JP3486064B2 - Power resistor and method of manufacturing the same - Google Patents

Power resistor and method of manufacturing the same

Info

Publication number
JP3486064B2
JP3486064B2 JP27396496A JP27396496A JP3486064B2 JP 3486064 B2 JP3486064 B2 JP 3486064B2 JP 27396496 A JP27396496 A JP 27396496A JP 27396496 A JP27396496 A JP 27396496A JP 3486064 B2 JP3486064 B2 JP 3486064B2
Authority
JP
Japan
Prior art keywords
sintered body
resistor
insulating layer
electrode
power resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27396496A
Other languages
Japanese (ja)
Other versions
JPH10106802A (en
Inventor
直樹 首藤
美保 丸山
基真 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27396496A priority Critical patent/JP3486064B2/en
Publication of JPH10106802A publication Critical patent/JPH10106802A/en
Application granted granted Critical
Publication of JP3486064B2 publication Critical patent/JP3486064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は過大な電気エネルギ
ーを吸収するのに好適な電力用抵抗体、特に、酸素を含
む雰囲気中、高温で使用するような用途、例えば地絡電
流抑制に用いられる中性点接地抵抗器等に好ましい電力
用抵抗体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power resistor suitable for absorbing an excessive amount of electric energy, and more particularly, to a power resistor used at a high temperature in an atmosphere containing oxygen, for example, for ground fault current suppression. The present invention relates to a power resistor preferable for a neutral grounding resistor and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在、遮断器等の電流制御用、電動機の
始動・回生に伴う各種制御用、また、送電系統の異常発
生時における接地用として、種々の電力用抵抗器が用い
られている。これら抵抗器は、金属抵抗体、セラミック
抵抗体、これらの複合体により構成されている。
2. Description of the Related Art At present, various electric power resistors are used for controlling currents such as circuit breakers, various controls for starting and regenerating electric motors, and for grounding when an abnormality occurs in a power transmission system. . These resistors are composed of metal resistors, ceramic resistors, and composites of these.

【0003】例えば、高電圧用遮断器には、開閉時に発
生する開閉サージを吸収したり遮断容量を増加させるた
めに遮断接点と並列に投入抵抗器を接続している。これ
らの目的に用いられる抵抗器の従来の抵抗体には、例え
ば特開昭58−139401号公報に記載されているよ
うな、炭素粒子分散型セラミック抵抗体が用いられてい
る。この抵抗体は、絶縁性成分たる酸化アルミニウム粉
末に、導電性成分たるカーボン粉末を混合し、結合材に
なる粘土で焼き固めたもので、100〜2500Ω・c
mの抵抗率を持つ。
For example, a closing resistor is connected to a high voltage circuit breaker in parallel with a breaking contact in order to absorb a switching surge generated at the time of switching and increase a breaking capacity. As a conventional resistor of a resistor used for these purposes, a carbon particle-dispersed ceramic resistor as described, for example, in JP-A-58-139401 is used. This resistor is made by mixing aluminum oxide powder, which is an insulating component, and carbon powder, which is a conductive component, and baking it with clay that is a binder, and is 100 to 2500 Ω · c.
It has a resistivity of m.

【0004】また、地絡電流抑制に用いられる中性点接
地抵抗器には、上記炭素粒子分散型セラミック抵抗体の
他に、例えば、特開平7−161505号公報に記載さ
れているような、酸化亜鉛を主成分とし、酸化アルミニ
ウムと酸化マグネシウムを副成分とする直線抵抗体が用
いられている。
In addition to the carbon particle dispersed type ceramic resistor, the neutral point grounding resistor used for suppressing the ground fault current is, for example, as described in JP-A-7-161505. A linear resistor having zinc oxide as a main component and aluminum oxide and magnesium oxide as a subcomponent is used.

【0005】このうち、炭素粒子分散型セラミック抵抗
体は、カーボン粉末添加量を調整することで任意の抵抗
率を持つ抵抗体を得ることができるという利点がある。
しかし、気孔率が10〜30%と高く緻密性に劣るた
め、以下に示すような問題がある。第1に、体積当たり
の熱容量が2J/cm3 ・K程度と小さいために、吸収
できるエネルギー量が小さい。その結果、電気エネルギ
ーを吸収することで著しい温度上昇を起こす。第2に、
高電圧通電時には、カーボン粉末間で放電を起こし、著
しい場合貫通放電をしてしまう。第3に、気孔率が大き
いため、機械的強度が小さく(4点曲げ平均強度で20
MPa)、抵抗体内部抵抗分布によって発声する、発熱
分布によって熱衝撃破壊を起こす。さらに、大気中、3
00℃以上になると、抵抗値を制御している焼結体内部
の炭素粒子が、開気孔を通して酸化され、抵抗値が増加
し抵抗体としての機能を失ってしまう。以上の様な問題
により、電力用の抵抗体として、特開昭58−1394
01号公報に記載された従来の抵抗体は問題が多い。
Among them, the carbon particle-dispersed ceramic resistor has an advantage that a resistor having an arbitrary resistivity can be obtained by adjusting the amount of carbon powder added.
However, since the porosity is as high as 10 to 30% and the denseness is poor, there are the following problems. First, since the heat capacity per volume is as small as about 2 J / cm 3 · K, the amount of energy that can be absorbed is small. As a result, the absorption of electric energy causes a remarkable temperature rise. Second,
When a high voltage is applied, a discharge occurs between the carbon powders, and in a remarkable case, a through discharge occurs. Third, since the porosity is high, the mechanical strength is low (4 point bending average strength is 20
(MPa), voicing due to the internal resistance distribution of the resistor causes thermal shock breakdown due to the heat generation distribution. Furthermore, in the atmosphere, 3
If the temperature is higher than 00 ° C., the carbon particles inside the sintered body whose resistance value is controlled are oxidized through the open pores, the resistance value increases, and the function as a resistor is lost. Due to the above problems, a resistor for electric power is disclosed in Japanese Patent Laid-Open No. 58-1394.
The conventional resistor described in Japanese Patent Publication No. 01 has many problems.

【0006】また、酸化亜鉛を主成分とした抵抗体は、
電流−電圧特性に非直線性が存在することが多い。この
ため、大電流で使用すると抵抗値が小さくなり、抵抗体
として充分に機能しなくなる問題を有する。さらに、機
械的強度も、炭素粒子分散型セラミック抵抗体よりは大
きいが、4点曲げ平均強度で100MPa程度と小さ
く、耐熱衝撃性に劣る。
The resistor containing zinc oxide as a main component is
There are often non-linearities in the current-voltage characteristics. Therefore, when used with a large current, there is a problem that the resistance value becomes small and the resistor does not function sufficiently. Further, although the mechanical strength is larger than that of the carbon particle-dispersed ceramic resistor, the four-point bending average strength thereof is as small as about 100 MPa and the thermal shock resistance is poor.

【0007】このような問題に対して、本発明者らは新
しい電力用抵抗体を提案した(特開平8−4570
2)。これは、平均粒径が0.2μmと小さな酸化アル
ミニウム粉末を原料粉末として用いることで、気孔率1
0%以下の緻密な焼結体を得るものである。その結果、
体積あたりの熱容量は、特開昭58−139401号公
報に記載された抵抗体の1.5倍もの熱容量を有し、機
械的強度も300MPa以上あるため、耐熱衝撃性にも
優れ、さらに優れたた電流−電圧特性を示した。
In order to solve such a problem, the present inventors have proposed a new power resistor (Japanese Patent Laid-Open No. 8-4570).
2). This is because the porosity of 1 is obtained by using aluminum oxide powder having a small average particle diameter of 0.2 μm as the raw material powder.
A dense sintered body of 0% or less is obtained. as a result,
The heat capacity per volume is 1.5 times as high as that of the resistor described in JP-A-58-139401 and the mechanical strength is 300 MPa or more. The current-voltage characteristics are shown.

【0008】[0008]

【発明が解決しようとする課題】しかし、特開平8−4
5702号公報に記載された抵抗体も、特開昭58−1
39401号公報に記載された抵抗体と同様、焼結体中
のカーボン粒子によって導電する。開気孔ではないため
内部炭素粒子が酸化されることはないが、空気中高温に
なると、焼結体の表面から酸化され、高抵抗化する問題
があった。このため吸収できるエネルギー量が耐酸化温
度によって制限されてしまっていた。
However, JP-A-8-4
The resistor described in Japanese Patent No. 5702 is also disclosed in JP-A-58-1.
As with the resistor described in Japanese Patent No. 39401, carbon particles in the sintered body conduct electricity. The internal carbon particles are not oxidized because they are not open pores, but there is a problem that when the temperature in the air becomes high, they are oxidized from the surface of the sintered body and the resistance becomes high. Therefore, the amount of energy that can be absorbed is limited by the oxidation resistance temperature.

【0009】本発明は、酸化雰囲気中、高温下でも安定
した抵抗値を有する抵抗体を提供することを目的とす
る。
An object of the present invention is to provide a resistor having a stable resistance value even in an oxidizing atmosphere at high temperature.

【0010】カーボンを導電相とする酸化アルミニウム
基焼結体を用いた抵抗体では、上述したように、酸化雰
囲気中高温になると、焼結体中のカーボンが酸化消失す
ることにより、抵抗値が変化してしまう。緻密な焼結体
の場合、酸素が焼結体内部に到達するためには、気孔を
通ることはできないため、焼結体の粒内及び粒界を拡散
しなくてはならない。従って、多孔質な炭素粒子分散型
セラミックに比較して、耐酸化性に優れるものの、やは
り電極が形成されている上下端面、側面から酸化され、
高抵抗化してしまう。特に、上下面からの酸化による焼
結体の高抵抗化は、通電方向に対して直列方向に高抵抗
化部分が生成するために、抵抗体本体の抵抗値を著しく
上昇させてしまう。
In the resistor using the aluminum oxide-based sintered body having carbon as a conductive phase, as described above, when the temperature in the oxidizing atmosphere becomes high, the carbon in the sintered body is oxidized and disappears, resulting in a resistance value. It will change. In the case of a dense sintered body, oxygen cannot pass through pores in order to reach the inside of the sintered body, so that the inside of the sintered body and the grain boundaries must be diffused. Therefore, as compared with the porous carbon particle-dispersed ceramic, although it has excellent oxidation resistance, it is also oxidized from the upper and lower end surfaces and side surfaces on which the electrodes are formed,
It will increase the resistance. In particular, when the resistance of the sintered body is increased by oxidation from the upper and lower surfaces, a resistance-increased portion is generated in the series direction with respect to the energization direction, so that the resistance value of the resistor body is significantly increased.

【0011】[0011]

【課題を解決するための手段】そこで本発明は、焼結体
を酸化性雰囲気から遮蔽することにより耐酸化特性の向
上を図った。すなわち、側面の遮蔽は、耐熱性、絶縁性
に優れ、緻密なガラス材料、例えば、ホウケイ酸ガラス
で覆うことにより、防止することができる。電極面を遮
蔽するためには、導電性を有し、かつ、気密性に優れる
方法が必要である。これまでの溶射法により形成した電
極の断面写真を、図3に示す。図からもわかるように、
多孔質であるため遮蔽性に劣る。そこで本発明者らは種
々の電極形成方法を検討した結果、活性金属ろう材を用
い、金属板と焼結体とを接合する方法が極めて優れてい
ることを見いだした。気密性を調査するために、図4に
示したような、円筒形の焼結体5に活性金属ろう材を用
い、金属板6を接合した。内部を排気したところ、圧力
10-4Pa以下まで排気できたことから、充分な気密性
を有することが確認され、電極面からの耐酸化特性に有
効であることが確認された。
Therefore, in the present invention, the oxidation resistance is improved by shielding the sintered body from the oxidizing atmosphere. That is, the side shield can be prevented by covering with a dense glass material such as borosilicate glass, which has excellent heat resistance and insulation properties. In order to shield the electrode surface, a method having conductivity and excellent airtightness is required. FIG. 3 shows a photograph of a cross section of an electrode formed by the conventional thermal spraying method. As you can see from the figure,
Poor shielding due to its porous nature. Therefore, as a result of examining various electrode forming methods, the present inventors have found that a method of joining a metal plate and a sintered body using an active metal brazing material is extremely excellent. In order to investigate the airtightness, a metal plate 6 was bonded to a cylindrical sintered body 5 using an active metal brazing material as shown in FIG. When the inside was evacuated, the pressure could be evacuated to 10 -4 Pa or less, and thus it was confirmed that the gas-tightness was sufficient, and it was confirmed that it was effective for the oxidation resistance property from the electrode surface.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の形態に係わる電力用抵抗
体を示す模式図である。抵抗体1は、酸化アルミニウム
を主体とし、炭素成分を含有する円板状の焼結体2と、
その両端面に形成された一対の電極3(上面のみ図示)
を備えている。さらに抵抗体の側面には絶縁層4が形成
されている。
FIG. 1 is a schematic diagram showing a power resistor according to an embodiment of the present invention. The resistor 1 is a disc-shaped sintered body 2 mainly containing aluminum oxide and containing a carbon component,
A pair of electrodes 3 formed on both end surfaces (only the upper surface is shown)
Is equipped with. Further, an insulating layer 4 is formed on the side surface of the resistor.

【0014】焼結体2は、酸化アルミニウム及びカーボ
ンを含む組成を有し、カーボン量が少ないかもしくはカ
ーボンを含まない第一領域と、この第一領域よりカーボ
ン量の多い第二領域とからなる。第一領域は、実質的に
絶縁性を示し、第二領域は導電性を示す。焼結体2にお
いて第二領域は三次元的なネットワーク構造で相互に接
続されるとともに、電極3に接続するように配置され
る。第二領域の接続状態及び抵抗率により、焼結体5の
抵抗値が制御される。
The sintered body 2 has a composition containing aluminum oxide and carbon, and comprises a first region having a small amount of carbon or no carbon, and a second region having a larger amount of carbon than the first region. . The first region is substantially insulative and the second region is electrically conductive. The second regions of the sintered body 2 are connected to each other by a three-dimensional network structure and are arranged so as to be connected to the electrodes 3. The resistance value of the sintered body 5 is controlled by the connection state and the resistivity of the second region.

【0015】第二領域は、絶縁性の酸化アルミニウム粒
子の粒界に導電性のカーボンが存在する形態を有し、さ
らにカーボンにより複数の第二領域を相互に接続してい
る。第二領域では、カーボン含有量により抵抗率が制御
可能となっている。比較的高い抵抗率を持つ焼結体を得
る場合には、第二領域の抵抗率を大きくして第二の領域
を適度に大きくすることにより、可能となる。第二領域
の接続数を減らすことがないため、製造時の焼結雰囲
気、温度分布などによる焼結体内部の均一性への悪影響
を相対的に小さくすることができ、製造歩留まりを向上
できる。
The second region has a form in which electrically conductive carbon is present at the grain boundaries of the insulating aluminum oxide particles, and further, the plurality of second regions are mutually connected by carbon. In the second region, the resistivity can be controlled by the carbon content. In the case of obtaining a sintered body having a relatively high resistivity, it becomes possible by increasing the resistivity of the second region and appropriately increasing the second region. Since the number of connections in the second region is not reduced, the adverse effect on the uniformity inside the sintered body due to the sintering atmosphere, temperature distribution, etc. during manufacturing can be relatively reduced, and the manufacturing yield can be improved.

【0016】本発明において、カーボン平均粒子を1μ
m以下にした理由は、1μmを超えた場合緻密な焼結体
が得られないためで、またカーボン粒子を0.05〜3
重量%したり理由は、0.05重量%未満の場合充分な
導電性が得られなく、3重量%を超えると緻密な焼結体
が得られないためである。さらに絶縁体層の気孔率を1
0%以下にした理由は、10%を超えると絶縁層を通し
て焼結体が酸化雰囲気にさらされ、焼結体が側面から酸
化、高抵抗化するためである。
In the present invention, the carbon average particle is 1 μm.
The reason for setting m or less is that if 1 μm is exceeded, a dense sintered body cannot be obtained.
The reason why the content is set to wt% is that if it is less than 0.05 wt%, sufficient conductivity cannot be obtained, and if it exceeds 3 wt%, a dense sintered body cannot be obtained. Furthermore, the porosity of the insulator layer is 1
The reason for setting the content to 0% or less is that if it exceeds 10%, the sintered body is exposed to an oxidizing atmosphere through the insulating layer, and the sintered body is oxidized from the side surface to have high resistance.

【0017】さらにまたチタンを0.01〜20重量%
にした理由は、0.01重量%未満の場合充分な接合強
度が得られなく、そして20重量%を超えると接合層に
可脆弱な化合物層が生成し、やはり、充分な接合強度が
得られないためである。
Furthermore, 0.01 to 20% by weight of titanium is used.
The reason is that if it is less than 0.01% by weight, sufficient bonding strength cannot be obtained, and if it exceeds 20% by weight, a fragile compound layer is formed in the bonding layer, and again sufficient bonding strength is obtained. Because there is no.

【0018】本発明の電極部分の構成を図5に示す。電
極3は電極板7と活性金属ろう材が溶融凝固してできた
接合層8から構成されており、電極板7と焼結体2は接
合層8によって接合されている。
The structure of the electrode portion of the present invention is shown in FIG. The electrode 3 is composed of an electrode plate 7 and a bonding layer 8 formed by melting and solidifying an active metal brazing material, and the electrode plate 7 and the sintered body 2 are bonded by the bonding layer 8.

【0019】絶縁層4の材料としては有機系材料、無機
系材料があるが、耐熱性の点からは無機系材料が好まし
い。さらに熱膨張率も焼結体2と同程度のものが好まし
い。両者に大きな差があれば絶縁層と焼結体との接触界
面に亀裂が発生し、絶縁層が剥離してしまう。また、充
分な遮蔽効果を得るためには、気孔率が10%以下の緻
密な層にする必要がある。以上の制約から絶縁層4に
は、ホウケイ酸ガラス、鉛ガラス等のガラス材料、酸化
アルミニウム、および又は、酸化ケイ素を主成分とする
無機系コーティング材料、例えば酸化アルミニウムと燐
酸アルミニウムを主成分とするコーティング材料が最適
である。
As the material of the insulating layer 4, there are an organic material and an inorganic material, but the inorganic material is preferable from the viewpoint of heat resistance. Further, it is preferable that the coefficient of thermal expansion is similar to that of the sintered body 2. If there is a large difference between the two, a crack occurs at the contact interface between the insulating layer and the sintered body, and the insulating layer peels off. Further, in order to obtain a sufficient shielding effect, it is necessary to form a dense layer having a porosity of 10% or less. Due to the above restrictions, the insulating layer 4 contains a glass material such as borosilicate glass or lead glass, aluminum oxide, and / or an inorganic coating material containing silicon oxide as a main component, such as aluminum oxide and aluminum phosphate as main components. The coating material is optimal.

【0020】上記材料は、刷毛により塗布またはスプレ
ーコーティングまたはディップコーティング等の方法で
皮膜を形成した後、材料に適した温度で熱処理して側面
絶縁層を形成する。側面絶縁層の厚さは、抵抗体の形状
および使用する電流電圧によるが、電力用抵抗体として
使用する場合には100μm以上あることが望ましい。
The above material is applied with a brush to form a film by a method such as spray coating or dip coating, and then heat-treated at a temperature suitable for the material to form a side insulating layer. The thickness of the side surface insulating layer depends on the shape of the resistor and the current and voltage used, but when used as a power resistor, it is preferably 100 μm or more.

【0021】 電極板8に用いる金属には、熱膨張率が
焼結体2に近く、また、高温の酸化性雰囲気にさらされ
ても酸化皮膜を形成しにくいもの、例えばニッケル及び
ニッケルを主成分とする金属、またはコバール合金など
が好ましい。
The metal used for the electrode plate 8 has a coefficient of thermal expansion close to that of the sintered body 2 and does not easily form an oxide film even when exposed to a high temperature oxidizing atmosphere, such as nickel and nickel as main components. And a Kovar alloy are preferable.

【0022】 接合層8を形成するための活性金属ろう
材としては、銀を60〜80重量%、銅を20〜40重
量%、チタンを0.05〜10重量%の組成であるもの
を用いることが好ましい。接合強度を強固にするために
は、チタンの組成を0.5〜4重量%とすることが、よ
り好ましい。ろう材は、あらかじめ上記組成を有する合
金の箔を用いることが簡便ではあるが、粉末を適当な溶
剤を用いてペースト状にし、刷毛により塗布またはスプ
レーコーティングしてもかまわないろう材の上に金属
板をのせ、真空中熱処理することにより、金属板7と焼
結体2は密着、接合される。
As the active metal brazing material for forming the bonding layer 8, one having a composition of 60 to 80% by weight of silver, 20 to 40% by weight of copper, and 0.05 to 10% by weight of titanium is used. It is preferable. In order to strengthen the bonding strength, it is more preferable that the composition of titanium is 0.5 to 4% by weight. As the brazing material, it is convenient to use an alloy foil having the above composition in advance, but the powder may be made into a paste using a suitable solvent, and may be applied or spray coated with a brush . By placing a metal plate on the brazing material and heat-treating it in vacuum, the metal plate 7 and the sintered body 2 are brought into close contact with each other and joined.

【0023】 なお、絶縁層4と電極3の境界は、図5
に示したように接触させる他に、図6に示したように、
電極3が絶縁層4の上にあってもかまわないし、また図
7のように絶縁層4が電極3の上にあってもかまわな
ただし、両者の間に空隙があると、この部分から焼
結体2が酸化されてしまうので好ましくない。
The boundary between the insulating layer 4 and the electrode 3 is shown in FIG.
In addition to contacting as shown in, as shown in Figure 6,
The electrode 3 may be on the insulating layer 4, or the insulating layer 4 may be on the electrode 3 as shown in FIG. 7 . However, if there is a gap between the two, the sintered body 2 is oxidized from this portion, which is not preferable.

【0024】また、本発明の抵抗体をガス遮断器(GC
B)用投入抵抗器に応用した場合は、図8に示す通り
で、そして本発明抵抗体を変圧器ガス絶縁中性点接地抵
抗器(NGR)に応用した場合は図9に示す通りであ
る。図8,図9において、9は遮断器、10は消弧室、
11は主接点、12は絶縁操作ロッド、13は投入抵抗
ユニット、14は投入抵抗体接点、15はブッシング、
16はタンク、17は接地線、18は接続用端子であ
る。
In addition, the resistor of the present invention is used as a gas circuit breaker (GC
When applied to a closing resistor for B), it is as shown in FIG. 8, and when the resistor of the present invention is applied to a transformer gas-insulated neutral point grounding resistor (NGR), it is as shown in FIG. . 8 and 9, 9 is a circuit breaker, 10 is an arc extinguishing chamber,
Reference numeral 11 is a main contact, 12 is an insulating operation rod, 13 is a closing resistance unit, 14 is a closing resistance contact, 15 is a bushing,
16 is a tank, 17 is a ground wire, and 18 is a connection terminal.

【0025】[0025]

【実施例】【Example】

(実施例1)本発明の電力用抵抗体は以下のように製造
された。
(Example 1) The power resistor of the present invention was manufactured as follows.

【0026】平均粒径0.2μmの酸化アルミニウム粉
末に成型用バインダーとしてパラフィンを固形分として
5wt%加え、キシレンを溶媒としてスラリー化した
後、乾燥を行い第一の造粒粉末を得た。また、第一の造
粒粉末に使用したものと同じ酸化アルミニウム粉末を出
発原料として、平均粒径50nmのカーボン粉末を3w
t%加え、さらにエタノールを溶媒として、アルミナ製
ポット及びアルミナ製ボールを用いて混合し、粉砕を行
ない、これを乾燥後、さらに成型用バインダーとしてパ
ラッインを固形分として5wt%加え、第一の造粒粉末
と同じ方法で、第二の造粒粉末を得た、第一の造粒粉末
を75wt%、第二の造粒粉末を25wt%の割合でV
型混合機により混合し、混合造粒粉末を得た。
5 wt% of paraffin as a solid component was added as a molding binder to aluminum oxide powder having an average particle size of 0.2 μm in a solid content of 5 wt% to form a slurry using xylene as a solvent, followed by drying to obtain a first granulated powder. In addition, starting from the same aluminum oxide powder as that used for the first granulated powder, 3 w of carbon powder having an average particle size of 50 nm is used.
t%, ethanol was used as a solvent, and the mixture was mixed using an alumina pot and an alumina ball and crushed. After drying, 5% by weight of Palatine as a solid component was added as a binder for molding to prepare the first mixture. The second granulated powder was obtained in the same manner as the granulated powder, and the first granulated powder was V at a ratio of 75 wt% and the second granulated powder was at a ratio of 25 wt%.
The mixture was mixed by a mold mixer to obtain a mixed granulated powder.

【0027】これらの混合造粒粉末を、鋼鉄製金型を用
い、成型圧力500kg/cm2 で、直径12.5c
m、厚さ3.1cmの円盤状に成型し成形体を得た。こ
の成型体の上下円面と外周面の境界線部を1mm、面取
りを行った後、窒素ガス中600℃で4時間保持するこ
とにより、脱バインダーを行った。次にこの脱脂体を、
アルゴンガス雰囲気中、200℃/時間で昇温、150
0℃で1時間保持することにより、直径10cm、厚さ
2.5cmの焼結体を得た。
These mixed granulated powders were used in a steel mold and a molding pressure of 500 kg / cm 2 and a diameter of 12.5 c.
m to form a disc having a thickness of 3.1 cm to obtain a molded body. The boundary between the upper and lower circular surfaces and the outer peripheral surface of this molded body was chamfered by 1 mm, and then debindered by holding it in nitrogen gas at 600 ° C. for 4 hours. Next, this degreased body
Temperature rise at 200 ° C / hour in an argon gas atmosphere, 150
By holding at 0 ° C. for 1 hour, a sintered body having a diameter of 10 cm and a thickness of 2.5 cm was obtained.

【0028】この焼結体の上下両端面を400番砥石で
研削した。次に、直径10cm、厚さ500μmのNi
板、直径10cm、厚さ50μm、組成、銀70.6重
量%、銅27.4重量%、チタン2.0重量%の、Ti
−Ag−Cu合金ろう材箔、焼結体、ろう材箔、Ni板
の順に重ね、一辺10cm、重量500gの金属タング
ステン製の重しをのせ、真空中830℃で10分間保持
することにより、金属板と焼結体を接合し、電極を形成
した。
Both upper and lower end surfaces of this sintered body were ground with a No. 400 grindstone. Next, Ni with a diameter of 10 cm and a thickness of 500 μm is used.
Plate, diameter 10 cm, thickness 50 μm, composition, silver 70.6% by weight, copper 27.4% by weight, titanium 2.0% by weight, Ti
-Ag-Cu alloy brazing filler metal foil, a sintered body, a brazing filler metal foil, a Ni plate are stacked in this order, a metal tungsten weight having a side of 10 cm and a weight of 500 g is placed thereon, and the weight is held at 830 ° C. for 10 minutes in a vacuum. The metal plate and the sintered body were joined together to form an electrode.

【0029】さらに、この焼結体の円周表面、燐酸アル
ミニウムとアルミナ微粉、シリカ微粉からなる水溶性ペ
ーストを刷毛塗装し、150℃で1時間乾燥し電極端部
を除く外表面に絶縁層を形成し、実施例1の電力用抵抗
体を得た。この抵抗体の抵抗値は60Ωであった。
Further, a water-soluble paste composed of aluminum phosphate, alumina fine powder, and silica fine powder was brush-painted on the circumferential surface of this sintered body and dried at 150 ° C. for 1 hour to form an insulating layer on the outer surface excluding the electrode end. Then, the power resistor of Example 1 was obtained. The resistance value of this resistor was 60Ω.

【0030】この抵抗体の電極部での抵抗を測定した結
果、10-6Ω以下と低く、電気的に問題はなかった。こ
の抵抗体の耐酸化特性を図2に示す、200℃から50
℃おきに1000℃の温度で、空気中2時間放置した。
その結果650℃までは、酸化前と抵抗値の変化は認め
られなかった。 (実施例2)実施例1と同様の方法で直径10cm、厚
さ2.5cmの焼結体を得、実施例1と同様に電極を形
成した。次に、ホウケイ酸ガラス粉末を有機溶媒に分散
させ、焼結体の円周外表面、円周内表面にスプレーコー
ティングし、300℃で1時間熱処理して焼き付け、電
極端部を除く外表面に絶縁層を形成し、実施例2の電力
用抵抗体を得た。この抵抗体を実施例1と同様な耐酸化
試験を行った結果、耐酸化温度は実施例1と同じ650
℃であった。 (実施例3)実施例1で用いたNi板に替えて、厚さ
0.5mmのコバール合金を電極板とし、実施例1と同
様に接合して電極を形成し、実施例1と同様に側面に絶
縁層を形成して、実施例3に抵抗体を得た。耐酸化温度
は、650℃であった。 (比較例)実施例1と同様の方法で直径10cm、厚さ
2.5cmの焼結体を得た。この焼結体の上下両端面を
研削した後、アルミニウム電極を溶射法で形成した。次
にこの焼結体の外表面、円周内表面に燐酸アルミニウム
とアルミナ微粉、シリカ微粉なる水溶性ペーストを刷毛
塗装し、150℃で1時間乾燥し電極端部を除く外表面
に絶縁層を形成し、比較例の抵抗体を得た。この抵抗体
の抵抗値は、実施例1の抵抗体と同じ60Ωであった。
この抵抗体を実施例1と同様な方法で耐酸化試験を行っ
た結果、図2に示したように450℃から抵抗の上昇が
認められた。500℃以上で絶縁体となった。 (従来例)外径127mm、内径41mm、厚さ25m
mの中空円筒形をした、炭素粒子分散型セラミック従来
型抵抗体を、実施例1と同様な方法で耐酸化試験を行っ
た結果、図2に示したように、350℃から抵抗の上昇
が認められた。400℃以上で絶縁体となった。
As a result of measuring the resistance at the electrode portion of this resistor, it was as low as 10 -6 Ω or less, and there was no electrical problem. The oxidation resistance of this resistor is shown in FIG.
It was left in the air at a temperature of 1000 ° C. for 2 hours.
As a result, up to 650 ° C, no change in the resistance value was observed before the oxidation. (Example 2) A sintered body having a diameter of 10 cm and a thickness of 2.5 cm was obtained in the same manner as in Example 1, and an electrode was formed in the same manner as in Example 1. Next, borosilicate glass powder is dispersed in an organic solvent, spray-coated on the outer and inner surfaces of the sintered body, heat-treated at 300 ° C. for 1 hour and baked, and the outer surface excluding the electrode ends is sprayed. An insulating layer was formed to obtain a power resistor of Example 2. As a result of carrying out the same oxidation resistance test as in Example 1 on this resistor, the oxidation resistance temperature is the same as in Example 1 650.
It was ℃. (Example 3) Instead of the Ni plate used in Example 1, a Kovar alloy having a thickness of 0.5 mm was used as an electrode plate, and the electrodes were formed by bonding in the same manner as in Example 1, and then, as in Example 1. An insulating layer was formed on the side surface to obtain a resistor in Example 3. The oxidation resistance temperature was 650 ° C. (Comparative Example) A sintered body having a diameter of 10 cm and a thickness of 2.5 cm was obtained in the same manner as in Example 1. After grinding the upper and lower end surfaces of this sintered body, aluminum electrodes were formed by a thermal spraying method. Next, a water-soluble paste consisting of aluminum phosphate, alumina fine powder, and silica fine powder was brush-painted on the outer surface and inner surface of the sintered body, and dried at 150 ° C for 1 hour to form an insulating layer on the outer surface excluding the electrode end. Then, a resistor of Comparative Example was obtained. The resistance value of this resistor was 60Ω, which was the same as that of the resistor of Example 1.
As a result of performing an oxidation resistance test on this resistor in the same manner as in Example 1, as shown in FIG. 2, an increase in resistance was observed from 450 ° C. It became an insulator at 500 ° C or higher. (Conventional example) Outer diameter 127 mm, inner diameter 41 mm, thickness 25 m
As a result of conducting an oxidation resistance test on the carbon particle-dispersed ceramic conventional resistor having a hollow cylindrical shape of m by the same method as in Example 1, as shown in FIG. Admitted. It became an insulator at 400 ° C or higher.

【0031】[0031]

【発明の効果】以上のように、本発明によれば、絶縁
層、電極で焼結体を酸化性雰囲気から遮蔽することによ
り、抵抗体の耐酸化特性を向上させることが可能になっ
た。このため、これまでの抵抗体に比較して、より高温
まで使用することが可能になるため、単位体積当たりよ
り大きな電気エネギーを吸収すことが可能になった。そ
の結果、電力機器の縮小化におおいに有効となった。
As described above, according to the present invention, it becomes possible to improve the oxidation resistance of the resistor by shielding the sintered body from the oxidizing atmosphere with the insulating layer and the electrode. For this reason, compared to the conventional resistors, it is possible to use up to a higher temperature, so that it is possible to absorb a larger electric energy per unit volume. As a result, it was very effective in reducing the size of power equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の形態を説明するための模式
図。
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention.

【図2】 本発明の実施例1の3種の電力用抵抗体の耐
酸化特性を示す図。
FIG. 2 is a diagram showing oxidation resistance characteristics of three types of power resistors of Example 1 of the present invention.

【図3】 本発明における溶射法により形成した電極の
断面を顕微鏡写真で示した図。
FIG. 3 is a micrograph showing a cross section of an electrode formed by a thermal spraying method according to the present invention.

【図4】 本発明における円筒形の焼結体に活性金属ろ
う材を用い、金属板を接合した図。
FIG. 4 is a view in which a metal plate is joined to the cylindrical sintered body of the present invention by using an active metal brazing material.

【図5】 本発明の実施の形態における電極部分を示す
構成図。
FIG. 5 is a configuration diagram showing an electrode portion according to the embodiment of the present invention.

【図6】 図5の変形例を示す図。FIG. 6 is a diagram showing a modified example of FIG.

【図7】 図5の変形例を示す図。FIG. 7 is a diagram showing a modification of FIG.

【図8】 本発明の抵抗体をガス遮断器(GCB)用投
入抵抗器に応用した場合に、その遮断器の内部の構造を
説明する図。
FIG. 8 is a view for explaining the internal structure of the circuit breaker when the resistor of the present invention is applied to a closing resistor for a gas circuit breaker (GCB).

【図9】 本発明の抵抗体を変圧器用ガス絶縁中性点接
地抵抗器(NGR)に応用した場合に、その中性点接地
抵抗器の内部の構造を説明する図。
FIG. 9 is a diagram for explaining the internal structure of the neutral point grounding resistor when the resistor of the present invention is applied to a gas-insulated neutral point grounding resistor (NGR) for a transformer.

【符号の説明】[Explanation of symbols]

1…電力用抵抗体 2…焼結体 3…電極 4…絶縁層 5…金属板 6…焼結体 7…金属板 8…接合層 9…遮断器 10…消弧質 11…主接点 12…絶縁操作ロッド 13…投入抵抗ユニット 15…ブッシング 16…タンク 17…接地線 18…接続用端子 1 ... Power resistor 2 ... Sintered body 3 ... Electrode 4 ... Insulating layer 5 ... Metal plate 6 ... Sintered body 7 ... Metal plate 8 ... Bonding layer 9 ... Circuit breaker 10 ... Arc extinguishing quality 11 ... Main contact 12 ... Insulated operating rod 13 ... closing resistance unit 15 ... Bushing 16 ... Tank 17 ... Ground wire 18 ... Connection terminal

フロントページの続き (56)参考文献 特開 平8−45702(JP,A) 特開 平8−17604(JP,A) 特開 平6−45108(JP,A) 特開 平5−13203(JP,A) 特開 平5−13202(JP,A) 特開 昭57−52101(JP,A) 特開 昭60−76103(JP,A) 特開 昭58−139401(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01C 7/00 H01C 13/00 H01C 17/00 Continuation of the front page (56) Reference JP-A-8-45702 (JP, A) JP-A-8-17604 (JP, A) JP-A-6-45108 (JP, A) JP-A-5-13203 (JP , A) JP 5-13202 (JP, A) JP 57-52101 (JP, A) JP 60-76103 (JP, A) JP 58-139401 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01C 7/00 H01C 13/00 H01C 17/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物を主成分とし、副成分として平
均粒径1μm以下のカーボン粒子を0.05〜3重量%
含む焼結体と、この焼結体を挟み、両端面に形成された
少なくとも対の電極と、該焼結体の電極形成面を除く
外表面に形成された絶縁層から構成される電力用抵抗体
において、 前記電極は、銀、銅を主成分とし、チタンを含む活性金
属ろうで接合された金属板で前記絶縁層の気孔率は、1
0%以下であり、 さらに、前記焼結体の電極と外面の境界線部上が前記
絶縁層で被覆されていることを特徴とする電力用抵抗
体。
1. 0.05 to 3% by weight of carbon particles having a metal oxide as a main component and an average particle diameter of 1 μm or less as a subcomponent.
For electric power, which includes a sintered body containing the sintered body, at least one pair of electrodes formed on both end surfaces of the sintered body, and an insulating layer formed on the outer surface of the sintered body except the electrode forming surface. In the resistor, the electrode is a metal plate mainly composed of silver and copper and bonded with an active metal solder containing titanium, and the porosity of the insulating layer is 1
Or less 0%, further, the sintered body of the electrode and the external surface faces the power resistor boundary portion above is characterized in that it is covered by the <br/> insulating layer.
【請求項2】 請求項1に記載した金属酸化物は、酸化
アルミニウムまたはアルミニウムを含む複合酸化物であ
ることを特徴とする電力用抵抗体。
2. A power resistor, wherein the metal oxide according to claim 1 is aluminum oxide or a composite oxide containing aluminum.
【請求項3】 請求項1に記載の焼結体は、カーボン含
有量が少ないかもしくはカーボンを含まない第一領域
と、この第一領域よりカーボン含有量が多く、かつ一対
の電極につながるように配置された第二領域を有してい
ることを特徴とする電力用抵抗体。
3. The sintered body according to claim 1, wherein a first region having a low carbon content or no carbon content and a carbon content higher than the first region are connected to a pair of electrodes. A power resistor having a second region disposed in.
【請求項4】 請求項1に記載した活性金属ろうの、凝
固後の接合組織にはチタンが、0.01〜20重量%含
まれていることを特徴とする電力用抵抗体。
4. A power resistor, wherein the joint structure of the active metal brazing material according to claim 1 after solidification contains 0.01 to 20% by weight of titanium.
【請求項5】 請求項1に記載された絶縁層が、酸化ア
ルミニウム、およびまたは、酸化ケイ素を主成分とする
無機材料からなることを特徴とする電力用抵抗体。
5. A power resistor, wherein the insulating layer according to claim 1 is made of an inorganic material containing aluminum oxide and / or silicon oxide as a main component.
【請求項6】 請求項1に記載された絶縁層が、ホウケ
イ酸ガラスからなることを特徴とする電力用抵抗体。
6. A power resistor, wherein the insulating layer according to claim 1 is made of borosilicate glass.
【請求項7】金属酸化物を主成分とし、副成分として平
均粒径1μm以下のカーボン粒子を0.05〜3重量%
含む焼結体と、この焼結体を挟み、両端面に形成された
少なくとも対の電極と、該焼結体の電極形成面を除く
外表面に形成された絶縁層から構成される電力用抵抗体
において、 前記電極は、金属板を、銀、銅を主成分とし、チタンを
含む活性金属ろうで接合することによって形成され、 記焼結体の電極と外面の境界線部上は前記絶縁層で
被覆されることを特徴とする電力用抵抗体の製造方法。
7. 0.05 to 3% by weight of carbon particles having a metal oxide as a main component and an average particle diameter of 1 μm or less as a subcomponent.
For electric power, which includes a sintered body containing the sintered body, at least one pair of electrodes formed on both end surfaces of the sintered body, and an insulating layer formed on the outer surface of the sintered body except the electrode forming surface. in the resistor, the electrode is a metal plate, silver, copper as a main component, is formed by joining an active metal braze comprising titanium, pre Symbol sintered electrode and external surface surface of the boundary portion on method of manufacturing the power resistor according to claim Rukoto covered with the insulating layer.
JP27396496A 1996-09-26 1996-09-26 Power resistor and method of manufacturing the same Expired - Fee Related JP3486064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27396496A JP3486064B2 (en) 1996-09-26 1996-09-26 Power resistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27396496A JP3486064B2 (en) 1996-09-26 1996-09-26 Power resistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10106802A JPH10106802A (en) 1998-04-24
JP3486064B2 true JP3486064B2 (en) 2004-01-13

Family

ID=17535040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27396496A Expired - Fee Related JP3486064B2 (en) 1996-09-26 1996-09-26 Power resistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3486064B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497143B2 (en) * 2006-09-04 2010-07-07 Tdk株式会社 PTC element and battery protection system
JP2008066347A (en) * 2006-09-04 2008-03-21 Tdk Corp Ptc element and battery protection system
US20080216704A1 (en) * 2007-03-09 2008-09-11 Fisher Controls International Llc Conformal Coating
CN106448983B (en) * 2016-10-31 2018-08-28 佛山市鼎垣工程有限公司 A kind of preparation method of high-power noninductive synthesized resistor

Also Published As

Publication number Publication date
JPH10106802A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US6757963B2 (en) Method of joining components using a silver-based composition
JP3486064B2 (en) Power resistor and method of manufacturing the same
CN104521079B (en) ESD protection device
JP2001028303A (en) Voltage nonlinear resistor unit and lightning arrester unit
JPH08124719A (en) Nonlinear voltage characteristic resistor and its manufacture
JP5713112B2 (en) ESD protection device and manufacturing method thereof
JP2933881B2 (en) Voltage nonlinear resistor, method of manufacturing the same, and lightning arrester mounted with the voltage nonlinear resistor
JP2014099431A (en) Composite ptc thermistor member
JPH03194878A (en) Discharge type surge absorption element
JP2002294384A (en) Electrical contact material
JPH06101401B2 (en) Linear resistor
JP2020092105A (en) Voltage nonlinear resistor
KR910006114B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
JPH0668949A (en) Lightning arrester
JP3488650B2 (en) Power resistor, method of manufacturing the same, and power resistor
JP2000182808A (en) Nonlinear resistance member
JP2003331698A (en) Electrode for vacuum circuit breaker and manufacturing method therefor
JPH10270214A (en) Laminated junction body of nonlinear resistor
JPH07114161B2 (en) Oxide resistor
JPH09186005A (en) Current limiter element and its manufacture
JP2541068B2 (en) Sealing electrode and surge absorber using the same
JPH0569270B2 (en)
JP2004140103A (en) Wiring board
JP3580650B2 (en) Power resistor, method of manufacturing the same, and power circuit breaker
JPH10261506A (en) Composite ptc material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees