JPH0228241B2 - TANSOKEISERAMITSUKUTEIKOTAI - Google Patents

TANSOKEISERAMITSUKUTEIKOTAI

Info

Publication number
JPH0228241B2
JPH0228241B2 JP58009343A JP934383A JPH0228241B2 JP H0228241 B2 JPH0228241 B2 JP H0228241B2 JP 58009343 A JP58009343 A JP 58009343A JP 934383 A JP934383 A JP 934383A JP H0228241 B2 JPH0228241 B2 JP H0228241B2
Authority
JP
Japan
Prior art keywords
ceramic
resistor
carbon
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009343A
Other languages
Japanese (ja)
Other versions
JPS59135701A (en
Inventor
Masakatsu Tominaga
Nobuyuki Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
Original Assignee
TOKAI KONETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK filed Critical TOKAI KONETSU KOGYO KK
Priority to JP58009343A priority Critical patent/JPH0228241B2/en
Publication of JPS59135701A publication Critical patent/JPS59135701A/en
Publication of JPH0228241B2 publication Critical patent/JPH0228241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素系セラミツク抵抗体(以下単にセ
ラミツク抵抗体という)、特に高電圧電流回路に
使用されるセラミツク抵抗体に関する。 従来よりセラミツク抵抗体は、オームの法則に
従う電圧電流特性を有し、加えて他種抵抗器に優
る耐電圧電流性、耐熱性と更に、高値の注入エネ
ルギー耐量を有するため、大電流高電圧装置の抵
抗、コンデンサーの充放電抵抗、サイリスタイン
バータ等のサージエネルギー吸収抵抗等、苛酷な
条件の用途に広く使用されている。従来の炭素系
セラミツク抵抗体は、炭素を導電材とし、これに
アルミナ等を骨材としてセラミツク質結合材を加
え焼結させたものを素材とし、その表面にシリコ
ーン系樹脂などをコーチングして絶縁層を形成し
ていた。しかしこの絶縁構造は、シリコーン系樹
脂の耐熱性、耐電圧性が劣ることに加え、亀裂発
生等の欠点もあつて従来より問題視されていた。 本出願人は、上記欠点を改良し、より優れた耐
電圧電流性、耐熱性を有するセラミツク抵抗体の
製造方法を、特許願54−79737で出願した。これ
はセラミツク抵抗体の素材を、酸化雰囲気で焼成
するか、または焼成前に酸化雰囲気で熱処理する
かして、該抵抗体の表面に自己セラミツク質絶縁
層を形成することにより、苛酷な条件でも安定性
を有するセラミツク質抵抗体の製造法を提供した
ものである。 上記以外のセラミツク絶縁層を形成する方法と
しては例えば、 (1) 素体を非酸化雰囲気で焼成後、表面にセラミ
ツクコーチング材をコーチングする方法。具体
的には、セラミツク絶縁物の粉末溶射法、ある
いは低温硬化型セラミツク絶縁ペーストを塗布
する方法等。 (2) セラミツク絶縁物が外周に、セラミツク抵抗
物が内部になるような二重成形方法。 等が知られている。 上記のような製造によるセラミツク抵抗体の特
徴は、セラミツク絶縁層が気密質でなく、5〜35
%の気孔率をもつ多孔質体であるため通気性があ
り、従つて大気中では、吸湿や有害ガスの吸着に
より電気特性が変化しやすく、長期間の大気中で
の使用には不適当である事と、更に通気性による
素体内の炭素の酸化開始温度が約350℃であるこ
とから、特許願54−79737の自己セラミツク質絶
縁層をもつてしても、最高使用温度は前記温度が
限度である事である。 従つて長期間にわたつて安定した電気特性、即
ち特に電気抵抗値を有し、更に使用温度を向上さ
せたセラミツク抵抗体が要望されていた。 本発明の目的は、前記のセラミツク絶縁層を形
成したセラミツク抵抗体において、長期間大気中
で使用しても、電気抵抗値の変化率の少ない、加
えて大気中での最高使用温度を更に向上させたセ
ラミツク抵抗体を提供することにある。 即ち、本発明は、炭素、アルミナ、粘土を主成
分とするセラミツク抵抗体の表面に炭素を含まな
いセラミツク絶縁層を形成し、更に該絶縁層の表
面に気密質耐熱絶縁ガラス層を形成してなる抵抗
体を特徴とする。 次に本発明の効果を助長するセラミツク絶縁層
の必要性について説明する。例えば、非酸化雰囲
気中で焼成したセラミツク抵抗体、即ち素体表面
にセラミツク絶縁層が形成されないセラミツク抵
抗体の表面に、気密質の耐熱絶縁ガラス層を直接
溶着した場合、該抵抗体表面の炭素とガラスが反
応し、炭酸ガスが発生して、該抵抗体の表面に均
一に耐熱絶縁ガラス層を形成させることは下可能
である。従つて前記の欠点を解消するには、まず
セラミツク抵抗体の表面に炭素を含まないセラミ
ツク絶縁層を、前記の方法例えば、酸化雰囲気で
焼成してセラミツク絶縁層を形成させ、次に該抵
抗体の表面に絶縁ガラス層を全面均一に形成させ
ることによつて二重の各層が有する効果を、相乗
的に発揮することができる。 以下本発明の実施例を図面により説明する。第
1図は本発明のセラミツク抵抗体の断面図であ
る。即ちセラミツク抵抗体素体1はアルミナ、カ
オリン、粘土、炭素、炭酸マグネシウムからな
り、直径3.7mmO/、長さ25mmの棒状体を酸化雰囲
気焼成して、該棒状体の表面に、厚み0.3mmの酸
化層即ち、炭素を含まない均一な自己セラミツク
絶縁層2を形成し、次に両端の電極部4に、端部
の一部と断面にアルミニウムを溶射し、該面にニ
ツケル合金例えば、コバールのカツプ状の端子金
具を圧入してなる構造体とし更に、気密質耐熱絶
縁ガラス層3で全面を溶着包被した抵抗体であ
る。尚上記ガラス層は、例えば市販の軟化点670
℃の結晶化ガラスからなる外径5.3mmO/、内径4.5
mmO/、長さ33mmの耐熱絶縁ガラスパイプを前記抵
抗体の外周に挿着し、加熱して溶融軟化させ、セ
ラミツク抵抗体の全表面に均一に溶着させること
により形成し得る。 表1及び表2は本発明によるセラミツク抵抗体
の耐久性を示す。即ち表1はセラミツク抵抗体の
表面温度が250℃になるような電力を印加した場
合の、電気抵抗の時間的変化率(%)を示す。
The present invention relates to a carbon-based ceramic resistor (hereinafter simply referred to as a ceramic resistor), and particularly to a ceramic resistor used in a high voltage current circuit. Traditionally, ceramic resistors have voltage-current characteristics that comply with Ohm's law, as well as voltage and current characteristics and heat resistance that are superior to other types of resistors, as well as a high injection energy withstand capacity. It is widely used in applications under severe conditions, such as resistors for batteries, charging/discharging resistors for capacitors, and surge energy absorbing resistors for thyristor inverters. Conventional carbon-based ceramic resistors are made of carbon as a conductive material, alumina as an aggregate, a ceramic binder added and sintered, and the surface is coated with silicone resin for insulation. It formed a layer. However, this insulating structure has been viewed as problematic in the past due to the inferior heat resistance and voltage resistance of the silicone resin, as well as drawbacks such as cracking. The present applicant has filed a patent application No. 54-79737 for a method for manufacturing a ceramic resistor that improves the above-mentioned drawbacks and has better withstand voltage and current properties and heat resistance. This is possible even under harsh conditions by firing the ceramic resistor material in an oxidizing atmosphere or heat-treating it in an oxidizing atmosphere before firing to form a self-ceramic insulating layer on the surface of the resistor. The present invention provides a method for manufacturing a ceramic resistor having stability. Examples of methods for forming a ceramic insulating layer other than those described above include: (1) After firing the element body in a non-oxidizing atmosphere, the surface is coated with a ceramic coating material. Specifically, the method includes a powder spraying method for ceramic insulators or a method for applying a low-temperature curing ceramic insulating paste. (2) A double molding method in which the ceramic insulator is on the outer periphery and the ceramic resistor is on the inside. etc. are known. The characteristics of the ceramic resistor produced as described above are that the ceramic insulating layer is not airtight and has a
Since it is a porous material with a porosity of 1.5%, it is breathable, and its electrical properties tend to change due to moisture absorption and adsorption of harmful gases in the atmosphere, making it unsuitable for long-term use in the atmosphere. In addition, the temperature at which the oxidation of carbon in the element body starts due to air permeability is about 350°C. Therefore, even with the self-ceramic insulating layer of Patent Application No. 54-79737, the maximum operating temperature is at the above temperature. This is a limit. Therefore, there has been a need for a ceramic resistor that has stable electrical properties over a long period of time, ie, particularly electrical resistance, and that can be used at a higher temperature. The object of the present invention is to reduce the rate of change in electrical resistance even when used in the atmosphere for a long period of time in a ceramic resistor formed with the ceramic insulating layer, and to further improve the maximum operating temperature in the atmosphere. The object of the present invention is to provide a ceramic resistor with improved characteristics. That is, the present invention forms a carbon-free ceramic insulating layer on the surface of a ceramic resistor whose main components are carbon, alumina, and clay, and further forms an airtight heat-resistant insulating glass layer on the surface of the insulating layer. It is characterized by a resistor. Next, the necessity of a ceramic insulating layer that promotes the effects of the present invention will be explained. For example, if an airtight heat-resistant insulating glass layer is directly welded to the surface of a ceramic resistor fired in a non-oxidizing atmosphere, that is, a ceramic resistor on which no ceramic insulating layer is formed on the surface of the element, the carbon It is possible to form a heat-resistant insulating glass layer uniformly on the surface of the resistor by reacting with the glass and generating carbon dioxide gas. Therefore, in order to eliminate the above-mentioned drawbacks, first, a ceramic insulating layer that does not contain carbon is formed on the surface of a ceramic resistor by firing the ceramic insulating layer using the method described above, for example, in an oxidizing atmosphere, and then the ceramic insulating layer is formed on the surface of the resistor. By forming an insulating glass layer uniformly over the entire surface, the effects of each double layer can be synergistically exhibited. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the ceramic resistor of the present invention. That is, the ceramic resistor element body 1 is made of alumina, kaolin, clay, carbon, and magnesium carbonate. A rod-shaped body with a diameter of 3.7 mm and a length of 25 mm is fired in an oxidizing atmosphere, and a 0.3-mm thick layer is formed on the surface of the rod-shaped body. An oxide layer, that is, a uniform self-ceramic insulating layer 2 that does not contain carbon, is formed, and then aluminum is thermally sprayed on a part of the end and the cross section of the electrode parts 4 at both ends, and a layer of nickel alloy, such as Kovar, is applied to the surface. This resistor has a structure formed by press-fitting cup-shaped terminal fittings, and is further welded and covered on the entire surface with an airtight heat-resistant insulating glass layer 3. The above glass layer may have a softening point of 670, for example.
Made of crystallized glass at °C, outer diameter 5.3mmO/, inner diameter 4.5
It can be formed by inserting a heat-resistant insulating glass pipe with a length of 33 mm in mmO/mm on the outer periphery of the resistor, heating it to melt and soften it, and uniformly welding it to the entire surface of the ceramic resistor. Tables 1 and 2 show the durability of ceramic resistors according to the invention. That is, Table 1 shows the rate of change (%) of electrical resistance over time when power is applied such that the surface temperature of the ceramic resistor reaches 250°C.

【表】 上記の表1は本発明品と、特許願54−79737に
よるセラミツク抵抗体、即ち気密質耐熱絶縁ガラ
ス層がない抵抗体とを、同時に測定して比較し
た。表1のように本発明品は7000時間で2.5%と
安定な状態が続き、寿命が大幅に延長される事が
確認し得た。 次に表2は大気中100〜600℃の温度で5時間加
熱した場合の、電気抵抗値の変化率を示す。即ち
表1と同様、本発明品と特許願54−79737による
抵抗体とを測定して比較した。
[Table] Table 1 above shows a comparison between the product of the present invention and a ceramic resistor according to Patent Application No. 54-79737, that is, a resistor without an airtight heat-resistant insulating glass layer. As shown in Table 1, the product of the present invention remained stable at 2.5% for 7000 hours, confirming that its lifespan was significantly extended. Next, Table 2 shows the rate of change in electrical resistance when heated in the air at a temperature of 100 to 600°C for 5 hours. That is, as in Table 1, the product of the present invention and the resistor according to Patent Application No. 54-79737 were measured and compared.

【表】 上記表2により、先願品は約300℃までが耐熱
限度であるのに対し、本発明品は約600℃高温で
も異常なく実用に耐える事が確認された。 以上のように本発明により、寿命、耐熱性が飛
躍的に改良されたセラミツク抵抗体を得た事は、
これまで不可能とされた高温領域における、新た
な用途開発を助長し、各種の大電圧電流装置え
の、技術的実用効果は極めて大なるものがある。
[Table] From Table 2 above, it was confirmed that the product of the prior application has a heat resistance limit of up to about 300°C, whereas the product of the present invention can withstand practical use even at a high temperature of about 600°C without any abnormality. As described above, the present invention has provided a ceramic resistor with dramatically improved lifespan and heat resistance.
It has encouraged the development of new applications in high-temperature regions that were previously considered impossible, and the technical practical effects of various high-voltage and current devices are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるセラミツク抵抗体の断面
図である。 1……セラミツク抵抗体素体、2……炭素を含
まない多孔質セラミツク絶縁層、3……気密質耐
熱絶縁ガラス層、4……電極部。
FIG. 1 is a sectional view of a ceramic resistor according to the present invention. DESCRIPTION OF SYMBOLS 1... Ceramic resistor element body, 2... Porous ceramic insulating layer not containing carbon, 3... Airtight heat-resistant insulating glass layer, 4... Electrode section.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素、アルミナ、粘土を主成分とする炭素系
セラミツク抵抗体の素体の表面に、炭素を含まな
いセラミツク絶縁層を形成し、更に該絶縁層の表
面に気密質耐熱絶縁ガラス層を形成したことを特
徴とする炭素系セラミツク抵抗体。
1. A carbon-free ceramic insulating layer is formed on the surface of a carbon-based ceramic resistor element whose main components are carbon, alumina, and clay, and an airtight heat-resistant insulating glass layer is further formed on the surface of the insulating layer. A carbon-based ceramic resistor characterized by:
JP58009343A 1983-01-25 1983-01-25 TANSOKEISERAMITSUKUTEIKOTAI Expired - Lifetime JPH0228241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009343A JPH0228241B2 (en) 1983-01-25 1983-01-25 TANSOKEISERAMITSUKUTEIKOTAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009343A JPH0228241B2 (en) 1983-01-25 1983-01-25 TANSOKEISERAMITSUKUTEIKOTAI

Publications (2)

Publication Number Publication Date
JPS59135701A JPS59135701A (en) 1984-08-04
JPH0228241B2 true JPH0228241B2 (en) 1990-06-22

Family

ID=11717822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009343A Expired - Lifetime JPH0228241B2 (en) 1983-01-25 1983-01-25 TANSOKEISERAMITSUKUTEIKOTAI

Country Status (1)

Country Link
JP (1) JPH0228241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161638A (en) * 1985-01-09 1986-07-22 Tokai Kounetsu Kogyo Kk Resistor for suppressing discharge of electron gun
JPS62202444A (en) * 1986-02-28 1987-09-07 Sony Corp Electron tube device

Also Published As

Publication number Publication date
JPS59135701A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US2134752A (en) Method of making resistor elements
JPH0228241B2 (en) TANSOKEISERAMITSUKUTEIKOTAI
JPH04133244A (en) Electric discharge tube and its manufacture
CN115954171A (en) Alumina ceramic packaged thermistor and preparation method thereof
KR960015607A (en) Voltage nonlinear resistor and manufacturing method thereof
JP3734293B2 (en) Resistor plug
US3706895A (en) Fluorescent lamp having coated inleads
JPS5814721B2 (en) Method for manufacturing thick film type positive temperature semiconductor device
JPS5958773A (en) Ceramic heater unit
JP3486064B2 (en) Power resistor and method of manufacturing the same
JP4044245B2 (en) Silicon nitride ceramic heater
JPS61161638A (en) Resistor for suppressing discharge of electron gun
US3808574A (en) Magnesium and magnesium oxide resistor and method of forming
JPS6351356B2 (en)
US3218594A (en) Electrical resistor
US2084840A (en) Resistor element
CN215647431U (en) Electric heating quartz tube
JP2537606B2 (en) Ceramic Heater
CN115835431A (en) Electric heating quartz tube and manufacturing method thereof
JP2773997B2 (en) Ceramic heater and method of manufacturing the same
JPS6322642Y2 (en)
JPS61284903A (en) Manufacture of resistor for resistance-contained plug
JPS6272188A (en) Laser tube
JPH10223360A (en) Flat heater element
JPH0379844B2 (en)