研摩材の製造方法について述べる。[Preferred Embodiments and Effects] A-1. Manufacturing method of abrasive material (means 1) In the manufacturing method of means 1 of the present invention, pressure molding or injection molding may be used, but if manufactured by the following casting molding method,
Since the process is simple and low cost, it is preferable from the viewpoint of industrial mass production, and therefore, a method for producing an abrasive by the casting method will be described below.
特に、この製法は第1図に示すような手順で行なうとよ
い。但し1本発明の要旨を変更しない限り、他の態様を
包含することは勿論である。例えば、同図中[]で示し
た工程を省略しても良い。In particular, this manufacturing method is preferably carried out according to the procedure shown in FIG. However, as long as the gist of the present invention is not changed, it goes without saying that other embodiments may be included. For example, the steps indicated by brackets [ ] in the figure may be omitted.
(1)原料の用意
アルミニウムアンモニウム炭酸塩を熱分解してなる微細
α−アルミナ粉体を主原料とする(例えば特公昭5B−
9447) 。特に、特開昭81−201[i19テ開
示された易焼結性アルミナ粉体、即ち(a) 1350
℃以下の温度で常圧または減圧下に焼結したときに、理
論密度の98%以上の緻密質焼結体を与えるものである
こと、(b)直径0.2−以下の一次粒子が80%以上
(個数基準)が含まれていること。(1) Preparation of raw materials The main raw material is fine α-alumina powder obtained by thermally decomposing aluminum ammonium carbonate (for example,
9447). In particular, the easily sinterable alumina powder disclosed in JP-A-81-201 [i19te], namely (a) 1350
When sintered at a temperature below ℃ under normal pressure or reduced pressure, it should give a dense sintered body with a theoretical density of 98% or more, (b) primary particles with a diameter of 0.2- or less % or more (based on quantity).
(C)平均二次粒子径が0.25μl以下であり、かっ
粒径0,2μm以下の粒子が40重量%以上含まれてい
ること、(d)アルミナが実質的にα−アルミナである
こと、を充足するものが好ましい。(C) The average secondary particle size is 0.25 μl or less, and the content of particles with a secondary particle size of 0.2 μm or less is 40% by weight or more; (d) The alumina is substantially α-alumina. , is preferable.
(2)混合
上記(1)微細α−アルミナ粉体を水1分散剤と混合し
て、スラリー化する。分散剤はスラリを安定化する為に
配合する。分散剤は、公知の有機系のものを適宜使用し
、アニオン系のものが良い。バインダーを適宜少量で添
加してもよいが。(2) Mixing The above (1) fine α-alumina powder is mixed with water and a dispersant to form a slurry. A dispersant is added to stabilize the slurry. As the dispersant, a known organic type can be used as appropriate, and an anionic type is preferable. A binder may be added in a small amount as appropriate.
高密度の研摩材とするためには無添加が好ましい。又、
焼結助剤例えばMgOを1νt%以下適宜添加してもよ
い。混合手段としてはボールミル等が利用され、α−A
i!203a!体を用いる。媒体の粒径は5〜25 a
mの範囲のものを選択するとよい。混合時間は、媒体の
粒径等によって異なるが、 10時間以上が好ましい。In order to obtain a high-density abrasive, it is preferable not to add any additives. or,
A sintering aid such as MgO may be added as appropriate in an amount of 1vt% or less. A ball mill or the like is used as a mixing means, and α-A
i! 203a! Use your body. The particle size of the medium is 5-25 a
It is preferable to select one within the range of m. The mixing time varies depending on the particle size of the medium, etc., but is preferably 10 hours or more.
(3)成形
成形方法としては、−船釣に従来は、射出又は加圧成形
によって行なわれ、これによって塊状。(3) Molding As a molding method, conventionally for boat fishing, injection or pressure molding is used, thereby forming a block.
板状等に成形されていた。本発明によれば、これらの方
法でもよいが、前記原料については特に鋳込み成形が好
ましく適用できることを見い出した。この鋳込み成形は
、射出又は加圧成形等に比して薄いシート状のものを容
易に得ることができ、又不純物が入りにくい為、高純度
かつ微細α−A、ezOa研摩材を得るために好適であ
る。It was formed into a plate shape. According to the present invention, although these methods may be used, it has been found that cast molding is particularly preferably applicable to the raw material. Compared to injection molding or pressure molding, this casting molding can easily obtain thin sheet-like products, and since it is difficult for impurities to enter, it is suitable for obtaining high-purity and fine α-A and ezOa abrasives. suitable.
しかも、工程的にも簡便であり、後の工程で篩分けした
後の所望の粒度以外のものについては5回収、再利用で
きる為、低コストで製造でき、工業的量産の見地からも
好ましい。この鋳込み成形は2例えばポリエチレンシー
ト上にスラリーを流出させることにより 0.2〜0.
3報のひも状又は細い帯状に成形する。Moreover, it is simple in terms of process, and particles having a particle size other than the desired size after sieving in a later step can be recovered and reused, so it can be manufactured at low cost and is preferable from the standpoint of industrial mass production. This casting process is carried out by pouring the slurry onto a polyethylene sheet, for example.
Form into 3 strings or thin strips.
(4)乾燥
乾燥は次の工程である圧潰を容易化するために行なわれ
る。温度は50〜15,0℃に設定するとよい。(4) Drying Drying is carried out to facilitate the next step of crushing. The temperature is preferably set at 50-15.0°C.
(5)予備焼成
処理物について多少強度を出し、より圧潰を容易にする
ために適宜行なわれる。600〜800°Cの温度範囲
で1例えば20〜30分行なえば充分である。(5) Preliminary firing is carried out as appropriate to increase the strength of the pre-fired product and to make it easier to crush. It is sufficient to conduct the reaction for 20 to 30 minutes at a temperature of 600 to 800°C.
(8)圧潰
この圧潰は、衝撃による粉砕によらず圧することにより
1例えば5kg/c−程度の圧力で処理物を容易に50
0μm以下の粒度まで粉末化できる場合をいう。例えば
、不純物の混入を防ぐためセラミックローラ等を用い、
300〜350μmの程度の粉体を得るとよい。(8) Crushing This crushing is performed by compressing the material without crushing it by impact.
This refers to the case where it can be powdered to a particle size of 0 μm or less. For example, ceramic rollers are used to prevent contamination of impurities.
It is preferable to obtain a powder with a diameter of about 300 to 350 μm.
(7)篩分は
振動フルイなと通常のものが使用できる。製品としての
研摩材の粒径よりも多少大きく目開きを設定するとよい
。焼成収縮を考慮すべきだからである。例えば60番の
研摩材の場合45〜55番に設定される。所望の粒径範
囲外のものについては回収・再利用する。(7) For the sieving, a regular vibrating sieve can be used. It is preferable to set the opening to be somewhat larger than the particle size of the abrasive as a product. This is because firing shrinkage should be taken into account. For example, in the case of a No. 60 abrasive, the number is set to No. 45 to No. 55. Particles outside the desired particle size range are collected and reused.
(8)焼成
1200〜1400℃、好ましくは1250〜1350
℃で焼結粒径を適度にコントロールし、異常粒成長の防
止の為、低温で行われる。従って、省エネルギーの見地
から好適であり、酸化雰囲気でよい。(8) Firing at 1200-1400°C, preferably 1250-1350°C
The sintering process is carried out at a low temperature in order to appropriately control the grain size and prevent abnormal grain growth. Therefore, it is suitable from the viewpoint of energy saving, and an oxidizing atmosphere may be used.
(9)篩分は
製品としての整粒のため、適宜行なわれる。たとえば5
0〜60番(300〜250μ−)に整粒される。(9) Sieving is carried out as appropriate in order to size the product. For example 5
The grains are sized to numbers 0 to 60 (300 to 250 μ-).
A−2,研摩剤の製法(手段2)
本発明の手段2の製造方法(加圧焼結)においては、前
述した手段1の手順とほぼ同様にして行なうとよい。A-2. Manufacturing method of abrasive (means 2) The manufacturing method (pressure sintering) of means 2 of the present invention may be carried out in substantially the same manner as the procedure of means 1 described above.
但し、加圧焼結であるので、別途成形工程を要しないこ
とは勿論である。However, since pressure sintering is used, it goes without saying that a separate molding process is not required.
この加圧焼結においては、アルミナ原料であるα−アル
ミナとして粉体粒度0.05〜0.5μm、好ましくは
0.05〜0.1μmのものを用いるとよい。In this pressure sintering, it is preferable to use α-alumina, which is an alumina raw material, with a powder particle size of 0.05 to 0.5 μm, preferably 0.05 to 0.1 μm.
又、加圧焼結時圧搾媒体として、六方晶窒化ホウ素(H
BN)、黒鉛(C)などの粒子を混合するとよい。例え
ば、HBNの場合1粒度2〜5μ■程度のものを30〜
100%(対α−アルミナ重量比)で配合することが好
ましい。加圧焼結は通常のホットプレス、静水圧プレス
(HI P) 、真空HP(vup)、粉末ビヒクル法
等種々のものを、用途・目的に応じて適宜採用できる。In addition, hexagonal boron nitride (H
It is preferable to mix particles such as BN) and graphite (C). For example, in the case of HBN, one particle size of 2 to 5 μ■ is
It is preferable to blend it at 100% (weight ratio to α-alumina). For pressure sintering, various methods such as ordinary hot press, hydrostatic press (HIP), vacuum HP (VUP), powder vehicle method, etc. can be employed as appropriate depending on the use and purpose.
加圧焼結における温度条件等については3例えば(普通
)ホットプレスの場合
温度 1100〜1300℃
圧力 200〜400kg f/ cd雰囲気 Ar
(アルゴン)又はN2 (窒素)又、HIPの場
合
温度 1000〜1300℃
圧力 200〜1500kg f/ cd雰囲気
Ar、N2又は0□
にするとよい。Regarding temperature conditions etc. in pressure sintering, see 3. For example, in the case of (normal) hot press, temperature: 1100-1300℃ Pressure: 200-400kg f/cd atmosphere: Ar
(Argon) or N2 (Nitrogen) Also, in the case of HIP, temperature: 1000-1300℃ Pressure: 200-1500kg f/cd atmosphere
It is preferable to set it to Ar, N2 or 0□.
また、原料としてのα−M203粉末の高純度化(99
,99%以上)によって従来の低純度の場合に比し、よ
り低い温度(1200℃程度)でアルミナの焼結が可能
になった。In addition, we have also improved the purity of α-M203 powder as a raw material (99
, 99% or more) makes it possible to sinter alumina at a lower temperature (approximately 1200°C) compared to conventional low-purity cases.
B、研摩材
こうして得られる本発明の研摩材は、高純度であり、そ
の全体に亘ってコランダム(α−アルミナ)の微細かつ
均一な構造となっている。即ち。B. Abrasive material The abrasive material of the present invention thus obtained has high purity and has a fine and uniform structure of corundum (α-alumina) throughout. That is.
純度99.89fi、更には99.9%以上、平均結晶
粒径0.1〜1.0μm(サブミクロンオーダ)、更に
は0.2〜0.4μm、対理論相対密度95%以上、更
には98%以上、硬度21GPa 、更には23GPa
以上の研摩材として得ることができる。しかも、各結晶
について、その粒径が揃っているもの、特に全結晶の8
0%以上が上下限の幅0.2μ■の範囲に含まれるもの
(例えば、平均結晶粒径が0.5μmの場合、0.3〜
0.7μm)を容易に得ることができる。この研摩材は
、白色半透明で外観につやがあり2 また特に高性能精
密研削に適している。Purity 99.89fi, more than 99.9%, average grain size 0.1 to 1.0 μm (submicron order), even 0.2 to 0.4 μm, relative density to theory 95% or more, and 98% or more, hardness 21GPa, even 23GPa
It can be obtained as the above abrasive material. Moreover, each crystal has a uniform grain size, especially 8 of all crystals.
0% or more is included in the range of upper and lower limits of width 0.2 μm (for example, if the average crystal grain size is 0.5 μm, 0.3~
0.7 μm) can be easily obtained. This abrasive material is white, translucent, and has a glossy appearance.2 It is also particularly suitable for high-performance precision grinding.
C1砥石
上記研摩材を用い1例えば次のようにして優れた研削性
能を有する砥石を得ることができる。結合剤としては、
ビトリファイド結合剤を使用するとよい。ビトリファイ
ド結合剤には、ガラス質。C1 Grindstone Using the above abrasive material, a grindstone having excellent grinding performance can be obtained, for example, in the following manner. As a binder,
A vitrified binder may be used. Vitrified bonding agent has vitreous properties.
結晶質のものを包含する。特に1200℃以下、好まし
くは1100℃以下で焼成可能なものを使用するとよい
。ビトリフッイド結合剤の組成例としては。Includes crystalline substances. In particular, it is preferable to use a material that can be fired at a temperature of 1200°C or lower, preferably 1100°C or lower. Examples of compositions of vitrifluid binders include:
例えばホウケイ酸ガラス系、鉛−ホウケイ酸ガラス系の
ガラスが挙げられる。又、結晶化ガラスでもよい。砥石
のバインダとして有機接着剤例えばデキストリン等を添
加するとよい。これらの調合割合は、用途等に応じて適
宜選択される。Examples include borosilicate glass and lead-borosilicate glass. Alternatively, crystallized glass may be used. It is preferable to add an organic adhesive such as dextrin as a binder for the grindstone. These blending ratios are appropriately selected depending on the application and the like.
次に、これらの配合物を混合した後、成形に供する。成
形は好ましくは2〜3g/ctR程度の密度にするとよ
い。保持体表面に薄膜状のものとして形成させる場合に
は、鋳込成形を利用してもよい。次に、 1200℃以
下、好ましくは1100 ’C以下の低温で焼成される
。酸化雰囲気で行う。Next, after mixing these compounds, they are subjected to molding. The molding is preferably carried out at a density of about 2 to 3 g/ctR. When forming a thin film on the surface of the holder, casting may be used. Next, it is fired at a low temperature of 1200°C or less, preferably 1100'C or less. Perform in an oxidizing atmosphere.
こうして得られる研削砥石は、砥粒率20〜50%、気
孔率40〜80%の広範囲のものとして得る事ができる
。The grinding wheel thus obtained can have a wide range of abrasive grain ratios of 20 to 50% and porosity of 40 to 80%.
本発明の研削砥石は、工具、ダイス、耐熱合金等の精密
研削に好適に利用できる。尚、研摩布紙等、他の研摩材
としても有用である。The grinding wheel of the present invention can be suitably used for precision grinding of tools, dies, heat-resistant alloys, and the like. In addition, it is also useful as other abrasive materials such as abrasive cloth paper.
[実施例] 以下2本発明を実施例に基づいて説明する。[Example] The present invention will be explained below based on two examples.
尚、実施例1は2本発明の鋳込み製法で製造した研磨材
でビトリファイド砥石を製造し、従来の溶融型研摩材と
研削性能を比較した例である。実施例2は、原料を加圧
成形したものを1400℃以下の焼成温度で焼成して製
造した研摩材で研摩布紙を製造し、同じく溶融型研摩材
と研削性能を比較した例である。実施例3は加圧焼結の
例である。In addition, Example 1 is an example in which a vitrified grindstone was manufactured using an abrasive material manufactured by the casting method of the present invention, and its grinding performance was compared with that of a conventional melt-type abrasive material. Example 2 is an example in which a coated abrasive paper was manufactured using an abrasive material produced by press-molding raw materials and firing at a firing temperature of 1400° C. or lower, and the grinding performance was compared with that of a similar melt-type abrasive material. Example 3 is an example of pressure sintering.
実施例1
内容積500 mlのプラスチック重合体容器の中にα
−アルミナ微粉(大切化学工業■製;タイミクロンTM
−DR) 100gと純水35.1mj、分散剤とし
てポリカルボン酸型アンモニウム塩(東亜合成■製;ア
ロンA −6114) 0.9g 、そして媒体とし
てアルミナボール200gを入れて約18時間分散混合
処理を行い、アルミナのスラリーを調製した。Example 1 α was placed in a plastic polymer container with an internal volume of 500 ml.
- Alumina fine powder (manufactured by Daiki Kagaku Kogyo ■; Taimicron TM)
-DR) 100 g, 35.1 mj of pure water, 0.9 g of polycarboxylic acid type ammonium salt (manufactured by Toagosei ■; Aron A-6114) as a dispersant, and 200 g of alumina balls as a medium were mixed for about 18 hours. An alumina slurry was prepared.
その後、このスラリーと媒体とを分離した後、真空容器
の中にスラリーを移し約20分間真空脱泡を行ない試験
用スラリーとした。そのスラリーをポリエチレン製シー
トの上に、厚さ約0.3mm程度に延ばした後、直ちに
乾燥機(約100’C)中で乾燥した。この乾燥物を電
気炉に入れ、この電気炉を約20℃/m1nの昇温速度
で700’Cまで加熱し、同温で30分間予備焼成した
。この予備焼成物をローラーで圧潰し、所望の粒度にふ
るい分は後、再び電気炉に入れ、約17℃/winの昇
温速度で1350’Cまで加熱し、同温で約60分間焼
成した。この焼成物は平均結晶粒径0.2〜0,5μm
のα−アルミナの微結晶構造の組織を有し、硬度(ビッ
カース値)22GPa 、密度3.94を有していた。After separating this slurry from the medium, the slurry was transferred into a vacuum container and vacuum defoamed for about 20 minutes to obtain a test slurry. The slurry was spread on a polyethylene sheet to a thickness of about 0.3 mm and immediately dried in a dryer (about 100'C). This dried product was placed in an electric furnace, heated to 700'C at a temperature increase rate of about 20C/m1n, and pre-baked at the same temperature for 30 minutes. This pre-fired product was crushed with a roller and sieved to the desired particle size, then put into the electric furnace again, heated at a temperature increase rate of about 17°C/win to 1350'C, and baked at the same temperature for about 60 minutes. . This fired product has an average crystal grain size of 0.2 to 0.5 μm.
It had a microcrystalline structure of α-alumina, a hardness (Vickers value) of 22 GPa, and a density of 3.94.
この組成物から60番の砥粒をふるい分けし、その砥粒
を用いてビトリファイド砥石を次のように製造した。No. 60 abrasive grains were sieved from this composition, and a vitrified whetstone was manufactured using the abrasive grains in the following manner.
研摩粒89.9重量部に、ビトリファイド結合剤100
1重量部、デキストリン(存機バインダ)3.lffl
ffi部を添加、混合後、加圧して成形密度2.20f
/cIIIに成形した。次に、この生砥石を電気炉に入
れ、50℃/Ilrの昇温速度で[100℃まで加熱し
。89.9 parts by weight of abrasive grains, 100 parts by weight of vitrified binder
1 part by weight, dextrin (existing binder) 3. lffl
After adding and mixing ffi part, pressurize to mold density 2.20f
/cIII. Next, this green grindstone was placed in an electric furnace and heated to 100°C at a temperature increase rate of 50°C/Ilr.
同温で6時間焼成した。その後、加熱を止め、炉内で密
閉放冷した。ビトリファイド結合剤としては、長石、粘
土およびフリットガラス(ホウケイ酸ガラス)から成る
ものを用いた。得られた研削砥石は砥粒4B、9体積%
、結合剤8.1体積%、残部気孔であり、比重は2.0
6である。尚、砥石車(研削砥石)寸法は、外径20h
mX厚み19關×内径78 、2 ff1mとした。It was baked at the same temperature for 6 hours. Thereafter, heating was stopped, and the mixture was left to cool in a sealed furnace. The vitrified binder used consisted of feldspar, clay and frit glass (borosilicate glass). The obtained grinding wheel had abrasive grains 4B and 9% by volume.
, binder 8.1% by volume, remainder pores, specific gravity 2.0
It is 6. In addition, the dimensions of the grinding wheel (grinding wheel) are outer diameter 20h.
m x thickness 19 mm x inner diameter 78 mm, 2 ff 1 m.
次に、この研削砥石について研削試験を行なった。尚、
比較のため、実施例の砥石と同じ砥粒。Next, a grinding test was conducted on this grinding wheel. still,
For comparison, the same abrasive grains as the whetstone used in the example.
結合剤の含有率(46,9%、8.1%)を有し、従っ
て比重も同じ<2.08)の溶融アルミナ型単結晶砥粒
(太平洋ランダム側製132A)からなる同形状。The same shape consists of fused alumina type single crystal abrasive grains (132A manufactured by Pacific Random) with binder content (46.9%, 8.1%) and therefore the same specific gravity <2.08).
同寸法の砥石を用いた。Grinding wheels of the same size were used.
試験条件は次の通りである:
機 械:岡本平研CF G −52A N砥石周速:
2000m / 1n 、 1fi00m / 1n
切込ミニ Δ” 20gm/ pass、 ΔR10μ
m/ passの乾式プランジDown Cut
被削材: 5KD−1(HRc80)
寸法:長さ 100x高さ50X幅10(ffim)披
削幅:10m+。The test conditions are as follows: Machine: Okamoto Heiken CF G-52A N Grinding wheel peripheral speed:
2000m/1n, 1fi00m/1n
Cutting mini Δ” 20gm/pass, ΔR10μ
m/pass dry plunge Down Cut Work material: 5KD-1 (HRc80) Dimensions: Length 100 x Height 50 x Width 10 (ffim) Cutting width: 10m+.
ド し スニ単石ダイヤドレッサー この結果を表1に示す。Doshi Suni single stone diamond dresser The results are shown in Table 1.
表 1
表1から明らかなように1本実施例の砥石は単結晶32
A溶融アルミナからなる比較例の砥石に比して研削比が
3.6〜4.0倍であり2面粗さは同程度、電力消費量
及び騒音は低く、シかも研削焼けが少ない等極めて優れ
た研削性能を示した。Table 1 As is clear from Table 1, the grinding wheel of this example was single crystal 32
Compared to the comparative grinding wheel made of fused alumina, the grinding ratio is 3.6 to 4.0 times higher, the roughness on two surfaces is the same, the power consumption and noise are lower, and there is less grinding burn. It showed excellent grinding performance.
実施例2
α−アルミナ粉末(大明化学■製;タイミクロンTM−
DS)を金型につめ、プレス成形圧1ton/cj、成
形密度2.24g/c+8.成形寸法外径5O−lX厚
さ1 amに成形した。この成形体を電気炉に入れ、昇
温速度3℃/m1nで400℃まで加熱し、同温で2時
間脱脂後、更に20℃/m1nの昇温速度で約700℃
まで加熱し、同温で30分間予備焼成した。この予備焼
成物をロールクラッシャで圧潰じ、所望の粒度にふるい
分は後、再び電気炉に入れ、昇温速度20℃/mlnで
1350℃まで加熱し、同温で60分間焼成した。更に
、同条件下、 1250℃。Example 2 α-Alumina powder (manufactured by Daimei Chemical ■; Taimicron TM-
DS) into a mold, press molding pressure 1 ton/cj, molding density 2.24 g/c+8. It was molded to have an outer diameter of 50-1 x a thickness of 1 am. This molded body was placed in an electric furnace, heated to 400°C at a temperature increase rate of 3°C/m1n, degreased at the same temperature for 2 hours, and then heated to approximately 700°C at a temperature increase rate of 20°C/m1n.
and pre-baked at the same temperature for 30 minutes. This pre-fired product was crushed with a roll crusher and sieved to a desired particle size, then put into the electric furnace again, heated to 1350°C at a temperature increase rate of 20°C/mln, and fired at the same temperature for 60 minutes. Furthermore, under the same conditions, at 1250°C.
1300℃の温度で焼成した。こうして得られた焼成物
の特性を表2に示す。It was fired at a temperature of 1300°C. Table 2 shows the characteristics of the fired product thus obtained.
表 2
次に、 1350℃の焼成物から60番の砥粒をふるい
分は後、その砥粒を用いて外径180mmのファイバー
ディスクを製造し乾式研削を行なった。尚。Table 2 Next, after sieving No. 60 abrasive grains from the 1350° C. fired product, the abrasive grains were used to manufacture a fiber disk with an outer diameter of 180 mm and dry grinding was performed. still.
比較例として、前記例と同様に溶融アルミナ型砥粒(昭
和電工■製;A)からなる同形状、同寸法のファイバー
ディスクを用いた。As a comparative example, a fiber disk of the same shape and size made of fused alumina type abrasive grains (manufactured by Showa Denko ■; A) was used as in the previous example.
この場合の試験条件は次の通りである。The test conditions in this case are as follows.
機 械:サンダー日立P HD −180c研削時間
=1分XIO回
被削材:SPC
寸法:長さlo×高さ 25OX幅10(mm)荷
重:3LBS
この研削率(川明、9〜10分後)及び総研削層につい
て調べ その結果を表3に示す。Machine: Sander Hitachi P HD-180c Grinding time = 1 minute XIO times Work material: SPC Dimensions: Length lo x height 25OX width 10 (mm) load
Heavy: 3LBS The grinding rate (Kawaaki, after 9 to 10 minutes) and total grinding layer were investigated. The results are shown in Table 3.
表 3 表3から明らかなように1本実施例の砥石は。Table 3 As is clear from Table 3, the whetstone of this example was.
比較例の砥石に比して3.45倍の総研態量を示した。It exhibited 3.45 times the amount of total grinding power compared to the comparative example grindstone.
実施例3
内容積1でのプラスチック重合体容器の中にα−アルミ
ナ微粉(大町化学工業■製;タイミクロンT M −D
A R) 273部と純水100部2分散剤として
ポリカルボン酸型アンモニウム塩(東亜合成■製;アロ
ンA−8114) 3部そして媒体としてアルミナボー
ル546部を入れて約20時間分数理合処理を行い、ア
ルミナのスラリーを調製した。Example 3 α-Alumina fine powder (manufactured by Omachi Chemical Industry Co., Ltd.; Taimicron TM-D) was placed in a plastic polymer container with an internal volume of 1.
A R) 273 parts, 100 parts of pure water, 2 parts of polycarboxylic acid type ammonium salt (manufactured by Toagosei ■; Aron A-8114) as a dispersant, and 546 parts of alumina balls as a medium were added and subjected to fractional rational treatment for about 20 hours. An alumina slurry was prepared.
その後、このスラリーと媒体とを分離した後真空容器の
中にスラリーを移し約20分間真空脱泡を行ない試験用
のスラリーとした。そのスラリーをポリエチレン製シー
トの上に、厚さ約0 、3 mm程度に延ばした後、直
ちに乾燥機(約100℃)中で乾燥した。この乾燥物を
ローラーで圧清し、所望の粒度(300〜500μm)
にふるい分は後、−旦、電気炉で約20℃/ winの
昇温速度で700℃迄加熱し、同温で約20分間脱脂し
た。この脱脂品350 gと圧搾用媒体として平均粒径
2〜5−の六方晶窒化ホウ素HBN粉(宇部化学上■;
UBN)200gをビニール袋の中へ入れて手でよく振
り混合した。この混合品を直径250 mm内径80I
IImの円筒形の高温ホットプレス用の金型へ入れ富士
電波工業■製高温加圧焼成炉へセットし、20℃/ w
inの昇温速度で1200℃迄加熱し、同温度で約33
0kgf/C−の圧力をかけ60分間焼成した。焼成後
、焼成物はふるいによって圧搾用媒体の)IBN粉と分
けられ水で超音波洗浄とし、乾燥して製品とした。また
高温ホットプレス条件を変え表4の様に試料魔2〜4も
同様に製造した。この様にして得られた焼成物の特性を
表4に示す。Thereafter, after separating this slurry from the medium, the slurry was transferred into a vacuum container and vacuum defoamed for about 20 minutes to obtain a slurry for testing. The slurry was spread on a polyethylene sheet to a thickness of about 0.3 mm and immediately dried in a dryer (about 100° C.). This dried product is pressed with a roller to obtain the desired particle size (300 to 500 μm).
After that, the sieve was heated to 700°C at a heating rate of about 20°C/win in an electric furnace and degreased at the same temperature for about 20 minutes. 350 g of this degreased product and hexagonal boron nitride HBN powder with an average particle size of 2 to 5 as a pressing medium (Ube Chemical Co., Ltd.;
UBN) 200g was placed in a plastic bag and mixed by shaking well by hand. This mixture is made into a tube with a diameter of 250 mm and an inner diameter of 80I.
Place it in a cylindrical mold for high-temperature hot pressing of IIm, set it in a high-temperature pressure firing furnace made by Fuji Denpa Kogyo ■, and heat it at 20℃/w.
Heated to 1200℃ at a heating rate of
A pressure of 0 kgf/C- was applied and firing was performed for 60 minutes. After firing, the fired product was separated from the IBN powder (the pressing medium) through a sieve, ultrasonically cleaned with water, and dried to obtain a product. In addition, samples 2 to 4 were produced in the same manner as shown in Table 4 under different high-temperature hot press conditions. Table 4 shows the characteristics of the fired product thus obtained.
表 4
上記の様にNα1〜4の焼成物は全て0.1〜0.8μ
のα−アルミナの微結晶構造を有し、高度22GPa以
上、密度3.97以上であり、砥材の色調も。Table 4 As mentioned above, all fired products with Nα1-4 are 0.1-0.8μ
It has a microcrystalline structure of α-alumina, has an altitude of 22 GPa or more, a density of 3.97 or more, and the color tone of the abrasive material.
白色半透明であった。これらの焼成物より80番をふる
い分はビトリフッイド砥石を次の様に製造した。研摩剤
89.7重量部、ビトリファイド結合剤10.3重量部
、デキストリン(有機バインダー)3.151部を添加
、混合後加圧して成形密度2.2゜r / cJに形成
し2合計4ヶ製造した。次にこれらの生砥石を電気炉に
入れ、 50℃/llrの昇温速度で1100℃迄加熱
し、同温で6時間焼成した。その後加熱を止め、炉内で
密閉放冷した。ビトリファイド結合剤としては、長石、
粘度及びフリットガラス(ホウケイ酸ガラス)から成る
ものを用いた。It was white and translucent. From these fired products, a No. 80 sieve was used to produce a vitrifluid grindstone as follows. 89.7 parts by weight of abrasive, 10.3 parts by weight of vitrified binder, and 3.151 parts of dextrin (organic binder) were added, mixed and then pressurized to form a molding density of 2.2゜r/cJ into 2 total 4 pieces. Manufactured. Next, these green grindstones were placed in an electric furnace, heated to 1100°C at a temperature increase rate of 50°C/llr, and fired at the same temperature for 6 hours. Thereafter, heating was stopped and the mixture was left to cool in a sealed furnace. Vitrified binders include feldspar,
A glass made of viscosity and frit glass (borosilicate glass) was used.
得られた研削砥石は、砥粒率46.9体積%、結合剤8
.1体積%、残部気孔であり、比重は2.07である。The obtained grinding wheel had an abrasive grain ratio of 46.9% by volume and a binder of 8%.
.. 1% by volume, the remainder being pores, and the specific gravity is 2.07.
尚、砥石車(研削砥石)寸法は1外径2ooIIIII
I×厚み19■II×内径76.2市とした。In addition, the dimensions of the grinding wheel (grinding wheel) are 1 outer diameter 2ooIII
I x thickness 19mm II x inner diameter 76.2mm.
次に、この研削砥石について、研削試験を行なった。尚
、比較の為、実施例の砥石と同じ砥粒。Next, a grinding test was conducted on this grinding wheel. For comparison, the same abrasive grains as the whetstone used in the example were used.
結合剤の含有率(46,9%、8.1%)を有する溶融
型アルミナ単結晶砥粒(太平洋ランダム■製;32A)
から成る同形状、同寸法の砥石を用いた。Fused alumina single crystal abrasive grains with binder content (46.9%, 8.1%) (manufactured by Pacific Random ■; 32A)
Grinding wheels of the same shape and size were used.
試験条件は次の通りである:
機 械:岡本平研CF G −52A N砥石周速:
2000m / sin
切込み:ΔR20μs/pass
の乾式プランジDown Cut
被削材: 5KD−1(HRc80)
寸法:長さ 100X高さ50X幅10(IIIm)肢
削幅:lOm+s
ド し ス:単石ドレッサー
この結果を表5に示す。The test conditions are as follows: Machine: Okamoto Heiken CF G-52A N Grinding wheel peripheral speed:
2000m/sin Depth of cut: ΔR20μs/pass Dry plunge Down Cut Work material: 5KD-1 (HRc80) Dimensions: Length 100X Height 50X Width 10 (IIIm) Limb cutting width: 1Om+s Doss: Single stone dresser Results are shown in Table 5.
表 5
表5から明らかなように2本実施例の砥石は単結晶32
A溶融アルミナから成る比較例の砥石に比して研削比が
2.2〜3.4倍であり1面粗さ及び電力消費量は同程
度、騒音は低く、シかも研削焼けが少ない等きわめて優
れた研削性能を示した。Table 5 As is clear from Table 5, the grindstones of the two examples were single crystal 32
Compared to the comparative example grindstone made of A-fused alumina, the grinding ratio is 2.2 to 3.4 times higher, the surface roughness and power consumption are the same, the noise is lower, and there is less grinding burn. It showed excellent grinding performance.
[発明の効果]
以上の如く本発明によれば、高純度、微細、緻密であっ
て高硬度の(透光性ある)研摩材を簡便に得ることがで
きる。又、かかる研摩材を用いてなる研削砥石は、工具
、ダイス、耐熱合金等の精密研削に好適に利用でき、市
販の溶融アルミナ砥粒からなる砥石に較べて研削性能に
おいて格段に優れる。従って、大変高価な超砥粒にも代
わり得る精密研削用砥材として極めて有望である。[Effects of the Invention] As described above, according to the present invention, a highly pure, fine, dense, and highly hard (translucent) abrasive material can be easily obtained. Furthermore, a grinding wheel made of such an abrasive material can be suitably used for precision grinding of tools, dies, heat-resistant alloys, etc., and has much better grinding performance than commercially available grinding wheels made of fused alumina abrasive grains. Therefore, it is extremely promising as an abrasive material for precision grinding that can replace very expensive superabrasive grains.
又2本発明の鋳込み成形法を利用すれば、量産性の見地
から好ましく、又1400℃以下の低忍焼成であるので
、省エネルギーの見地からも好ましく、従って工業的価
値も高い。Further, if the cast molding method of the present invention is used, it is preferable from the viewpoint of mass production, and since the firing temperature is low at 1400° C. or less, it is also preferable from the viewpoint of energy saving, and therefore has high industrial value.
第1図は本発明の手段1に係る製法の一例を示すフロー
チャート、そして第2図は同じく手段2に係る製法の一
例を示すフローチャートを夫々表わす。
出願人 株式会社ノリタケカンパニーリミテド代理人
弁理士 加 藤 朝 道第 1 図
α−Aに!203微粉
(アルミニウムアンモニウムカーボネートの熱分解生成
物)第 2 図
α−Ai’20sll粉
(アルミニウムアンモニウムカーボネートの熱分解生成
物)研摩剤FIG. 1 is a flowchart showing an example of the manufacturing method according to Means 1 of the present invention, and FIG. 2 is a flowchart showing an example of the manufacturing method according to Means 2. Applicant Noritake Co., Ltd. Agent Patent Attorney Asahi Kato Michidai 1 See Figure α-A! 203 fine powder (thermal decomposition product of aluminum ammonium carbonate) Figure 2 α-Ai'20sll powder (thermal decomposition product of aluminum ammonium carbonate) Abrasive
Claims (7)
る微細α−アルミナ粉体を原料とし、これを成形し、1
400℃以下の温度で焼成することを特徴とするアルミ
ナ質焼結研摩材の製造方法。(1) Use fine α-alumina powder obtained by thermally decomposing aluminum ammonium carbonate as a raw material, mold it,
A method for producing an alumina sintered abrasive, characterized by firing at a temperature of 400°C or less.
る微細α−アルミナ粉体を原料とし、1400℃以下の
温度で加圧焼結させることを特徴とするアルミナ質焼結
研摩材の製造方法。(2) A method for producing an alumina-based sintered abrasive, which uses fine α-alumina powder obtained by thermally decomposing aluminum ammonium carbonate as a raw material and sinters it under pressure at a temperature of 1400° C. or lower.
、六方晶窒化ホウ素(HBN)粒を圧搾用媒体として混
合する請求項2記載の製造方法。(3) The manufacturing method according to claim 2, wherein hexagonal boron nitride (HBN) grains are mixed as a compression medium when pressurizing and sintering the α-alumina powder.
8%以上、平均結晶粒径0.2〜1.0μm、相対理論
密度95%以上、及び硬度21GPa以上の特性を有す
ることを特徴とするアルミナ質研摩材。(4) Purity obtained by the manufacturing method according to claim 1: 99.
8% or more, an average grain size of 0.2 to 1.0 μm, a relative theoretical density of 95% or more, and a hardness of 21 GPa or more.
8%以上、平均結晶粒径0.1〜1.0μm、相対理論
密度95%以上、及び硬度21GPa以上の特性を有す
ることを特徴とするアルミナ質研摩材。(5) Purity obtained by the manufacturing method according to claim 2: 99.
8% or more, an average grain size of 0.1 to 1.0 μm, a relative theoretical density of 95% or more, and a hardness of 21 GPa or more.
いることを特徴とする研削砥石。(6) A grinding wheel characterized by using the abrasive material according to claim 4 or 5 as abrasive grains.
いることを特徴とする研摩布紙。(7) A coated abrasive paper characterized in that the abrasive material according to claim 4 or 5 is used as abrasive grains.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-277265 | 1988-11-04 | ||
JP27726588 | 1988-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02283783A true JPH02283783A (en) | 1990-11-21 |
Family
ID=17581112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19795289A Pending JPH02283783A (en) | 1988-11-04 | 1989-08-01 | Fine, sintered alumina abrasive made by using fine high-purity alpha-alumina powder prepared from aluminum ammonium carbonate, and manufacture of the same abrasive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02283783A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440187B1 (en) * | 1998-01-08 | 2002-08-27 | Nissan Chemical Industries, Ltd. | Alumina powder, process for producing the same and polishing composition |
JP2002331462A (en) * | 2001-05-10 | 2002-11-19 | Mizuho:Kk | Grinding stone for super-finishing |
CN101870482A (en) * | 2010-05-21 | 2010-10-27 | 焦作市宏程先进陶瓷科技有限公司 | High-purity ammonium aluminum carbonate hydroxide as precursor of high-purity easy-sintering aluminum oxide ceramic powder and preparation process thereof |
-
1989
- 1989-08-01 JP JP19795289A patent/JPH02283783A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440187B1 (en) * | 1998-01-08 | 2002-08-27 | Nissan Chemical Industries, Ltd. | Alumina powder, process for producing the same and polishing composition |
JP2002331462A (en) * | 2001-05-10 | 2002-11-19 | Mizuho:Kk | Grinding stone for super-finishing |
CN101870482A (en) * | 2010-05-21 | 2010-10-27 | 焦作市宏程先进陶瓷科技有限公司 | High-purity ammonium aluminum carbonate hydroxide as precursor of high-purity easy-sintering aluminum oxide ceramic powder and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3336015B2 (en) | Manufacturing method of highly permeable whetstone | |
EP1280631B1 (en) | Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use | |
EP2132003B1 (en) | Bonded abrasive article | |
US5203886A (en) | High porosity vitrified bonded grinding wheels | |
US3909991A (en) | Process for making sintered abrasive grains | |
US3916584A (en) | Spheroidal composite particle and method of making | |
US4918874A (en) | Method of preparing abrasive articles | |
EP2485869B1 (en) | Bonded abrasive article and method of forming | |
JP2000512567A (en) | High permeability whetstone | |
JPH03287687A (en) | Sintered silicon nitride abrasive and its manufacture | |
JPH10330734A (en) | Silicon carbide composited silicon nitride abrasive and its preparation | |
JPH04336971A (en) | Binder grinding body abrasive grain, and its manufacture | |
JP2011131379A (en) | Grinding tool and method of manufacturing the same | |
JP2011067947A (en) | Machining tool with vitrified superabrasive and method of manufacture the same | |
JPH10113875A (en) | Super abrasive grain abrasive grindstone | |
KR20120101077A (en) | Bonded abrasive article and method of forming | |
TW201609378A (en) | Transparent spinel article and tape cast methods for making | |
CN104114666A (en) | Abrasive articles and method of forming same | |
US4944773A (en) | Bonded abrasive tools with combination of finely microcrystalline aluminous abrasive and a superabrasive | |
JP3542520B2 (en) | Vitrified whetstone | |
RU2402507C2 (en) | Ceramic material and preparation method thereof | |
EP0335930B1 (en) | Bonded abrasive | |
JP2972487B2 (en) | Sintered composite abrasive grits, their production and use | |
JPH02283783A (en) | Fine, sintered alumina abrasive made by using fine high-purity alpha-alumina powder prepared from aluminum ammonium carbonate, and manufacture of the same abrasive | |
DE19730770C2 (en) | Non-porous sintered bodies based on silicon carbide, process for their production and their use as substrates for hard disk storage |