JPH02282662A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH02282662A
JPH02282662A JP1104134A JP10413489A JPH02282662A JP H02282662 A JPH02282662 A JP H02282662A JP 1104134 A JP1104134 A JP 1104134A JP 10413489 A JP10413489 A JP 10413489A JP H02282662 A JPH02282662 A JP H02282662A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
flow rate
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1104134A
Other languages
Japanese (ja)
Other versions
JPH0830615B2 (en
Inventor
Nobuhiro Kusumoto
伸廣 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1104134A priority Critical patent/JPH0830615B2/en
Publication of JPH02282662A publication Critical patent/JPH02282662A/en
Publication of JPH0830615B2 publication Critical patent/JPH0830615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable an abnormal increasing of a pressure of refrigerant to be avoided by a method wherein a flow rate control means capable of adjusting a flow rate of refrigerant flowing between a heat exchanger at a heating source side and another heat exchanger at a utilization side is provided and an amount of circulating refrigerant within a main refrigerant circuit is decreased by side flow rate control means. CONSTITUTION:A main refrigerant circuit 10 is provided, wherein a plurality of indoor devices A, B... having a main pressure reducing mechanism 6 and a heat exchanger 7 at a utilization device are connected in parallel by a refrigerant pipe 9 in respect to an outdoor device X having a compressor 1, a heat exchanger 3 at a heating source and a liquid receptor 5. With the aforesaid configuration, a pressure detecting means 53 may detect a high pressure of a refrigerant pressure and then an output signal from the pressure detecting means 53 is sent to a comparing means 54. The comparing means 4 compares a predetermined reference pressure at a high pressure side with a high pressure of the refrigerant pressure and as the high pressure of the refrigerant pressure is more than the reference pressure, the output signal from the comparing means 54 is sent to a flow rate control means 60 and then a flow rate control means 60 may control a flow rate adjusting means 52 so as to cause a circulating amount of refrigerant to be decreased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置に係り、特に、冷房過負荷時に
おける冷媒圧力の高圧制御対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air conditioner, and in particular, to measures for high pressure control of refrigerant pressure during cooling overload.

(従来の技術) 近年、開発の進んでいる空気調和装置の一例として蓄熱
媒体を貯留した蓄熱槽を有する蓄熱式の空気調和装置が
ある。そして、その基本構造としては、実開昭55〜9
4661号公報に示されるように、空気冷却用熱交換器
と凝縮器の間に蓄熱用熱交換器と液冷媒過冷却用熱交換
器を有する蓄熱槽を設け、蓄熱用熱交換器の一方側を冷
媒絞り装置および切換弁を介して凝縮器に、他方側を圧
縮機にそれぞれ接続し、前記液冷媒冷却用熱交換器の一
方側を切換弁を介して凝縮器に、他方側を冷媒絞り装置
を介して空気冷却用熱交換器にそれぞれ接続されて構成
されている。
(Prior Art) As an example of an air conditioner that has been developed in recent years, there is a heat storage type air conditioner that has a heat storage tank storing a heat storage medium. And its basic structure is
As shown in Publication No. 4661, a heat storage tank having a heat exchanger for heat storage and a heat exchanger for subcooling liquid refrigerant is provided between the air cooling heat exchanger and the condenser, and one side of the heat storage heat exchanger is is connected to the condenser through a refrigerant throttle device and a switching valve, and the other side is connected to the compressor, one side of the liquid refrigerant cooling heat exchanger is connected to the condenser through the switching valve, and the other side is connected to the refrigerant throttle. They are each connected to an air cooling heat exchanger via a device.

また、このように構成された蓄熱式空気調和装置に限ら
ず一般的な冷媒回路を有する空気調和装置は、冷房運転
時において冷房負荷が極端に上昇した場合、主冷媒回路
内の冷媒圧力の高圧圧力が異常上昇し、装置の破損等が
発生する場合がある。
In addition, not only the heat storage type air conditioner configured in this way but also an air conditioner having a general refrigerant circuit, if the cooling load increases extremely during cooling operation, the refrigerant pressure in the main refrigerant circuit will be high. Pressure may rise abnormally and damage the equipment.

これを防止するために、一般に、冷媒回路中には高圧圧
力センサが設けられており、圧縮機の吐出圧力が異常上
昇した際には、この高圧圧力センサの働きにより装置の
駆動を停止させるようにしている。
To prevent this, a high-pressure sensor is generally installed in the refrigerant circuit, and when the discharge pressure of the compressor rises abnormally, this high-pressure sensor works to stop the drive of the device. I have to.

(発明が解決しようとする課題) しかし、この高圧圧力センサによって装置を停止させる
構成では、装置の停止後、再起動するまでのロスタイム
が生じるためにできるだけこの高圧センサを働かせない
ような冷媒圧力状態での運転を維持したいという要求が
あり、積極的に冷媒圧力の異常上昇を抑制させるような
構成が望まれている。そして、これまで、この冷媒圧力
の異常上昇を抑制して装置の停止を回避するための一手
段として、圧縮機の運転周波数を変化させるインバータ
制御や圧縮負荷を変化させるアンローダ制御等によって
圧縮機容量を冷媒圧力に応じて変更するように構成され
たものがあり、適宜容量を低下させることで冷媒圧力の
高圧圧力が上昇することを抑制している。
(Problem to be Solved by the Invention) However, in the configuration in which the device is stopped using this high-pressure pressure sensor, there is a loss time between stopping the device and restarting the device. There is a desire to maintain operation at a constant temperature, and a configuration that actively suppresses abnormal increases in refrigerant pressure is desired. Until now, as a means of suppressing this abnormal rise in refrigerant pressure and avoiding equipment stoppage, inverter control that changes the operating frequency of the compressor, unloader control that changes the compression load, etc. have been used to control the compressor capacity. Some are configured to change the refrigerant pressure according to the refrigerant pressure, and by appropriately lowering the capacity, the high pressure of the refrigerant pressure is suppressed from increasing.

しかしながら、上記従来のような圧縮機の容量制御によ
る冷媒圧力の調整では、その低下可能な容量に限界があ
った。即ち、圧縮機の容量低下率を大きくすると圧縮機
から冷媒回路中に放出された油が圧縮機に戻り難くなっ
たり、2つ以上の圧縮機を並用して設置しているもの(
ツインコンプレッサ)においては、容量低下率を大きく
すると圧縮機の均等な油潤滑が行えなくなるものであっ
て、この圧縮機の容量制御のみでは、上記要求を完全に
満たすことはできなかった。また、この容量低下率を大
きくするために、予め大容量の圧縮機を設置しておくこ
とも考えられるが、装置の大型化および製造コストの上
昇に繋がり好ましいものではない。そのために、高圧圧
力センサの働きによる装置の停止を他の手段で回避する
ようにした構成が要求されている。
However, when adjusting the refrigerant pressure by controlling the capacity of the compressor as described above, there is a limit to the capacity that can be lowered. In other words, if the capacity reduction rate of the compressor is increased, it becomes difficult for the oil released from the compressor into the refrigerant circuit to return to the compressor, or if two or more compressors are installed in parallel (
In the twin compressor), if the capacity reduction rate is increased, the compressor cannot be lubricated evenly with oil, and the above requirements cannot be completely satisfied only by controlling the capacity of the compressor. Furthermore, in order to increase this rate of capacity reduction, it is conceivable to install a large capacity compressor in advance, but this is not preferable as it increases the size of the device and increases the manufacturing cost. Therefore, there is a need for a configuration that uses other means to avoid stopping the device due to the action of the high-pressure pressure sensor.

そこで、本発明は、熱源側熱交換器と利用側熱交換器と
の間に流れる冷媒流量を調整可能とした流量制御手段を
設け、この流量制御手段により主冷媒回路内の冷媒循環
量を低下させることで冷媒圧力の異常上昇を回避可能に
した空気調和装置を得ることを目的とする。
Therefore, the present invention provides a flow rate control means that can adjust the flow rate of refrigerant flowing between the heat source side heat exchanger and the usage side heat exchanger, and uses this flow rate control means to reduce the amount of refrigerant circulating in the main refrigerant circuit. An object of the present invention is to obtain an air conditioner that can avoid an abnormal increase in refrigerant pressure by doing so.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段を以下に述べ
る。
(Means for Solving the Problems) In order to achieve the above object, the means for solving the problems of the present invention will be described below.

先ず、請求項(1)記載の発明は、第1図に示すように
、圧縮機(1)、熱源側熱交換器(3)及び受液器(5
)を有する室外ユニット(X)に対して主減圧機構(6
)及び利用側熱交換器(7)を有する複数の室内ユニッ
ト(A)、  (B)、・・・が冷媒配管(9)で並列
接続されてなる主冷媒回路(10)を備えた空気調和装
置を前提とする。そして、受液器(5)と利用側熱交換
器(7)との間を流れる冷媒流量を調整する流量調整手
段(52)と、冷媒圧力の高圧圧力を検出する圧力検出
手段(53)と、該圧力検出手段(53)の出力信号を
受け、予め設定された高圧側の基準圧力と冷媒圧力の高
圧圧力とを比較する比較手段(54)と、冷媒圧力の高
圧圧力が基準ば力量上になると該比較手段(54)の出
力信号により主冷媒回路(10)内の冷媒循環量を低下
させるよう上記流量調整手段(52)を制御する流量制
御手段(60)とを設けている。
First, the invention described in claim (1), as shown in FIG.
) for the outdoor unit (X) with the main pressure reducing mechanism (6
) and a user-side heat exchanger (7), and a plurality of indoor units (A), (B), ... are connected in parallel through refrigerant piping (9). equipment is assumed. A flow rate adjusting means (52) for adjusting the flow rate of refrigerant flowing between the liquid receiver (5) and the user side heat exchanger (7), and a pressure detecting means (53) for detecting the high pressure of the refrigerant pressure. , a comparison means (54) which receives the output signal of the pressure detection means (53) and compares a preset reference pressure on the high pressure side with the high pressure of the refrigerant pressure; Flow control means (60) is provided for controlling the flow rate adjustment means (52) so as to reduce the amount of refrigerant circulating in the main refrigerant circuit (10) based on the output signal of the comparison means (54).

また、請求項(2記載の発明では、上記請求項(1)記
載の空気調和装置において、第2図に示すように、蓄冷
熱用の蓄熱媒体を貯溜する蓄熱槽(11)と、該蓄熱槽
(11)内に配置されると共に、上記主冷媒回路(10
)に接続され、冷媒と蓄熱媒体との熱交換を行うための
蓄熱熱交換器(12)と、蓄冷熱用減圧機構(14)と
で基本構造を成している。そして、その作動時において
、少なくとも通常冷房運転時には、熱源側熱交換器(3
)で凝縮された液冷媒が主冷媒回路(10)のみを流れ
て主減圧機構(6)で減圧され、利用側熱交換器(7)
で蒸発して圧縮機(1)に戻るように循環し、蓄冷熱運
転時には、熱源側熱交換器(3)で凝縮された液冷媒が
蓄冷熱用減圧機構(14)で減圧され、蓄熱熱交換器(
12)で蒸発したのち圧縮機(1)に戻るように循環し
、蓄冷熱回収運転時には、熱源側熱交換器(3)で凝縮
された液冷媒が主冷媒回路(10)から蓄熱熱交換器(
12)で過冷却された後、主冷媒回路(10)の利用側
熱交換器(7)で蒸発して圧縮機(1)に戻るように回
路接続を切換える切換手段(51)とを備えて構成され
ている。
Further, in the invention according to claim (2), in the air conditioner according to claim (1), as shown in FIG. The main refrigerant circuit (10) is arranged in the tank (11) and
), the basic structure consists of a heat storage heat exchanger (12) for exchanging heat between the refrigerant and the heat storage medium, and a pressure reduction mechanism for cold storage heat (14). During operation, at least during normal cooling operation, the heat source side heat exchanger (3
) The liquid refrigerant condensed in the main refrigerant circuit (10) flows only through the main refrigerant circuit (10), is depressurized by the main pressure reducing mechanism (6), and is transferred to the user-side heat exchanger (7).
During the cold storage heat operation, the liquid refrigerant condensed in the heat source side heat exchanger (3) is depressurized by the cold storage heat decompression mechanism (14), and the stored heat is returned to the compressor (1). Exchanger (
12) and then circulates back to the compressor (1), and during cold storage heat recovery operation, the liquid refrigerant condensed in the heat source side heat exchanger (3) is transferred from the main refrigerant circuit (10) to the storage heat exchanger. (
12), switching means (51) for switching the circuit connection so that the refrigerant is evaporated in the utilization side heat exchanger (7) of the main refrigerant circuit (10) and returned to the compressor (1). It is configured.

そして、請求項(3)記載の発明では、上記請求項(2
記載の空気調和装置において、流量制御手段(60)は
、蓄冷熱回収運転時には流量調整手段(52)としての
流量調整機構(17)と開度が可変とされた蓄冷熱用減
圧機構(14)とで、通常冷房運転時には流量調整機構
(17)で主冷媒回路(10)を流れる冷媒流量を調整
させるように構成されている。
In the invention described in claim (3), the above claim (2)
In the air conditioner described above, the flow rate control means (60) includes a flow rate adjustment mechanism (17) as a flow rate adjustment means (52) during the cold storage heat recovery operation, and a cold storage heat decompression mechanism (14) whose opening degree is variable. During normal cooling operation, the flow rate adjustment mechanism (17) is configured to adjust the flow rate of refrigerant flowing through the main refrigerant circuit (10).

更に、請求項(4)記載の発明では、上記請求項(1)
(2)または(3)記載の空気調和装置において、圧縮
機(1)は容量可変に構成されている一方、比較手段(
54)の出力信号を受けて、圧縮機(1)の容量が低下
するように該圧縮機(1)を制御する容量制御手段(6
1)が設けられて構成されている。
Furthermore, in the invention described in claim (4), the above claim (1)
In the air conditioner described in (2) or (3), the compressor (1) is configured to have a variable capacity, while the comparison means (
capacity control means (6) for controlling the compressor (1) so that the capacity of the compressor (1) is reduced in response to the output signal of the compressor (54);
1).

最後に、請求項(5)記載の発明では、上記請求項(4
)記載の空気調和装置において、容量制御手段(61)
は、流量制御手段(60)よりも優先して圧縮機容量を
低下制御するように構成されている。
Finally, in the invention described in claim (5), the above-mentioned claim (4)
) In the air conditioner described in ), the capacity control means (61)
is configured to control the compressor capacity to decrease with priority over the flow rate control means (60).

(作用) 以上の構成により、請求項(1)記載の発明では、圧力
検出手段(53)が冷媒圧力の高圧圧力を検出し、該圧
力検出手段(53)の出力信号が比較手段(54)に送
られる。そして、比較手段(54)が予め設定された高
圧側の基準圧力と冷媒圧力の高圧圧力とを比較し、冷媒
圧力の高圧圧力が基準圧力以上になると比較手段(54
)からの出力信号が流量制御手段(60)に送られ、該
流量制御手段(60)が流量調整手段(52)を制御し
て冷媒循環量を低下させる。この冷媒循環量の低下に伴
って、冷媒回路内の冷媒圧力が低下される。これにより
、冷媒圧力の高圧圧力に応した冷媒循環量の制御という
簡単な制御によって確実な冷媒圧力の低下作用が得られ
る。
(Function) With the above configuration, in the invention described in claim (1), the pressure detection means (53) detects the high pressure of the refrigerant pressure, and the output signal of the pressure detection means (53) is transmitted to the comparison means (54). sent to. Then, the comparison means (54) compares the preset reference pressure on the high pressure side and the high pressure of the refrigerant pressure, and when the high pressure of the refrigerant pressure exceeds the reference pressure, the comparison means (54)
) is sent to the flow rate control means (60), which controls the flow rate adjustment means (52) to reduce the amount of refrigerant circulation. As the refrigerant circulation amount decreases, the refrigerant pressure within the refrigerant circuit decreases. As a result, a reliable refrigerant pressure reduction effect can be obtained through simple control of the refrigerant circulation amount in accordance with the high pressure of the refrigerant.

また、請求項(′2J記載の発明では、切換手段(51
)により回路接続が切換えられて、適宜、通常冷房運転
、蓄冷熱運転、蓄冷熱回収運転が行われる。そして、通
常冷房運転時および蓄冷熱回収冷房運転時には、上述し
た請求項(1)記載の発明における作用と同様に、冷媒
循環量を低下させ、この冷媒循環量の低下に伴って、冷
媒回路内の冷媒圧力が低下される。
Further, in the invention described in claim ('2J), the switching means (51
), the circuit connection is switched, and normal cooling operation, cold storage heat operation, and cold storage heat recovery operation are performed as appropriate. During the normal cooling operation and the cold storage heat recovery cooling operation, the refrigerant circulation amount is reduced, and as the refrigerant circulation amount decreases, the refrigerant circuit is refrigerant pressure is reduced.

請求項(3)記載の発明では、蓄冷熱回収運転時には、
流量調整機構(17)と蓄冷熱用減圧機構(,14)、
通常冷房運転時には流量調整機構(17)の開度調整に
よって冷媒循環量を調整し、冷媒回路内の冷媒圧力を低
下させることで、各運転状態に応じた冷媒圧力の制御が
行える。
In the invention described in claim (3), during the cold storage heat recovery operation,
Flow rate adjustment mechanism (17) and cold storage heat reduction mechanism (, 14),
During normal cooling operation, the refrigerant circulation amount is adjusted by adjusting the opening of the flow rate adjustment mechanism (17) and the refrigerant pressure in the refrigerant circuit is lowered, thereby making it possible to control the refrigerant pressure according to each operating state.

請求項(4)記載の発明では、請求項(11,!2Jま
たは(3) 記&の発明における作用に加え、制御手段
(61)によって、冷媒圧力の高圧圧力が基準圧力以上
となるとインバータ制御やアンローダ制御によって圧縮
機容量を低下させる。従って、冷媒循環量の低下率をよ
り一層増大させることができる。
In the invention described in claim (4), in addition to the effects in the invention described in claims (11, !2J or (3) &), the control means (61) controls the inverter when the high pressure of the refrigerant becomes equal to or higher than the reference pressure. The capacity of the compressor is reduced by the control and unloader control.Therefore, the rate of reduction in the amount of refrigerant circulation can be further increased.

請求項(5)記載の発明では、冷媒圧力の高圧圧力が基
準圧力を僅かに越えた値となった時に、容量制御手段(
61)のみが作動し、流量制御手段(60)による冷媒
流量規制制御よりも圧縮機(1)の容量低下制御を優先
して行う。そして、冷媒圧力の高圧圧力が基準圧力を所
定値以上越えたときに流量制御手段(60)による冷媒
tN、量規制制御を行う。これにより、必要以上に流量
調整手段(52)を駆動させることなく、消費電力が低
減される。
In the invention described in claim (5), when the high pressure of the refrigerant pressure reaches a value slightly exceeding the reference pressure, the capacity control means (
61) is activated, and the capacity reduction control of the compressor (1) is given priority over the refrigerant flow rate regulation control by the flow rate control means (60). Then, when the high pressure of the refrigerant pressure exceeds the reference pressure by a predetermined value or more, the flow rate control means (60) performs refrigerant tN and amount regulation control. Thereby, power consumption is reduced without driving the flow rate adjusting means (52) more than necessary.

(実施例) 以下、本発明の実施例について、第3図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 3 onwards.

第3図は第1実施例に係る空気調和装置の全体構成を示
し、室外ユニッ) (X)に対して、複数の室内ユニッ
ト(A)、  (B)、・・・が接続されたいわゆるマ
ルチ形空気調和装置である。
FIG. 3 shows the overall configuration of the air conditioner according to the first embodiment, in which a plurality of indoor units (A), (B), . . . are connected to an outdoor unit (X). It is a type of air conditioner.

上記室外ユニット(X)において、(1)は圧縮機、(
2)は冷房運転時には図中実線のごとく切換わり、暖房
運転時には図中破線のごとく切換わる四路切換弁、(3
)は冷房運転時には凝縮器として、暖房運転時には蒸発
器として機能する熱源側熱交換器としての室外熱交換器
、(4)は冷房運転時には冷媒流量を調節し、暖房運転
時には冷媒を減圧する減圧機構として機能する室外電動
膨張弁、(5)は凝縮された液冷媒を貯溜するためのレ
シーバ、(8)は吸入冷媒中の液成分を除去するための
アキュムレータである。
In the above outdoor unit (X), (1) is a compressor, (
2) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation;
) is an outdoor heat exchanger as a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation, and (4) is a depressurizer that adjusts the refrigerant flow rate during cooling operation and reduces the pressure of the refrigerant during heating operation. An outdoor electric expansion valve functions as a mechanism, (5) is a receiver for storing condensed liquid refrigerant, and (8) is an accumulator for removing liquid components in the suction refrigerant.

一方、各室内ユニット(A)、  (B)、・・・は同
一構成を有し、(6)は冷房運転時には減圧機構として
機能し、暖房運転時には冷媒流量を調節する主減圧機構
としての室内電動膨張弁、(7)は冷房運転時には蒸発
器として、暖房運転時には凝縮器として機能する利用側
熱交換器としての室内熱交換器である。
On the other hand, each indoor unit (A), (B), ... has the same configuration, and (6) functions as a pressure reducing mechanism during cooling operation, and serves as the main indoor pressure reducing mechanism to adjust the refrigerant flow rate during heating operation. The electric expansion valve (7) is an indoor heat exchanger as a user-side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.

そして、上記各機器(1)〜(8)は冷媒配管(9)に
より冷媒の流通可能に順次接続されていて、室外空気と
の熱交換により得た熱を室内空気に放出するヒートポン
プ作用を有する主冷媒回路(10)が構成されている。
The above-mentioned devices (1) to (8) are sequentially connected through refrigerant piping (9) so that refrigerant can flow therethrough, and have a heat pump effect that releases heat obtained through heat exchange with outdoor air to indoor air. A main refrigerant circuit (10) is configured.

また、装置には上記主冷媒回路(10)を流れる冷媒と
の熱交換により蓄冷熱、蓄暖熱を、或いはその蓄冷熱、
蓄暖熱の利用をするための蓄熱ユニット(Y)が配置さ
れている。該蓄熱ユニット(Y)において、(11)は
冷熱及び暖熱の蓄熱可能な蓄熱媒体たる水(W)を貯溜
した蓄熱槽、(12)は該蓄熱槽(11)内に配置され
、水(W)と冷媒との熱交換を行うための蓄熱熱交換器
であって、該蓄熱熱交換器(12)と主冷媒回路(10
)の上記室外電動膨張弁(4)−室内電動膨張弁(6)
間の液ライン(9a)との間は、第1バイパス路(13
a)及び第2バイパス路(13b)により、室内電動膨
張弁(6)側から順に冷媒の流通可能に接続されている
。そして、上記第1バイパス路(13a)には、水(W
)に冷熱を蓄えるときに冷媒を減圧する蓄冷熱用減圧機
構としての蓄熱電動膨張弁(14)が介設され、上記第
2バイパス路(13b)には、第2バイパス路(13b
)を開閉する第1開閉弁(15)が介設されている。
In addition, the device stores cold heat, warm heat by heat exchange with the refrigerant flowing through the main refrigerant circuit (10), or stores cold heat,
A heat storage unit (Y) for utilizing stored heat is arranged. In the heat storage unit (Y), (11) is a heat storage tank storing water (W) which is a heat storage medium capable of storing cold heat and warm heat, and (12) is disposed in the heat storage tank (11), and water (W) is stored in the heat storage tank (12). W) and a refrigerant, the heat storage heat exchanger (12) and the main refrigerant circuit (10
) above outdoor electric expansion valve (4) - indoor electric expansion valve (6)
The first bypass path (13
a) and the second bypass passage (13b), the indoor electric expansion valve (6) is sequentially connected to the indoor electric expansion valve (6) so that the refrigerant can flow therethrough. The first bypass path (13a) is filled with water (W).
) is interposed with a thermal storage electric expansion valve (14) as a cold storage heat depressurization mechanism that depressurizes the refrigerant when storing cold heat in the second bypass path (13b).
) is interposed.

また、第2バイパス路(13b)の上記第1開閉弁(1
5)−蓄熱熱交換器(12)間の途中配管と主冷媒回路
(10)のガスライン(9b)とは第3バイパス路(1
3c)により、冷媒の流通lに接続されていて、この第
3バイパス路(13c)には、該第3バイパス路(1,
3C)を開閉する第2開閉弁(16)が介設されている
Further, the first on-off valve (1) of the second bypass path (13b)
5) The intermediate piping between the storage heat exchanger (12) and the gas line (9b) of the main refrigerant circuit (10) are connected to the third bypass path (1
3c) is connected to the refrigerant flow l, and this third bypass path (13c) is connected to the third bypass path (1,
A second on-off valve (16) for opening and closing 3C) is provided.

そして、主冷媒回路(10)の液ライン(9a)の上記
第1.第2バイパス路(13a)、  (13b)との
2つの接合部間には、本発明の特徴として主冷媒回路(
10)の冷媒の流量を可変に調節する流量調整手段とし
ての流量制御弁(17)が介設されている。そして、こ
の様な各弁(15)。
The above-mentioned first line of the liquid line (9a) of the main refrigerant circuit (10). As a feature of the present invention, a main refrigerant circuit (
A flow rate control valve (17) as a flow rate adjusting means for variably adjusting the flow rate of the refrigerant (10) is provided. And each such valve (15).

(1,6)、  (17)により、各運転状態に応じて
回路接続を切換える切換手段(51)が構成されている
(1, 6) and (17) constitute a switching means (51) that switches the circuit connection according to each operating state.

また、装置にはセンサ類が配置されていて、(T ha
)は室外熱交換器(3)の空気吸込口に配置され、外気
温度TGを検出する外気温度検知手段としての外気温セ
ンサ、(Thi)は液ライン(9a)の第2バイパス路
(13b)との接合部の冷房運転時における上流側に配
置された冷却人口センサ、(Tho)は液ライン(9a
)の第1バイパス路(13a)との接合部の冷房運転時
における下流側に配置された冷却出口センサ、(T h
s)は吸入ライン(9d)に配置され、吸入管温度を検
出するだめの吸入管センサ、(Sp)はガスライン(9
b)に配置され、暖房サイクル時には高圧Tc、冷房サ
イクル時には低圧(吸入圧力)Teを検出する圧力セン
サである。そして、これらセンサで検出された信号はコ
ントローラ(C)に送られる。
In addition, the device is equipped with sensors (T ha
) is an outside temperature sensor arranged at the air suction port of the outdoor heat exchanger (3) and serves as an outside air temperature detection means for detecting the outside air temperature TG, and (Thi) is the second bypass path (13b) of the liquid line (9a). The cooling population sensor (Tho) placed on the upstream side during cooling operation at the junction with the liquid line (9a
), the cooling outlet sensor (T h
s) is a suction pipe sensor placed in the suction line (9d) to detect the suction pipe temperature, and (Sp) is a gas line (9d).
b) is a pressure sensor that detects high pressure Tc during the heating cycle and low pressure (suction pressure) Te during the cooling cycle. The signals detected by these sensors are then sent to the controller (C).

ここで、装置の各運転モードにおける各弁の開閉(もし
くは開度調節)と、冷媒の循環経路について、第4図〜
第11図に基づき説明する。
Here, the opening/closing (or opening degree adjustment) of each valve in each operation mode of the device and the refrigerant circulation route are explained in Figures 4 to 4.
This will be explained based on FIG.

通常冷房運転時には、第4図矢印に示すように、四路切
換弁(2)が図中実線のように切換わり、室外電動膨張
弁(4)、流量制御弁(17)、室内電動膨張弁(6)
、・・・が開き、他の弁はいずれも閉じた状態で運転が
行われ、室外熱交換器(3)で凝縮された冷媒が主冷媒
回路(10)のみを循環し、各室内電動膨張弁(6)、
・・・で減圧され、各室内熱交換器(7)、・・・で蒸
発して圧縮機(1)に戻る。
During normal cooling operation, as shown by the arrow in Figure 4, the four-way switching valve (2) switches as shown by the solid line in the figure, and the outdoor electric expansion valve (4), the flow rate control valve (17), and the indoor electric expansion valve are switched. (6)
,... are opened and all other valves are closed, and the refrigerant condensed in the outdoor heat exchanger (3) circulates only through the main refrigerant circuit (10), and each indoor electric expansion valve (6),
. . , and is evaporated in each indoor heat exchanger (7), . . . and returned to the compressor (1).

蓄冷熱運転時には、第5図矢印に示すように、室外電動
膨張弁(4)、流量制御弁(17)、蓄熱電動膨張弁(
14)及び第2rJiJ閉弁(16)が開き、室内電動
膨張弁(6)、・・・及び第1開閉弁(15)が閉じた
状態で運転が行われ、室外熱交換器(3)で凝縮された
液冷媒が、第1バイパス路(13a)にバイパスして流
れ、蓄熱電動膨張弁(14)で減圧され、蓄熱熱交換器
(12)で蒸発して圧縮機(1)に戻るように循環する
。そのとき、蓄熱熱交換器(12)で冷媒との熱交換に
より、蓄熱媒体たる水(W)を製氷し、冷熱を蓄える。
During cold storage heat operation, as shown by the arrows in Figure 5, the outdoor electric expansion valve (4), the flow rate control valve (17), and the heat storage electric expansion valve (
14) and the second rJiJ closing valve (16) are opened, and the operation is performed with the indoor electric expansion valve (6), ... and the first opening/closing valve (15) closed, and the outdoor heat exchanger (3) is operated. The condensed liquid refrigerant bypasses and flows into the first bypass path (13a), is depressurized by the thermal storage electric expansion valve (14), evaporates in the thermal storage heat exchanger (12), and returns to the compressor (1). circulates. At this time, water (W), which is a heat storage medium, is made into ice by exchanging heat with a refrigerant in the heat storage heat exchanger (12), and cold heat is stored.

通常冷房及び蓄冷熱同時運転時には、第6図矢印に示す
ように、室外電動膨張弁(4)、流量制御弁(17)、
室内電動膨張弁(6)、・・・、蓄熱電動膨張弁(14
)及び第2)′)JJ開閉弁16)が開き、第1開閉弁
(15)が閉じて、室外熱交換器(3)で凝縮された液
冷媒の一部が、主冷媒回路(10)を流れ、室内電動膨
張弁(6)、・・・で減圧されて室内熱交換器(7)、
・・・で蒸発する一方、液冷媒の残部が第1バイパス路
(13a)側に流れ、蓄熱電動膨張弁(14)で減圧さ
れて蓄熱熱交換器(12)で蒸発する。そして、これら
のガス状態となった冷媒がそれぞれガスライン(9b)
で合流して圧縮機(1)に戻るように循環する。
During normal cooling and cold storage heat simultaneous operation, as shown by the arrows in Figure 6, the outdoor electric expansion valve (4), the flow rate control valve (17),
Indoor electric expansion valve (6), ..., thermal storage electric expansion valve (14)
) and the second)') JJ on-off valve 16) are opened, the first on-off valve (15) is closed, and a part of the liquid refrigerant condensed in the outdoor heat exchanger (3) is transferred to the main refrigerant circuit (10). is depressurized by the indoor electric expansion valve (6), ... and then transferred to the indoor heat exchanger (7),
..., while the remainder of the liquid refrigerant flows to the first bypass path (13a), is depressurized by the heat storage electric expansion valve (14), and evaporates in the heat storage heat exchanger (12). Then, these refrigerants in gaseous state are respectively connected to gas lines (9b).
It joins the air and circulates back to the compressor (1).

上記蓄冷熱運転で蓄えた冷熱を利用する蓄冷熱回収運転
時には、第7図矢印に示すように、室外電動膨張弁(4
)、流量制御弁(17)、室内電動膨張弁(6)、・・
・、蓄熱電動膨張弁(14)及び第1開閉弁(15)が
開き、第2開閉弁(16)が閉じた状態で運転が行われ
、室外熱交換器(3)で凝縮されだ液冷媒の一部が主冷
媒回路(10)から第2バイパス路(13b)側にバイ
パスして流れ、蓄熱熱交換器(12)で水(W)(又は
氷)との熱交換により過冷却されて第1バイパス路(1
3a)から主冷媒回路(10)に戻る一方、液冷媒の残
部は流量制御弁(17)を経てそのまま主冷媒回路(1
0)の液ライン・(9a)を流れる。そして、合流後、
各室内電動膨張弁(6)。
During the cold storage heat recovery operation that utilizes the cold heat stored in the cold storage heat operation described above, as shown by the arrow in Figure 7, the outdoor motorized expansion valve (4
), flow control valve (17), indoor electric expansion valve (6),...
・Operation is performed with the heat storage electric expansion valve (14) and the first on-off valve (15) open and the second on-off valve (16) closed, and the refrigerant condensed in the outdoor heat exchanger (3) A part of the refrigerant flows from the main refrigerant circuit (10) to the second bypass path (13b) side, and is supercooled by heat exchange with water (W) (or ice) in the thermal storage heat exchanger (12). 1st bypass path (1
3a) to the main refrigerant circuit (10), while the remaining liquid refrigerant passes through the flow control valve (17) and returns to the main refrigerant circuit (10) as it is.
0) flows through the liquid line (9a). And after merging,
Each indoor electric expansion valve (6).

・・・で減圧され、各室内熱交換器(7)、・・・で蒸
発したのち圧縮機(1)に戻るように循環する。そのと
き、流量制御弁(17)と蓄熱電動膨張弁(14)の相
対的な開度調節により、冷媒の分流量が調節され、冷却
人口センサ(Thl) 、冷却出口センサ(T ha)
で検出される液冷媒温度TΩ1゜Tρ2の差温ΔTlと
しての冷媒の過冷却度か適切に調節される。
. . , and is evaporated in each indoor heat exchanger (7), . . . and then circulated back to the compressor (1). At that time, the divided flow rate of the refrigerant is adjusted by adjusting the relative opening of the flow rate control valve (17) and the heat storage electric expansion valve (14), and the cooling population sensor (Thl) and the cooling outlet sensor (T ha)
The degree of supercooling of the refrigerant as the difference temperature ΔTl between the liquid refrigerant temperature TΩ1°Tρ2 detected at is adjusted appropriately.

次に、通常暖房運転においては、第8図矢印に示すよう
に、四路切換弁(2)が図中破線側に切換わり、各室内
電動膨張弁(6)、・・・、流量制御弁(1,7)、室
外電動膨張弁(4)が開き、他の弁がいずれも閉じた状
態で運転が行われ、吐出ガスが各室内熱交換器(7)、
・・・で凝縮され、室外電動膨張弁(4)で減圧されて
室外熱交換器(3)で蒸発したのち圧縮機(1)に戻る
ように循環する。
Next, in normal heating operation, as shown by the arrow in Figure 8, the four-way switching valve (2) switches to the side of the broken line in the figure, and each indoor electric expansion valve (6), ..., flow control valve (1, 7), the outdoor electric expansion valve (4) is opened, and the operation is performed with all other valves closed, and the discharged gas is transferred to each indoor heat exchanger (7),
..., is depressurized by the outdoor electric expansion valve (4), is evaporated in the outdoor heat exchanger (3), and then circulated back to the compressor (1).

蓄暖熱運転時には、第9図矢印に示すように、第2開閉
弁(16)、蓄熱電動膨張弁(14)、流量制御弁(1
7)、室外電動膨張弁(4)が開き、各室内電動膨張弁
(6)、・・・、第1開閉弁(15)が閉じた状態で運
転が行われ、吐出ガスが主冷媒回路(10)から第3バ
イパス路(1−3C)にバイパスして流れて、蓄熱熱交
換器(12)で凝縮された後、第1バイパス路(1,3
a)から主冷媒回路(10)に流れ、室外電動膨張弁(
4)で減圧されて室外熱交換器(3)で蒸発したのち圧
縮機(1)に戻るように循環する。そのとき、蓄熱熱交
換器(12)で冷媒との熱交換により、蓄熱槽(11)
内の水(W)が暖められ、暖熱が蓄えられる。
During heating operation, the second on-off valve (16), electric heat storage expansion valve (14), and flow rate control valve (1
7), the outdoor electric expansion valve (4) is opened, and each indoor electric expansion valve (6), . 10) to the third bypass path (1-3C), and after being condensed in the regenerative heat exchanger (12), the first bypass path (1-3C)
a) to the main refrigerant circuit (10), and the outdoor electric expansion valve (
After being depressurized in step 4) and evaporated in an outdoor heat exchanger (3), it is circulated back to the compressor (1). At that time, the heat storage tank (11) is heated by heat exchange with the refrigerant in the thermal storage heat exchanger (12).
The water (W) inside is warmed and warm heat is stored.

通常暖房及び蓄暖熱同時運転時には、第10図矢印に示
すように、各室内電動膨張弁(6)、・・・第2開閉弁
(16)、蓄熱電動膨張弁(14)、流量制御弁(17
)、室外電動膨張弁(4)が開き、第1開閉弁(15)
が閉じた状態で運転が行われ、吐出ガスの一部が主冷媒
回路(10)から第3バイパス路(1,3c )側にバ
イパスして流れ、蓄熱熱交換器(12)で凝縮される一
方、吐出ガスの残部が主冷媒回路(10)側を流れて各
室内熱交換器(7)1・・・で凝縮される。そして、両
者が合流後、室外電動膨張弁(4)で減圧され、室外熱
交換器(3)で蒸発したのち圧縮機(1)に戻るように
循環する。
During normal heating and heating/heat storage simultaneous operation, each indoor electric expansion valve (6), ... second opening/closing valve (16), thermal storage electric expansion valve (14), flow rate control valve, as shown by the arrows in Fig. 10. (17
), the outdoor electric expansion valve (4) opens, and the first on-off valve (15) opens.
Operation is performed with the refrigerant closed, and part of the discharged gas bypasses and flows from the main refrigerant circuit (10) to the third bypass path (1, 3c) and is condensed in the regenerative heat exchanger (12). On the other hand, the remainder of the discharged gas flows through the main refrigerant circuit (10) and is condensed in each indoor heat exchanger (7) 1. After the two are combined, the pressure is reduced by the outdoor electric expansion valve (4), and after being evaporated in the outdoor heat exchanger (3), the air is circulated back to the compressor (1).

さらに、蓄暖熱回収デフロスト運転時には、第11図矢
印に示すように、四路切換弁(2)が図中実線側に切換
わり、室外電動膨張弁(4)、流量制御弁(17)、各
室内電動膨張弁(6)、・・・蓄熱電動膨張弁(14)
、第2開閉弁(16)か開き、第1開閉弁(15)が閉
じた状態で運転が行われ、吐出ガスが室外熱交換器(3
)で凝縮され、凝縮された液冷媒の一部が主冷媒回路(
10)から第1バイパス路(13a)側にバイパスシテ
流れて、蓄熱電動膨張弁(14)で減圧され、蓄熱熱交
換器(12)で蒸発する一方、液冷媒の残部が主冷媒回
路(10)の各室内電動膨張弁(6)・・・で減圧され
、各室内熱交換器(7)、・・・で蒸発する。そして、
それぞれガスライン(9b)で合流して圧縮機(1)に
戻るように循環する。そのとき、吐出ガス(ホットガス
)により、室外熱交換器(3)の除霜を行うとともに、
蓄熱槽(]1)の蓄暖熱を利用して室外熱交換器(3)
における凝縮能力を増大せしめ、デフロスト運転時間を
短縮するようになされている。
Furthermore, during the heat storage heat recovery defrost operation, as shown by the arrow in FIG. 11, the four-way switching valve (2) switches to the solid line side in the figure, and the outdoor electric expansion valve (4), the flow rate control valve (17), Each indoor electric expansion valve (6), ... thermal storage electric expansion valve (14)
, the operation is performed with the second on-off valve (16) open and the first on-off valve (15) closed, and the discharged gas flows into the outdoor heat exchanger (3).
), and a part of the condensed liquid refrigerant flows into the main refrigerant circuit (
The liquid refrigerant flows from the main refrigerant circuit (10) to the first bypass path (13a), is depressurized by the thermal storage electric expansion valve (14), and evaporates in the thermal storage heat exchanger (12). ) is depressurized by each indoor electric expansion valve (6), and evaporated by each indoor heat exchanger (7),.... and,
The gases are joined together in the gas line (9b) and circulated back to the compressor (1). At that time, the outdoor heat exchanger (3) is defrosted by the discharged gas (hot gas), and
Outdoor heat exchanger (3) using the heat stored in the heat storage tank (1)
This increases the condensing capacity of the defrost system and shortens the defrost operation time.

上記コントローラ(C)には外気温センサ(Tha) 
、吸入管センサ(T hs)および周波数検出手段(図
示省略)からの温度信号を受けて高圧圧力を算出する圧
力検出手段(53)が構成されている。更に、コントロ
ーラ(C)には、予め設定された基準圧力と冷媒圧力の
高圧圧力とを比較する比較手段(54) 、該比較手段
(54)の出力信号を受け、流量制御弁(17)等の開
度を制御して冷媒流量を規制する流量制御手段(60)
、同じく比較手段(54)の出力信号を受け、圧縮機(
1)の容量を減少させる容量制御手段(61)が構成さ
れている。
The above controller (C) has an outside temperature sensor (Tha).
, a pressure detection means (53) that receives temperature signals from a suction pipe sensor (Ths) and a frequency detection means (not shown) and calculates a high pressure. Furthermore, the controller (C) includes a comparison means (54) for comparing a preset reference pressure and a high pressure of the refrigerant pressure, and receives an output signal from the comparison means (54) and operates a flow rate control valve (17), etc. Flow rate control means (60) that regulates the refrigerant flow rate by controlling the opening degree of the
, also receives the output signal of the comparison means (54), and compares the compressor (
A capacity control means (61) is configured to reduce the capacity of 1).

そして、本発明が特徴とする所は、上述した通常冷房運
転時および蓄冷熱回収運転時における冷媒循環量の制御
に係る。以下、この冷媒循環量制御について第12図の
フローチャートに沿って説明する。
The feature of the present invention relates to the control of the refrigerant circulation amount during the above-mentioned normal cooling operation and cold storage heat recovery operation. Hereinafter, this refrigerant circulation amount control will be explained along the flowchart of FIG. 12.

先ず、スタートしてイニシャライズした後、ステップS
1で圧力検出手段(53)によって主冷媒回路(10)
内を流通している冷媒の高圧圧力HPを算出する。この
高圧圧力HPの算出は、外気温センサ(T ha)によ
り外気温度TGを、吸入管センサ(T hs)によって
主冷媒回路低圧側の飽和温度Teをそれぞれ検知すると
共に、圧縮機(1)の出力即ち運転周波数FTを検知し
、以上検知された値を以下の式に代入することにより冷
媒圧力の高圧圧力HPを算出する。
First, after starting and initializing, step S
1, the main refrigerant circuit (10) is detected by the pressure detection means (53).
Calculate the high pressure HP of the refrigerant flowing inside. This high pressure HP is calculated by detecting the outside air temperature TG using the outside air temperature sensor (T ha) and the saturation temperature Te on the low pressure side of the main refrigerant circuit using the suction pipe sensor (Ths). The output, that is, the operating frequency FT is detected, and the detected value is substituted into the following equation to calculate the high pressure HP of the refrigerant pressure.

HP−c1+c2 拳Te+c3 eTG+c4  ・
FT   ・・・・・・■尚、本例では各定数の値を以
下のように定める。
HP-c1+c2 Fist Te+c3 eTG+c4 ・
FT...■In this example, the values of each constant are determined as follows.

cl・・・24.51 C2・・・0. 325 C3・・・0.42 C4・・・0.108X3.59xlO’xFT次に、
ステップS2に進み、ステップS1で算出された高圧圧
力HPと予め設定された高圧側の基準圧力の上限値HP
、(本例では25kg/cdに設定する)とを比較手段
(54)によって比較する。ここで、冷媒圧力の高圧圧
力HPが基準圧力上限値HP、以下であると判断される
と、ステップS3に移り、このステップS3で上記高圧
圧力HPと予め設定された高圧側の基準圧力の下限値H
P2(本例では23.5kg/cdに設定する)とを再
び比較手段(54)によって比較する。ここで高圧圧力
HPが下限値HP2より小さいと判断されるとステップ
S4に進み、冷媒圧力の高圧圧力HPをステップ制御す
る高圧制御値iを1だけ減少させてステップS5に進む
。そして、ステップS5において高圧制御値iが0より
小さくなっているときにはステップS6で高圧制御値i
をOとしてステップSllにおいて圧縮機周波数FTを
通常の運転状態にセットし、更に、ステップS12にお
いて流量制御手段(60)によって流量制御弁(17)
を通常運転時の全開状態に設定する。
cl...24.51 C2...0. 325 C3...0.42 C4...0.108X3.59xlO'xFTNext,
Proceeding to step S2, the high pressure HP calculated in step S1 and the preset upper limit HP of the high pressure side reference pressure
, (set to 25 kg/cd in this example) by the comparing means (54). Here, if it is determined that the high pressure HP of the refrigerant pressure is equal to or less than the reference pressure upper limit value HP, the process moves to step S3, and in this step S3, the high pressure HP and the lower limit of the preset high pressure side reference pressure are determined. value H
P2 (set to 23.5 kg/cd in this example) is again compared by the comparison means (54). Here, if it is determined that the high pressure HP is smaller than the lower limit value HP2, the process proceeds to step S4, where the high pressure control value i for stepwise control of the high pressure HP of the refrigerant pressure is decreased by 1, and the process proceeds to step S5. When the high pressure control value i is smaller than 0 in step S5, the high pressure control value i is determined in step S6.
In step Sll, the compressor frequency FT is set to the normal operating state by setting O to O, and further, in step S12, the flow rate control valve (17) is
Set to the fully open state during normal operation.

そして、上記ステップ81〜SI2の処理動作を所定タ
イミングで繰り返す。
Then, the processing operations of steps 81 to SI2 are repeated at a predetermined timing.

一方、冷房運転時に過負荷になり、高圧圧力HPが上昇
し、上記ステップS2で高圧圧力HPが上限値HPI以
上であると判断されると、ステップS7に進み、高圧制
御値lを7に設定し、ステップSl+に進む。この時、
先ず、第1表に示すように、容量制御手段(61)が周
波数を90)1zに低下させた後、ステップSI2移り
、通常冷房運転時には流量制御手段(60)によって流
量制御弁(17)の開度を70%に絞り、冷媒循環量を
低減させて高圧圧力HPを低下させる。
On the other hand, when an overload occurs during cooling operation and the high pressure HP increases, and it is determined in step S2 that the high pressure HP is equal to or higher than the upper limit HPI, the process proceeds to step S7, and the high pressure control value l is set to 7. Then, proceed to step Sl+. At this time,
First, as shown in Table 1, after the capacity control means (61) lowers the frequency to 90)1z, the process moves to step SI2, and during normal cooling operation, the flow rate control means (60) controls the flow rate control valve (17). The opening degree is narrowed to 70%, the refrigerant circulation amount is reduced, and the high pressure HP is lowered.

その後、上記ステップ81〜ステツプSI2の動作を繰
り返し、高圧圧力HPが下限値HP2より低下すると、
ステップS4で高圧制御値iを1ステツプ低下させ、流
量制御弁(17)の開度を80%に設定し、やや開度を
大きくする。その後、更に上記動作を繰り返し、第1表
に示すように高圧圧力HPが継続して下限値HP2より
低い場合には、流量制御弁(17)の開度を100%ま
で大きくする一方、流量制御弁(17)が全開になった
後は、圧縮機(1)の周波数を10011zまで上昇さ
せる。また、上記高圧制御途中で高圧圧力HPが下限値
HP2より大きくなった場合、ステップS3よりステッ
プS8に移り、流量制御弁(17)の開度及び圧縮機(
1)の運転周波数をそのままの状態で維持する。また、
蓄冷熱回収運転時には第1表に示すように流量制御弁(
17)および蓄熱電動膨張弁(14)を同時に制御する
Thereafter, the operations from step 81 to step SI2 are repeated, and when the high pressure HP falls below the lower limit value HP2,
In step S4, the high pressure control value i is decreased by one step, and the opening degree of the flow rate control valve (17) is set to 80%, and the opening degree is slightly increased. Thereafter, the above operation is repeated, and if the high pressure HP continues to be lower than the lower limit HP2 as shown in Table 1, the opening degree of the flow rate control valve (17) is increased to 100%, while the flow rate control After the valve (17) is fully opened, the frequency of the compressor (1) is increased to 10011z. Further, if the high pressure HP becomes larger than the lower limit HP2 during the high pressure control, the process moves from step S3 to step S8, and the opening degree of the flow control valve (17) and the compressor (
1) Maintain the operating frequency as it is. Also,
During cold storage heat recovery operation, the flow control valve (
17) and the heat storage electric expansion valve (14) at the same time.

更に、ステップSsで高圧制御値iが0以上であると判
断された場合にも高圧制御値iをそのままに維持してス
テップSl+に進む。
Further, even if it is determined in step Ss that the high pressure control value i is 0 or more, the high pressure control value i is maintained as it is and the process proceeds to step Sl+.

また、蓄冷熱回収運転時には第1表に示すように流量制
御弁(17)および蓄熱電動膨張弁(14)を同時に制
御する。
Further, during the cold storage heat recovery operation, the flow rate control valve (17) and the heat storage electric expansion valve (14) are simultaneously controlled as shown in Table 1.

第1表 尚、第1表に示すように本例では圧縮機(1)の上限周
波数の制御最低値を90tTzとした。これは、圧縮機
(1)の運転周波数を90Hz以下にすると、冷媒回路
中の浦が圧縮機(1)に戻り難くなったり、2つの圧縮
機を並用した場合、均一な油循環が行ない難くなるなる
ために、これらを防止するための構成である。
Table 1 In addition, as shown in Table 1, in this example, the control minimum value of the upper limit frequency of the compressor (1) was set to 90tTz. This is because if the operating frequency of the compressor (1) is lower than 90Hz, it becomes difficult for the ura in the refrigerant circuit to return to the compressor (1), and when two compressors are used in parallel, it becomes difficult to achieve uniform oil circulation. This is a configuration to prevent these problems.

ここで、高圧制御における基本原理について説明する。Here, the basic principle of high pressure control will be explained.

室外熱交換器(3)の下流に位置するレシーバ(5)の
更に下流側において、流路面積を小さくすることにより
、回路内の冷媒循環量を低下させて、冷媒圧力を低下さ
せようとするものである。つまり、第14図は流量制御
弁(17)の開度に応じた室内電動膨張弁(6)の開度
と圧縮機冷媒循環量と回路内の高圧圧力および低圧圧力
の関係を示したものであり、この図からも解るように、
流量制御弁(17)の開度を全開状態より小さくしてい
くと、室内電動膨張弁(6)の開度が大きくなり、最大
開度になった点を境界として圧縮機冷媒循環量および回
路内の高圧、低圧が共に低下することになる。本発明は
この原理を利用し、回路内の冷媒圧力の高圧圧力を低下
させるようにしたものである。
Further downstream of the receiver (5) located downstream of the outdoor heat exchanger (3), by reducing the flow path area, the amount of refrigerant circulated within the circuit is reduced, thereby attempting to reduce the refrigerant pressure. It is something. In other words, Figure 14 shows the relationship between the opening degree of the indoor electric expansion valve (6) according to the opening degree of the flow control valve (17), the compressor refrigerant circulation amount, and the high pressure and low pressure in the circuit. Yes, as you can see from this figure,
When the opening degree of the flow control valve (17) is made smaller than the fully open state, the opening degree of the indoor electric expansion valve (6) increases, and the compressor refrigerant circulation amount and the circuit change around the maximum opening point. Both the high and low pressure inside will drop. The present invention utilizes this principle to reduce the high pressure of the refrigerant in the circuit.

また、この冷媒循環量制御の他の実施例として、第13
図に示すように制御しても良い。これについて述べると
、ステップ81〜ステツプS6およびステップS11.
ステップS+2は上述したものと同様であって、ステッ
プS2で冷媒圧力の高圧圧力HPが基準圧力の上限値H
P、よりも大きいと判断されると、ステップSI3に進
んで高圧制御値lに1が加算されステップS14に進む
。そして、ステップS14で高圧制御値1が7より大き
いか否かが判定され、高圧制御値が7より大きくなるま
でステップS+6に移り、タイマをセットしてステップ
811.512に移り、圧縮機(1)及び流量制御弁(
17)を制御し、ステップS17でタイマがタイムアツ
プするのを待ってステップS1に戻り、上記の動作を繰
り返す。
In addition, as another example of this refrigerant circulation amount control, the 13th
Control may be performed as shown in the figure. Regarding this, steps 81 to S6 and steps S11.
Step S+2 is similar to that described above, and in step S2, the high pressure HP of the refrigerant pressure is set to the upper limit value H of the reference pressure.
If it is determined that it is larger than P, the process proceeds to step SI3, where 1 is added to the high pressure control value l, and the process proceeds to step S14. Then, in step S14, it is determined whether or not the high pressure control value 1 is larger than 7, and the process moves to step S+6 until the high pressure control value becomes larger than 7. A timer is set and the process moves to steps 811 and 512, and the compressor (1 ) and flow control valve (
17), waits for the timer to time up in step S17, returns to step S1, and repeats the above operations.

つまり、通常の冷房運転時において、最初に高圧圧力H
Pが上限値HP、を越えると前実施例では高圧制御値を
7に設定して冷媒循環量を低減させるようにしたのに代
わり、制御値iを順次増大させるようにしたもので、先
ず、高圧制御値iをOから1にセットし、第1表に示す
ように圧縮機(1)の容量を低下させ、当該制御で高圧
が低下しないと次の処理タイミングで高圧制御値lを1
つステップアップし、圧縮機(1)の容量を’f+Em
制御弁(17)の制御に優先して低下制御し、90Hz
に落としても高圧圧力が低下しないと、流量制御弁(1
7)を制御する。そして、制御値が7になると圧縮機(
1)を901(z、流量制御弁(17)を70%に絞る
。一方、高圧圧力HPが低下した場合には逆にステップ
S16のタイムアツプ毎に段階的に圧縮機(1)の容量
を大きくする。
In other words, during normal cooling operation, the high pressure H
When P exceeds the upper limit HP, the high pressure control value is set to 7 to reduce the refrigerant circulation amount in the previous embodiment, but instead of this, the control value i is increased sequentially, and first, The high pressure control value i is set from O to 1, the capacity of the compressor (1) is reduced as shown in Table 1, and if the high pressure does not decrease with this control, the high pressure control value l is set to 1 at the next processing timing.
step up, and increase the capacity of compressor (1) to 'f+Em
Priority is given to the control of the control valve (17) and the frequency is lowered to 90Hz.
If the high pressure does not drop even if the pressure is lowered, the flow control valve (1
7) Control. Then, when the control value reaches 7, the compressor (
1) is reduced to 901 (z) and the flow rate control valve (17) is reduced to 70%.On the other hand, when the high pressure HP decreases, the capacity of the compressor (1) is increased step by step at each time up in step S16. do.

従って、この様な冷媒循環量の制御によれば、簡単な構
造でもって、圧縮機(1)の容量制御によるものより遥
かに大幅な流量制御が可能であり、圧縮機(1)の吐出
圧力の異常上昇による、装置の停止が回避される。
Therefore, by controlling the refrigerant circulation amount in this way, with a simple structure, it is possible to control the flow rate to a much greater extent than by controlling the capacity of the compressor (1), and the discharge pressure of the compressor (1) can be controlled to a much greater extent than by controlling the capacity of the compressor (1). This prevents the equipment from stopping due to an abnormal rise in temperature.

尚、本発明のような冷媒循環量の制御は蓄暖熱運転への
適用や、蓄熱槽を持たない一般的な空気調和装置、更に
は冷房専用機にも適用可能である。
Note that the control of the refrigerant circulation amount as in the present invention can be applied to heating heat storage operation, general air conditioners that do not have a heat storage tank, and even to cooling-only machines.

また、本実施例では外気温度、低圧相当飽和温度、圧縮
機出力によって冷媒圧力を算出したが、圧縮機の吐出側
に圧力センサを設けて直接冷媒圧力を検知するようにし
ても良い。更に、流量調整手段は、室内ユニット側の室
内電動膨張弁に兼用させることも可能である。また、上
述した実施例のような段階的な制御に代わり連続的に弁
の開度及び圧縮機運転周波数の制御を行うようにしても
良い。
Further, in this embodiment, the refrigerant pressure was calculated based on the outside air temperature, the low pressure equivalent saturation temperature, and the compressor output, but a pressure sensor may be provided on the discharge side of the compressor to directly detect the refrigerant pressure. Furthermore, the indoor electric expansion valve on the indoor unit side can also be used as the flow rate adjustment means. Further, instead of the stepwise control as in the above embodiment, the valve opening degree and the compressor operating frequency may be controlled continuously.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、冷
媒圧力の高圧圧力に応じた冷媒循環量の制御という簡単
な制御によって確実に冷媒圧力の低下が図れ、従来のよ
うな圧縮機の容量を低下させることによる冷媒圧力低下
の制御における圧縮機への油戻り不足やツインコンプレ
ッサにおける油潤滑の不均衡が回避され、また、予め容
量の大きい圧縮機を設置しておくこともなく簡略な構造
、且つ低コストでもって確実な冷媒圧力の低下を図るこ
とができ、高圧スイッチの働きによる装置駆動の停止の
低減が図れる。
(Effects of the Invention) As explained above, according to the invention of claim (1), the refrigerant pressure can be reliably lowered by simple control of the refrigerant circulation amount according to the high pressure of the refrigerant. Insufficient oil return to the compressor and imbalance in oil lubrication in twin compressors can be avoided in controlling the drop in refrigerant pressure by lowering the capacity of the compressor. It is possible to reliably lower the refrigerant pressure with a simple structure and low cost, without having to use the high-pressure switch, and it is possible to reduce the number of times the device drive is stopped due to the function of the high-pressure switch.

請求項(2)の発明では、蓄熱式の空気調和装置におい
て、冷媒圧力制御機能を具備させたことで、上述した請
求項(1)記載の発明における効果に加え、負荷が大き
い蓄冷熱運転時における装置の停止が回避される。
In the invention of claim (2), by providing a refrigerant pressure control function in a heat storage type air conditioner, in addition to the effect of the invention described in claim (1), it is possible to improve the temperature during cold storage heat operation with a large load. This avoids equipment stoppages.

請求項(3)の発明では、蓄冷熱回収運転時には流量調
整機構と蓄冷熱用減圧機構とで冷媒流量を制御すること
で、適宜最適な冷媒流量を得つつ、装置の停止が回避可
能となる。
In the invention of claim (3), by controlling the refrigerant flow rate by the flow rate adjustment mechanism and the cold storage heat decompression mechanism during the cold storage heat recovery operation, it is possible to obtain an appropriate optimal refrigerant flow rate and avoid stopping the device. .

請求項(4)の発明では、請求項(1)〜(3)におけ
る効果に加え、圧縮機の容量制御によっても冷媒循環量
を低下させるようにしたことで、冷媒循環量の低下率の
増大、即ち、冷媒圧力の低下率をより一層増大させるこ
とが可能である。
In the invention of claim (4), in addition to the effects in claims (1) to (3), the amount of refrigerant circulation is also reduced by controlling the capacity of the compressor, thereby increasing the rate of decrease in the amount of refrigerant circulation. That is, it is possible to further increase the rate of decrease in refrigerant pressure.

請求項(5)の発明では、冷媒圧力の高圧値が基準高圧
値を越えた場合、圧縮機の容量制御を優先して行い、冷
媒圧力の高圧値が基準高圧値を所定値以上越えたときに
のみ流量調整手段による冷媒流量規制制御を行うことに
より、必要以上に流量調整手段を駆動させることがない
ために、消費電力が低下され、装置のランニングコスト
の低下が図れる。
In the invention of claim (5), when the high pressure value of the refrigerant pressure exceeds the reference high pressure value, the capacity control of the compressor is performed with priority, and when the high pressure value of the refrigerant pressure exceeds the reference high pressure value by a predetermined value or more, By controlling the refrigerant flow rate by the flow rate adjustment means only during the refrigerant flow rate, the flow rate adjustment means is not driven more than necessary, thereby reducing power consumption and reducing the running cost of the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の構成を示すブロック図で
ある。 第3図〜第13図は本発明の一実施例を示し、第3図は
装置の全体構成を示す冷媒配管系統図、第4図〜第7図
はそれぞれ冷房運転における各運転モードを示し、第4
図は通常冷房運転、第5図は蓄冷熱運転、第6図は通常
冷房及び蓄冷熱同時運転、第7図は蓄冷熱回収運転にお
ける冷媒の循環を示す説明図である。第8図〜第11図
はそれぞれ暖房運転における各運転モードを示し、第8
図は通常暖房運転、第9図は蓄暖熱運転、第10図は通
常暖房及び蓄冷熱同時運転、第11図は蓄暖熱回収デフ
ロスト運転における冷媒の循環経路を示す説明図、第1
2図は本装置の制御内容を示すフローチャート図、第1
3図は別の制御内容を示すフローチャート図である。第
14図は本発明の詳細な説明するための図である。 1  圧縮機 3  室外熱交換器(熱源側熱交換器)5  レシーバ 6  室内電動膨張弁(主減圧機構) 室内熱交換器(利用側熱交換器) 冷媒配管 主冷媒回路 蓄熱槽 蓄熱熱交換器 蓄熱電動膨張弁(蓄冷熱用減圧機1iW )流量制御弁
(流量調整機構) 切換手段 流量調整手段 圧力検知手段 比較手段 流量制御手段 容量制御手段 1と 第 図 第12 図 z 第 図 第13図
FIGS. 1 and 2 are block diagrams showing the configuration of the present invention. 3 to 13 show one embodiment of the present invention, FIG. 3 is a refrigerant piping system diagram showing the overall configuration of the device, and FIGS. 4 to 7 show each operation mode in cooling operation, Fourth
FIG. 5 is an explanatory diagram showing the circulation of refrigerant in normal cooling operation, FIG. 5 in cold storage heat operation, FIG. 6 in normal cooling and cold storage heat simultaneous operation, and FIG. 7 in cold storage heat recovery operation. Figures 8 to 11 each show each operation mode in heating operation, and Figure 8
Figure 9 shows the normal heating operation, Figure 9 shows the heating heat storage operation, Figure 10 shows the normal heating and cold storage heat simultaneous operation, Figure 11 shows the refrigerant circulation route in the heating heat recovery defrost operation, and Figure 1
Figure 2 is a flowchart showing the control contents of this device.
FIG. 3 is a flowchart showing another control content. FIG. 14 is a diagram for explaining the present invention in detail. 1 Compressor 3 Outdoor heat exchanger (heat source side heat exchanger) 5 Receiver 6 Indoor electric expansion valve (main pressure reducing mechanism) Indoor heat exchanger (user side heat exchanger) Refrigerant piping Main refrigerant circuit Heat storage tank Thermal storage Heat exchanger Heat storage Electric expansion valve (pressure reducer for cold storage heat 1iW) Flow rate control valve (flow rate adjustment mechanism) Switching means Flow rate adjustment means Pressure detection means Comparison means Flow rate control means Capacity control means 1 and Fig. 12 Fig. z Fig. 13

Claims (5)

【特許請求の範囲】[Claims] (1)圧縮機(1)、熱源側熱交換器(3)及び受液器
(5)を有する室外ユニット(X)に対して主減圧機構
(6)及び利用側熱交換器(7)を有する複数の室内ユ
ニット(A)、(B)、・・・が冷媒配管(9)で並列
接続されてなる主冷媒回路(10)を備えた空気調和装
置において、上記受液器(5)と利用側熱交換器(7)
との間を流れる冷媒流量を調整する流量調整手段(52
)と、冷媒圧力の高圧圧力を検出する圧力検出手段(5
3)と、該圧力検出手段(53)の出力信号を受け、予
め設定された高圧側の基準圧力と冷媒圧力の高圧圧力と
を比較する比較手段(54)と、冷媒圧力の高圧圧力が
基準圧力以上になると該比較手段(54)の出力信号に
より主冷媒回路(10)内の冷媒循環量を低下させるよ
う上記流量調整手段(52)を制御する流量制御手段(
60)とを備えていることを特徴とする空気調和装置。
(1) For the outdoor unit (X) that has a compressor (1), a heat source side heat exchanger (3), and a liquid receiver (5), a main pressure reduction mechanism (6) and a user side heat exchanger (7) are installed. In an air conditioner equipped with a main refrigerant circuit (10) in which a plurality of indoor units (A), (B), . . . User side heat exchanger (7)
Flow rate adjustment means (52) for adjusting the flow rate of refrigerant flowing between
) and pressure detection means (5) for detecting the high pressure of the refrigerant pressure.
3), a comparison means (54) which receives the output signal of the pressure detection means (53) and compares a preset reference pressure on the high pressure side with the high pressure of the refrigerant pressure; Flow rate control means (52) for controlling the flow rate adjustment means (52) so as to reduce the amount of refrigerant circulation in the main refrigerant circuit (10) based on the output signal of the comparison means (54) when the pressure exceeds the pressure;
60) An air conditioner comprising:
(2)上記請求項(1)記載の空気調和装置において、
蓄冷熱用の蓄熱媒体を貯溜する蓄熱槽(11)と、該蓄
熱槽(11)内に配置されると共に、上記主冷媒回路(
10)に接続され、冷媒と蓄熱媒体との熱交換を行うた
めの蓄熱熱交換器(12)と、蓄冷熱用減圧機構(14
)とを備えるとともに、 少なくとも通常冷房運転時には、熱源側熱交換器(3)
で凝縮された液冷媒が主冷媒回路(10)のみを流れて
主減圧機構(6)で減圧され、利用側熱交換器(7)で
蒸発して圧縮機(1)に戻るように循環し、蓄冷熱運転
時には、熱源側熱交換器(3)で凝縮された液冷媒が蓄
冷熱用減圧機構(14)で減圧され、蓄熱熱交換器(1
2)で蒸発したのち圧縮機(1)に戻るように循環し、
蓄冷熱回収運転時には、熱源側熱交換器(3)で凝縮さ
れた液冷媒が主冷媒回路(10)から蓄熱熱交換器(1
2)で過冷却された後、主冷媒回路(10)の利用側熱
交換器(7)で蒸発して圧縮機(1)に戻るように回路
接続を切換える切換手段(51)を備えていることを特
徴とする空気調和装置。
(2) In the air conditioner according to claim (1),
A heat storage tank (11) that stores a heat storage medium for storing cold heat;
10) for exchanging heat between the refrigerant and the heat storage medium, and a pressure reduction mechanism for cold storage heat (14).
), and at least during normal cooling operation, a heat source side heat exchanger (3)
The condensed liquid refrigerant flows only through the main refrigerant circuit (10), is depressurized by the main pressure reducing mechanism (6), is evaporated by the user-side heat exchanger (7), and is circulated back to the compressor (1). During cold storage heat operation, the liquid refrigerant condensed in the heat source side heat exchanger (3) is depressurized by the cold storage heat decompression mechanism (14), and the liquid refrigerant is depressurized in the cold storage heat exchanger (14).
After being evaporated in step 2), it is circulated back to the compressor (1),
During the cold storage heat recovery operation, the liquid refrigerant condensed in the heat source side heat exchanger (3) is transferred from the main refrigerant circuit (10) to the thermal storage heat exchanger (1).
After being supercooled in step 2), the refrigerant is evaporated in the user-side heat exchanger (7) of the main refrigerant circuit (10) and returned to the compressor (1). An air conditioner characterized by:
(3)上記請求項(2)記載の空気調和装置において、
流量制御手段(60)は、蓄冷熱回収運転時には流量調
整手段(52)としての流量調整機構(17)と開度が
可変とされた蓄冷熱用減圧機構(14)とで、通常冷房
運転時には流量調整機構(17)で主冷媒回路(10)
を流れる冷媒流量を調整させるように構成されているこ
とを特徴とする空気調和装置。
(3) In the air conditioner according to claim (2) above,
The flow rate control means (60) includes a flow rate adjustment mechanism (17) as a flow rate adjustment means (52) during cold storage heat recovery operation and a cold storage heat decompression mechanism (14) whose opening degree is variable, and during normal cooling operation. Main refrigerant circuit (10) with flow rate adjustment mechanism (17)
An air conditioner configured to adjust the flow rate of refrigerant flowing through the air conditioner.
(4)上記請求項(19、(2)または(3)記載の空
気調和装置において、圧縮機(1)は容量可変に構成さ
れている一方、比較手段(54)の出力信号を受けて、
圧縮機(1)の容量が低下するように該圧縮機(1)を
制御する容量制御手段(61)が設けられていることを
特徴とする空気調和装置。
(4) In the air conditioner according to claim (19), (2) or (3), the compressor (1) is configured to have a variable capacity, while receiving the output signal of the comparing means (54),
An air conditioner characterized in that a capacity control means (61) is provided for controlling the compressor (1) so that the capacity of the compressor (1) is reduced.
(5)上記請求項(4)記載の空気調和装置において、
容量制御手段(61)は、流量制御手段(60)よりも
優先して圧縮機容量を低下制御するように構成されてい
ることを特徴とする空気調和装置。
(5) In the air conditioner according to claim (4),
An air conditioner characterized in that the capacity control means (61) is configured to lower the compressor capacity with priority over the flow rate control means (60).
JP1104134A 1989-04-24 1989-04-24 Air conditioner Expired - Lifetime JPH0830615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104134A JPH0830615B2 (en) 1989-04-24 1989-04-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104134A JPH0830615B2 (en) 1989-04-24 1989-04-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02282662A true JPH02282662A (en) 1990-11-20
JPH0830615B2 JPH0830615B2 (en) 1996-03-27

Family

ID=14372634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104134A Expired - Lifetime JPH0830615B2 (en) 1989-04-24 1989-04-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0830615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507935A (en) * 1992-06-15 1996-08-27 ハーマン、ミラー、インコーポレイテッド Office chair

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127338U (en) * 1985-01-30 1986-08-09
JPS63181768U (en) * 1987-05-18 1988-11-24
JPS6410063A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127338U (en) * 1985-01-30 1986-08-09
JPS63181768U (en) * 1987-05-18 1988-11-24
JPS6410063A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507935A (en) * 1992-06-15 1996-08-27 ハーマン、ミラー、インコーポレイテッド Office chair

Also Published As

Publication number Publication date
JPH0830615B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US7762091B2 (en) Apparatus for controlling the capacity of an air conditioner and control method using the same
JP6095353B2 (en) Refrigeration cycle equipment
JP2936961B2 (en) Air conditioner
JP5173857B2 (en) Air conditioner
JPH07120120A (en) Drive controller for air conditioner
JP3147588B2 (en) Refrigeration equipment
JPH06337174A (en) Operation controller for air-conditioner
JPH03175230A (en) Operation controller of air conditioner
JPH043865A (en) Freezing cycle device
JPH04340046A (en) Operation control device of air conditioner
JP3418891B2 (en) Refrigeration equipment
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JPH02282662A (en) Air conditioner
JP3718870B2 (en) Operation control device for refrigeration equipment
JPH04324069A (en) Refrigerating plant
JP4186492B2 (en) Air conditioner
JP2000097481A (en) Air conditioner
JPH0395343A (en) Operating controller for air conditioner
JPH0320571A (en) Air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPH05240522A (en) Air conditioning apparatus
JP3048658B2 (en) Refrigeration equipment
JPH04222354A (en) Operation controller for refrigerating equipment
JPH0772647B2 (en) Pressure equalizer for air conditioner