JPH02283695A - Method for growing crystal with molecular beam - Google Patents

Method for growing crystal with molecular beam

Info

Publication number
JPH02283695A
JPH02283695A JP10650089A JP10650089A JPH02283695A JP H02283695 A JPH02283695 A JP H02283695A JP 10650089 A JP10650089 A JP 10650089A JP 10650089 A JP10650089 A JP 10650089A JP H02283695 A JPH02283695 A JP H02283695A
Authority
JP
Japan
Prior art keywords
crystal
substrate
angle
molecular beam
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10650089A
Other languages
Japanese (ja)
Inventor
Kyozo Kanemoto
恭三 金本
Noriaki Tsukada
塚田 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10650089A priority Critical patent/JPH02283695A/en
Publication of JPH02283695A publication Critical patent/JPH02283695A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a high quality crystal-growing film preventing the contamination of impurities in the crystal, the generation of defects, etc., by employing a finely inclined surface having a specific angle from the low index surface of a substrate as the crystallizing surface of the substrate used for the growth of the crystal. CONSTITUTION:When a crystal film is formed on a substrate by a molecular beam crystal-growing method, a finely inclined surface is employed as the crystal surface of the substrate. Such an angle that a distance between the molecule steps of the surface substantially coincides with a length integer times larger the period of the long one among the surface reconstitution patterns in the growing crystal is selected as an inclination angle from the low index surface, thereby permitting to give an order to the step distance, reading realize such a growing mode as flowing the step transversely, suppress the contamination of impurities in the crystal and the generation of defects, etc., and further improve the morphology of the surface for the high quality of the crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は分子線結晶成長法に関し、特に高品質の結晶
成長膜を得ることのできる分子線結晶成長法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molecular beam crystal growth method, and particularly to a molecular beam crystal growth method capable of obtaining a high quality crystal grown film.

〔従来の技術〕[Conventional technology]

分子線結晶成長法により基板上に結晶膜を形成するに際
して、形成される結晶膜の品質が基板結晶面の低指数面
からの傾き角によって左右されることがわかっており、
これまでの例としては、例えばり、C,ラジュレスクら
によりジャーナル オプアプライド フィジックス、6
2巻3号(1987年)。
When forming a crystalline film on a substrate using the molecular beam crystal growth method, it is known that the quality of the formed crystalline film is influenced by the angle of inclination of the substrate crystal plane from the low index plane.
Examples so far include, for example, C. Rajulescu et al., Journal Op-Applied Physics, 6.
Volume 2, No. 3 (1987).

954頁(D、C,Radulescu、 J、 Ap
pl、 Phys、 62 (19B?) p、954
)に報告されたものがある。この例では0°、2°、4
°、6.5”の傾きを持つ(100)GaAs基機上に
G a A s / A I G a A s変調ドー
プ構造を分子線結晶成長法で成長し、電子輸送特性にお
よぼす基板傾き角の影響が報告されている。
954 pages (D, C, Radulescu, J, Ap
pl, Phys, 62 (19B?) p, 954
) have been reported. In this example 0°, 2°, 4
A G a As / AI Ga As modulated doped structure was grown on a (100) GaAs substrate with a tilt of 6.5” by molecular beam crystal growth, and the substrate tilt angle affecting the electron transport properties was determined. effects have been reported.

次に効果について説明する。第2図は前記の論文に示さ
れたもので、G a A s / A I G a A
 s へテロ接合付近に存在する2次元電子ガスが帰寄
する電子移動度と、基板の(100)面から(111)
A面方向への傾き角との関係を示す、この図より傾き角
が4度で、最も高い移動度が得られることがわかる。
Next, the effects will be explained. Figure 2 is shown in the above-mentioned paper, and shows that G a A s / A I G a A
s The electron mobility of the two-dimensional electron gas existing near the heterojunction and the (111) return from the (100) plane of the substrate.
From this figure, which shows the relationship with the tilt angle in the A-plane direction, it can be seen that the highest mobility is obtained when the tilt angle is 4 degrees.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の分子線結晶成長法は以上のように最適な傾き角は
経験的に決められていた。これは、傾いた基板を使うと
膜質が改善される理由がまだよくわかっていないことに
よる。
In the conventional molecular beam crystal growth method, the optimal tilt angle was determined empirically as described above. This is because the reason why film quality is improved when using a tilted substrate is not yet well understood.

このため、使用する基板材料、使用する基板面方位、成
長する物質、成長条件などがちがうとそれに応じて最良
の傾き角を見つける必要がある。
Therefore, it is necessary to find the best tilt angle depending on differences in the substrate material used, substrate surface orientation used, growing substance, growth conditions, etc.

しかし、そのための指針はなかった。However, there were no guidelines for this.

この発明は上記のような問題点を解消するためになされ
たもので、任意の使用基板材料、使用基板面方位成長物
質、成長条件において、分子線結晶成長に最適な基板の
傾き角を与えることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to provide an optimal substrate inclination angle for molecular beam crystal growth under any substrate material used, substrate surface orientation growth substance used, and growth conditions. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る分子線結晶成長法は、成長に用いる基板
結晶面に微斜面を用い、その低指数面からの傾き角とし
て、表面の分子ステップの間隔が結晶成長中の表面再構
成パターンの長い方の周期の整数倍と一致するようなも
のを選び、表面の再構成がステップによってこわされな
いようにしたものである。
The molecular beam crystal growth method according to the present invention uses a vicinal crystal plane on the substrate crystal plane used for growth, and the interval between molecular steps on the surface is determined by the angle of inclination from the low-index plane to a long surface reconstruction pattern during crystal growth. This is to ensure that the reconstruction of the surface is not destroyed by the steps.

〔作用〕[Effect]

この発明においては、結晶成長中の表面再構成の周期の
整数倍が、基板の傾きにより生じる基板表面のステップ
の周期と一致するように上記傾き角を設定するようにし
たから、ステップ間隔に秩序が生じ、その結果結晶成長
がステップからの横方向成長モードとなりやすく、結晶
欠陥、不純物の取り込みの少ない結晶成長ができる。
In this invention, the inclination angle is set so that an integral multiple of the period of surface reconstruction during crystal growth matches the period of steps on the substrate surface caused by the inclination of the substrate. occurs, and as a result, crystal growth tends to be in a lateral growth mode from steps, allowing crystal growth with less crystal defects and impurity incorporation.

〔実施例〕〔Example〕

以下、この発明の一実施例としてC,aAs (100
)基板上にGaAsを成長させる場合について説明する
Hereinafter, as an example of the present invention, C,aAs (100
) The case of growing GaAs on a substrate will be explained.

第1図は本発明の一実施例による分子線結晶成長法にお
いて用いられるGaAs基板の原子配列を模式的に示し
た図である。
FIG. 1 is a diagram schematically showing the atomic arrangement of a GaAs substrate used in the molecular beam crystal growth method according to an embodiment of the present invention.

第1図(a)は(100)表面から見た図、第1図(b
)は(011)方向から見た断面図であり、図において
、1は(2X4)構造の単位胞、2は結晶成長表面の(
100)面に対する角度である。本実施例ではこの傾き
角は11.43°になっている。
Figure 1 (a) is a view seen from the (100) surface, Figure 1 (b)
) is a cross-sectional view seen from the (011) direction. In the figure, 1 is a unit cell with a (2X4) structure, and 2 is a (2x4) unit cell on the crystal growth surface.
100) is the angle with respect to the plane. In this embodiment, this inclination angle is 11.43°.

また、図において、黒丸は砒素、白丸はガリウムを表わ
す、ガリウムについては層の違いを示すため、白丸、白
丸中に斜線、および白丸中にX印の入った丸でそれぞれ
第171.第2層、及び第3層目のガリウムを表わす。
In the figure, black circles represent arsenic, white circles represent gallium, and to show the difference in the layers of gallium, the white circles, circles with diagonal lines inside the white circles, and circles with an X inside the white circles represent the 171st circle, respectively. It represents gallium in the second and third layers.

第1図はM、D、パシュレイらにより文献フィジカル 
レビュウ レターズ、 60巻(1988年)、 21
76頁(M、D、 Pa5hley、 Physica
l Review Letters V。
Figure 1 shows the literature physical by M, D., Pashley et al.
Review Letters, Volume 60 (1988), 21
76 pages (M, D, Pa5hley, Physica
l Review Letters V.

1.60(198B)、 p、2176)に示された走
査トンネル顕微鏡による観察であきらかになったGaA
s (100〕表面の原子の再構成モデルをもとに描い
たものである。この表面では表面第1層の砒素は〔01
1〕方向には2つづつがペアになって、この方向に単位
格子4人の2倍の周期8人をもった構造を作る。一方(
011)方向では3つおきに砒素の原子列が欠けており
、この方向に4倍の周期16人をもった構造を作る。こ
れが(2X4)構造の単位ユニットである。、:れを図
中1で示しである。第2層目のガリウムの位置は第1層
目のガリウムの真下にはなく、半格子分2人ずれている
1.60 (198B), p. 2176) revealed GaA by scanning tunneling microscope observation.
It is drawn based on a reconstruction model of atoms on the s (100) surface. In this surface, the arsenic in the first layer of the surface is [01
1), two of them form a pair in the direction, creating a structure in this direction with 8 members, twice the period of 4 unit cells. on the other hand(
In the 011) direction, every third arsenic atomic row is missing, creating a structure with 4 times the period, 16 atoms, in this direction. This is a unit with a (2×4) structure. , : This is indicated by 1 in the figure. The position of the gallium in the second layer is not directly below the gallium in the first layer, but is shifted by two half grids.

従って、図に示したように(2X4)単位ユニット1は
1分子層下がった所で2人分だけ重なる。
Therefore, as shown in the figure, the (2×4) unit 1 overlaps by two people at a position one molecular layer lower.

このことを考慮して、第1図には(011)方向に単位
ユニット進むごとに1分子層下がる14人周期の階段が
描かれている。
Taking this into consideration, FIG. 1 depicts a staircase with a period of 14 people that descends by one molecular layer each time it advances in the (011) direction.

上述のように表面の分子ステップの間隔が結晶成長中の
表面再構成パターン(ここでは(2X4))の長い方の
周期(ここでは4)の整数倍と一致するための基板の結
晶成長表面の低指数面からの傾き角を算出する方法とし
て、本発明では下記の3つの式のいずれかを用いる。
As mentioned above, the distance between the molecular steps on the surface matches the integral multiple of the longer period (here, 4) of the surface reconstruction pattern during crystal growth (here, (2×4)). In the present invention, one of the following three equations is used as a method for calculating the inclination angle from the low index plane.

ここでaは成長膜の単原子層または単分子層の厚さ、k
はある条件での結晶成長中の表面再構成のパターンが(
l X m )であるときの2とmのうちの大きい方の
値、bはに倍の周期構造が現われる方向の単位格子の大
きさ、αはlとmの値の大きい方をk、小さい方をjと
し、k倍周期、2倍周期の現れるそれぞれの方向の単位
ベクトルをn。
where a is the thickness of the monoatomic layer or monomolecular layer of the grown film, k
The pattern of surface reconstruction during crystal growth under certain conditions is (
l × m ), then the larger value of 2 and m, b is the size of the unit cell in the direction in which the periodic structure appears twice, α is the larger value of l and m, and k is the smaller value. Let the direction be j, and let n be the unit vector in each direction in which the k times period and double period appear.

nJとし、n、に垂直な単位ベクトルのうちでnJトも
の作る面内にあり、かつ責、と成す角の小さい方のもの
を宵としたときに甘・甘、=αで定義される値、Nは自
然数である。また、傾ける方向はせの方向である。
Let nJ be the unit vector perpendicular to n, which is in the plane made by nJ and has the smaller angle with , and is the value defined by Amama = α. , N are natural numbers. Also, the direction of inclination is the direction of the helix.

本実施例の場合、上述のように第2層目のガリウムの位
置は第1層目のガリウムの真下にはなく、半格子分2人
ずれている。このような場合に、最適な傾き角の計算式
は(2)式となる。今の場合、i=2.m=4.に−4
,α−1,傾きの方向は〔011)、単位格子4人、1
分子層厚2.83人であるから、(2)式は、 となり、Nの小さい)頓にθの(直は11.43@ (
N−1)、5.39° (N=2)、3.52”  (
N=3)。
In the case of this embodiment, as described above, the position of the gallium in the second layer is not directly below the gallium in the first layer, but is shifted by two half lattices. In such a case, the optimal equation for calculating the tilt angle is equation (2). In this case, i=2. m=4. ni-4
, α-1, direction of inclination is [011), unit cell 4 people, 1
Since the molecular layer thickness is 2.83, Equation (2) is
N-1), 5.39° (N=2), 3.52" (
N=3).

2.61° (N−4)、2.08° (N=5)、1
.72”  (N−6)となる。
2.61° (N-4), 2.08° (N=5), 1
.. 72” (N-6).

表面再構成は表面に存在する未結合ポンドがなくなるよ
うに起こり、表面エネルギーを下げて安定化させる。こ
のため、この実施例のように再構成の周期が保存される
ようにステップを並べる表面は非常に安定になる。
Surface reconstruction occurs such that any unbound pounds present on the surface are eliminated, lowering and stabilizing the surface energy. Therefore, the surface where the steps are arranged so that the period of reconstruction is preserved as in this embodiment becomes very stable.

結晶表面が(100)面に対して上述のような角度をも
つGaAs基板を作成する際、現在の技術では角度設定
を正確に行なうことはできても原子レベルにおいて誤差
が生じステップ間隔は必ずしも均一とはならない。しか
しながら上述の角度をもつように作成された基板表面で
分子線結晶成長を行なわせた場合、たとえはじめにステ
ップ間隔がそろっていなくてもアニールしたり、成長し
ている間にそろってくることができる。従って、角度θ
に多少の誤差があっても本実施例の効果は得られる。こ
のような現象は上述と全く異なる角度を持つ結晶表面上
に分子線結晶成長を行なわせた場合にもみられるが、誤
差の範囲を±2%以内とした場合には、ステップ間隔を
そろえようとする駆動力が極めて大きく、その効果は明
確に異なる。
When creating a GaAs substrate whose crystal surface has the above-mentioned angle with respect to the (100) plane, although it is possible to set the angle accurately using current technology, errors occur at the atomic level and the step spacing is not necessarily uniform. It is not. However, when molecular beam crystal growth is performed on a substrate surface prepared with the above-mentioned angle, even if the step intervals are not uniform at the beginning, they can be made uniform during annealing or growth. . Therefore, the angle θ
Even if there is some error in , the effect of this embodiment can be obtained. This phenomenon can also be seen when molecular beam crystal growth is performed on a crystal surface with a completely different angle from that described above, but if the error range is set to within ±2%, it is difficult to make the step intervals uniform. The driving force is extremely large, and the effects are clearly different.

また、直線状で等間隔に並んだステップができると成長
条件を適当に設定することで、表面に付着した原子が必
ずステップにたどりついてから結晶に組み込まれる、即
ちステップが横に移動してゆくような成長モードが容易
に実現される。この結果、結晶への不純物の混入、欠陥
の発生などが抑えられ、また表面モルフォロジーも良好
になるなどの結晶の高品質化が行なえる。
In addition, if steps are formed that are arranged in a straight line at equal intervals, by setting the growth conditions appropriately, atoms attached to the surface will always reach the steps and then be incorporated into the crystal, that is, the steps will move laterally. Such a growth mode is easily realized. As a result, the incorporation of impurities into the crystal, the occurrence of defects, etc. can be suppressed, and the quality of the crystal can be improved by improving the surface morphology.

なお、上記実施例ではN−1の場合について説明したが
、Nは2以上であってもよい。この場合にはステップ間
にN個の4倍周期構造が含まれることになる。また、成
長の途中で条件を変えたり成長物質を変えて(2X4)
から(IX3)のパターンにするような場合はどちらの
パターンにも共通に適用するN−3の3.52@のちの
を使うようにすれば効果的である。
In addition, although the case of N-1 was explained in the said Example, N may be 2 or more. In this case, N quadruple periodic structures are included between steps. Also, by changing the conditions or changing the growth substance during growth (2X4)
When using a pattern from (IX3), it is effective to use the latter part of 3.52@ of N-3, which is commonly applied to both patterns.

また、上記実施例では第1層の単位ユニットと第2層の
ものが2人重なる場合、即ち(2)式が成り立つ場合に
ついて説明したが、場合によっては(1)式および(3
)式が適当な場合もある。
In addition, in the above embodiment, the case where two unit units in the first layer and the unit unit in the second layer overlap, that is, the case where equation (2) holds, was explained, but depending on the case, equations (1) and (3)
) formula is appropriate in some cases.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、使用する基板の傾き
方向、角度を表面の原子ステップが直線状でかつ等間隔
にそろいやすくなるように決めたので、ステップが横方
向に流れてゆくような成長モードが容易に実現でき、結
晶中への不純物の混入、欠陥の発生などが抑えられ、ま
た表面モルフォロジーも良好になるなどの結晶の高品質
化が図れる効果がある。さらに、このような等間隔の直
線状ステップの上に横方向成長させる膜を1原子層の半
分ごとに切り換えることで、ステップと平行に延びる極
微細構造の成長も可能となる効果がある。
As described above, according to the present invention, the inclination direction and angle of the substrate used are determined so that the atomic steps on the surface are likely to be linear and evenly spaced, so that the steps flow horizontally. This method has the effect of increasing the quality of the crystal by easily realizing a growth mode, suppressing the incorporation of impurities into the crystal, suppressing the generation of defects, and improving the surface morphology. Furthermore, by switching the film to be grown laterally on such evenly spaced linear steps every half of one atomic layer, it is possible to grow ultrafine structures extending parallel to the steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による分子線結晶成長法に
おいて用いるGaAs (100)面から(011)方
向に11.43°傾けた基板の表面および断面から見た
原子配列を示す模式図、第2図は従来の分子線結晶成長
法により得られる傾き角と電子移動度の関係を示す図で
ある。 1は(2x4)構造の単位胞、5は(100)面との角
度。 なお図中同一符号は同−又は同一部分を示す。
FIG. 1 is a schematic diagram showing the atomic arrangement seen from the surface and cross section of a GaAs substrate tilted by 11.43 degrees in the (011) direction from the (100) plane used in the molecular beam crystal growth method according to an embodiment of the present invention; FIG. 2 is a diagram showing the relationship between the tilt angle and electron mobility obtained by the conventional molecular beam crystal growth method. 1 is the unit cell of the (2x4) structure, and 5 is the angle with the (100) plane. Note that the same reference numerals in the figures indicate the same or the same parts.

Claims (1)

【特許請求の範囲】[Claims] (1)分子線結晶成長法において、 成長に用いる基板結晶面として、その低指数面からの傾
き角が、表面の分子ステップの間隔が結晶成長中の表面
再構成パターンの長い方の周期の整数倍とほぼ一致する
ような角度である微斜面を用いることを特徴とする分子
線結晶成長法。
(1) In the molecular beam crystal growth method, the inclination angle of the substrate crystal plane used for growth from the low index plane is such that the interval between molecular steps on the surface is an integer of the longer period of the surface reconstruction pattern during crystal growth. A molecular beam crystal growth method characterized by the use of a vicinal slope whose angle is approximately equal to the angle of 2.
JP10650089A 1989-04-26 1989-04-26 Method for growing crystal with molecular beam Pending JPH02283695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10650089A JPH02283695A (en) 1989-04-26 1989-04-26 Method for growing crystal with molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10650089A JPH02283695A (en) 1989-04-26 1989-04-26 Method for growing crystal with molecular beam

Publications (1)

Publication Number Publication Date
JPH02283695A true JPH02283695A (en) 1990-11-21

Family

ID=14435158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10650089A Pending JPH02283695A (en) 1989-04-26 1989-04-26 Method for growing crystal with molecular beam

Country Status (1)

Country Link
JP (1) JPH02283695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746826A (en) * 1993-04-07 1998-05-05 Hitachi, Ltd. Method and apparatus for forming microstructure body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746826A (en) * 1993-04-07 1998-05-05 Hitachi, Ltd. Method and apparatus for forming microstructure body

Similar Documents

Publication Publication Date Title
Hara et al. Formation and photoluminescence characterization of quantum well wires using multiatomic steps grown by metalorganic vapor phase epitaxy
Zhang et al. Selective formation and alignment of InAs quantum dots over mesa stripes along the [011] and [001] directions on GaAs (100) substrates
JPH02283695A (en) Method for growing crystal with molecular beam
Shibata et al. Structure and width of Au-adsorbed narrow Si (111) terraces
Tu et al. Lattice‐matched single‐crystalline dielectric films (Ba x Sr1− x F2) on InP (001) grown by molecular‐beam epitaxy
Hara et al. Formation and characterization of InGaAs strained quantum wires on GaAs multiatomic steps grown by metalorganic vapor phase epitaxy
JPS6288318A (en) Semiconductor device
Tanahashi et al. Electrical properties of undoped and Si‐doped Al0. 48In0. 52As grown by liquid phase epitaxy
Shibata et al. Scanning-tunneling-microscopy study of initial stages of Au adsorption on vicinal Si (111) surfaces
JP3122526B2 (en) Group III-V compound semiconductor vapor deposition method and semiconductor device
Manago et al. Epitaxial growth of NiO/Pd superlattices by reactive evaporation method
Fowler et al. Surface reconstruction of BeO {0001} during Be oxidation
Fukui et al. Step-flow growth and fractional-layer superlattices on GaAs vicinal surfaces by MOCVD
JPS61205693A (en) Crystal growth
JPH07193007A (en) Epitaxial growth method
JP2844853B2 (en) Method for manufacturing semiconductor device
JPH0746684B2 (en) Semiconductor wafer and manufacturing method thereof
Xu et al. Evolution of InAs quantum dot shape on GaAs (1¯ 1¯ 4¯) B
JP2754549B2 (en) Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal
Kobayashi et al. Epitaxial growth of superconducting NbN on wide-bandgap AlN
JPH07118540B2 (en) Semiconductor device
Williams et al. High resolution transmission and analytical electron microscopy for the characterisation of epilayers and interfaces in MOVPE grown ZnSe1− ySy
Fukui et al. Ideal Crystal Growth from Kink Sites and Fractional-Layer Growth on GaAs Vicinal Substrate by MOCVD
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
JP3121671B2 (en) Method for manufacturing semiconductor device