JPH02280991A - Solder material - Google Patents

Solder material

Info

Publication number
JPH02280991A
JPH02280991A JP9924889A JP9924889A JPH02280991A JP H02280991 A JPH02280991 A JP H02280991A JP 9924889 A JP9924889 A JP 9924889A JP 9924889 A JP9924889 A JP 9924889A JP H02280991 A JPH02280991 A JP H02280991A
Authority
JP
Japan
Prior art keywords
solder
strength
base material
alloy
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9924889A
Other languages
Japanese (ja)
Inventor
Eiichi Sakida
崎田 栄一
Goro Yamauchi
五郎 山内
Kishio Arita
紀史雄 有田
Susumu Mitani
進 三谷
Nobuo Kageyama
影山 信夫
Masao Takahashi
正夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9924889A priority Critical patent/JPH02280991A/en
Publication of JPH02280991A publication Critical patent/JPH02280991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a high strength and good electrical characteristics by incorporating oxide particles, which are formed by heat treating specific content ratios of Zr, Mg, Si, Al, V, Ti, and Mn under the specific atm. of an oxygen partial pressure and at a specific temp. into a solder base material. CONSTITUTION:The oxide fine particles formed by heat treating one or plural kinds of >=0.1wt.% to <=5wt.% Zr, Mg, Si, Al, V, Ti, and Mn under >=10<-8> and <0.2 atm. of the oxygen partial pressure and at >=100 deg.C and below the solidus line are finely dispersed into the solder constituted of any of Sn, Pb, Sn-Pb alloy, In, Bi, In-Bi alloy as its base material. The solder base material is formed to have the high strength and high conductivity in this way. There is no effect of the addition if the amt. of addition is <0.1%. The strength and conductivity are degraded at >=5%. The solder material which is enhanced in the strength and is excellent in the electrical characteristics as well is thus obtd.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明はばんだ材料、さらに詳細には低融点で、かつ、
導電性を低下させずに機械的強度を向上させたクリープ
特性に優れたはんだ材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a solder material having a low melting point and
The present invention relates to a solder material with excellent creep properties and improved mechanical strength without reducing conductivity.

(発明の従来技術とその問題点) 従来、はんだ材料は融点が低いためにヤング率、硬さ、
引張強さ、疲労強さなどの機械的強度が小さい、さらに
、常温で再結晶するため、その強度は時間の経過と共に
低下する。このため、特性改善を目的としてSnやpb
中に含まれる不純物を取り除いたり、酸化物残渣の除去
あるいは積極的に他の金属を添加する方法が取られてい
る。しかし、上記の方法では、はんだの流動性や接着性
の改善は図れても、その機械的強度は5n63%−Pb
37%共晶はんだと同等であるのが現状である。
(Prior art of the invention and its problems) Conventionally, solder materials have a low melting point, so Young's modulus, hardness,
It has low mechanical strength such as tensile strength and fatigue strength, and furthermore, because it recrystallizes at room temperature, its strength decreases over time. Therefore, for the purpose of improving characteristics, Sn and pb
Methods are being used to remove impurities contained therein, remove oxide residues, or actively add other metals. However, although the above method improves the fluidity and adhesion of the solder, its mechanical strength is
Currently, it is equivalent to 37% eutectic solder.

また、一般に機械的強度と導電性は互いに相反する関係
にある。即ち、機械的強度の向上には溶質元素量および
加工等による転位等格子欠陥の増大が有効であるが、溶
質元素や格子欠陥の存在はいずれも導電率低下を招くこ
とになり、従来技術に拘泥するかぎり上記両特性値を満
足することは困難であった。
Furthermore, mechanical strength and electrical conductivity generally have a contradictory relationship with each other. In other words, increasing the amount of solute elements and increasing the number of lattice defects such as dislocations through processing etc. is effective for improving mechanical strength, but the presence of solute elements and lattice defects both lead to a decrease in electrical conductivity. It has been difficult to satisfy both of the above characteristic values as long as we are too particular about it.

このため、高信頼性を要求される衛星通信、海底通信お
よびマイクロソルダリング等においては低融点で高強度
、高導電性のはんだ材料が要望されている。
For this reason, low melting point, high strength, and highly conductive solder materials are required in satellite communications, submarine communications, micro-soldering, etc., which require high reliability.

本発明は、上記の問題点に鑑みてなされたもので、低融
点で、かつ、導電性を低下させずに機械的強度を向上さ
せたクリープ特性に優れたはんだ材料を提供することを
目的とする。
The present invention was made in view of the above problems, and an object thereof is to provide a solder material with a low melting point, improved mechanical strength without reducing conductivity, and excellent creep properties. do.

(問題点を解決するための手段) 上述の問題点を解決するため、本発明によるはんだ材料
は、0.1重量%以上、5重量%以下のジルコン(Zr
)、マグネシウム(Mg)、シリコン(Si)、アルミ
ニウム(A I ) 、バナジウム(V)、チタン(T
i)およびマンガン(Mn)の1種類または複数種類を
、酸素分圧10−8気圧以上、0.2気圧未満で、温度
100℃以上、固溶線以下で熱処理して形成した酸化物
微粒子をはんだ基材に分散させたことを特徴としている
(Means for Solving the Problems) In order to solve the above problems, the solder material according to the present invention contains zircon (Zr) of 0.1% by weight or more and 5% by weight or less.
), magnesium (Mg), silicon (Si), aluminum (AI), vanadium (V), titanium (T
i) and one or more types of manganese (Mn) are soldered with oxide fine particles formed by heat-treating one or more types of manganese (Mn) at an oxygen partial pressure of 10-8 atm or more and less than 0.2 atm, at a temperature of 100°C or more and below the solid solution line. It is characterized by being dispersed in the base material.

すなわち、本発明によるはんだ材料によれば、Snある
いはpbおよびその合金にZr、Mg、Si、AI、V
、TiおよびMnの1種類または複数種類を添加し、1
0−8気圧以上、0.2気圧以下の酸素雰囲気中で熱処
理を施すことにより、これら添加元素の酸化物微粒子を
はんだ基材中に微細に分散させることによって得られる
高強度、高導電性はんだ材料に関するものである。
That is, according to the solder material according to the present invention, Zr, Mg, Si, AI, and V are added to Sn or pb and its alloy.
, one or more types of Ti and Mn are added, 1
High-strength, high-conductivity solder obtained by finely dispersing oxide particles of these additive elements in the solder base material by heat treatment in an oxygen atmosphere of 0-8 atmospheres or more and 0.2 atmospheres or less. It's about materials.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

本発明によるはんだ材料によれば、はんだ基材にZr、
Mg、Si、AI、V、TiおよびMnの1種類または
複数種類を添加し、溶融して合金としたものを熱処理し
、酸化物としたものである。
According to the solder material according to the present invention, the solder base material contains Zr,
One or more of Mg, Si, AI, V, Ti, and Mn are added and melted to form an alloy, which is then heat-treated to form an oxide.

上述の添加物、すなわちZr、Mg、Si、AI、V、
TiおよびMnの1種類または複数種類は酸化物微粒子
として合金中に微細に分散させることによって、はんだ
基材を高強度、高導電性とするために添加され、その添
加量は0.1〜5重量%である。前記元素の添加量が0
.1重量%未満であると、添加効果がなく、一方5重量
%を越えると、内部酸化から外部酸化への遷移が起き、
酸化物微粒子の生成の代わりに外部酸化膜の生成をきた
すので分散強化機構が働かず、はんだ材料の強度、導電
性を低下させる恐れがあるからである。
Additives mentioned above, namely Zr, Mg, Si, AI, V,
One or more types of Ti and Mn are added to give the solder base material high strength and high conductivity by finely dispersing them in the alloy as oxide fine particles, and the amount added is 0.1 to 5. Weight%. The amount of the element added is 0
.. If it is less than 1% by weight, there is no effect of addition, while if it exceeds 5% by weight, a transition from internal oxidation to external oxidation occurs,
This is because an external oxide film is generated instead of oxide fine particles, so that the dispersion strengthening mechanism does not work and there is a risk that the strength and conductivity of the solder material may be reduced.

本発明においてはんだ基材は基本的に限定されるもので
はない、たとえば、Sn、Pb、5n−pb金合金In
、Bi、In−B1合金などを例としてあげることがで
きる。
In the present invention, the solder base material is basically not limited, for example, Sn, Pb, 5n-pb gold alloy In
, Bi, and In-B1 alloy.

このようにZr、Mg、SL、AI、V、TiおよびM
nの1種類または複数種類を0.1〜5重量%添加した
はんだ基材を熱処理し、前記添加元素を酸化物とし、微
細に分散させるものであるが、このような熱処理条件は
、酸素分圧10°8気圧から0.2気圧、温度100℃
以上、固溶線以下の温度である。
Thus Zr, Mg, SL, AI, V, Ti and M
A solder base material to which 0.1 to 5% by weight of one or more types of n is added is heat-treated to turn the added element into an oxide and finely dispersed. Pressure 10° 8 atm to 0.2 atm, temperature 100°C
The above temperature is below the solid solution line.

酸素分圧が10−8気圧未満であると、前記添加元素が
充分酸化されず、微細な酸化物にならない恐れがあり、
一方0.2気圧を越えると高強度、高導電性のものがで
きにくいばかりでなく、はんだ付は性が低下する恐れを
生じる。
If the oxygen partial pressure is less than 10 −8 atmospheres, the added element may not be sufficiently oxidized and may not become a fine oxide.
On the other hand, if the pressure exceeds 0.2 atmospheres, it is not only difficult to produce a product with high strength and high conductivity, but also the soldering properties may be deteriorated.

さらに熱処理温度が100°C未満であると、前記添加
元素の酸化物微粒子が充分に形成されない恐れがあり、
一方固溶線を越えると、前記材料が溶融するからである
Furthermore, if the heat treatment temperature is less than 100°C, there is a risk that the oxide fine particles of the additive element will not be sufficiently formed.
On the other hand, when the solid solution line is exceeded, the material melts.

以下実施例を説明する。Examples will be described below.

(実施例1) Sn−PbはんだにZrを重量%がそれぞれ60重量%
、37重量%、3重量%となるように添加し、この混合
物をアルゴン(Ar)気流中で溶融して5n60重量%
−Pb37重量%−Zr3重量%合金のインゴットを形
成した。
(Example 1) Sn-Pb solder with 60% by weight of Zr
, 37% by weight, and 3% by weight, and this mixture was melted in an argon (Ar) stream to give 5n60% by weight.
An ingot of -37% by weight Pb-3% by weight Zr alloy was formed.

このインゴットをAr気流中で温度100°Cのもとて
10時間の焼鈍を行い、さらに鍛造および圧延して板厚
2mmとした。この状態での引張強さは5 kgf/m
m2、ビッカース硬さはHv14であり、また電気比抵
抗の値は15μΩcmであった。
This ingot was annealed in an Ar flow at a temperature of 100°C for 10 hours, and further forged and rolled to a plate thickness of 2 mm. The tensile strength in this state is 5 kgf/m
m2, Vickers hardness was Hv14, and electrical resistivity was 15 μΩcm.

次に、この板を10−6気圧の酸素分圧中で温度100
℃のもとで、30分間保持する熱処理を施した。処理後
の各特性値は引張強さが11kgf/mm’、ビッカー
ス硬さがHv30、電気比抵抗が17μΩcmであり、
電気比抵抗はやや低下するが、機械的強度は大幅に向上
した。
Next, this plate was heated to a temperature of 100 in an oxygen partial pressure of 10-6 atm.
A heat treatment was performed at a temperature of 30 minutes. The characteristic values after treatment are tensile strength of 11 kgf/mm', Vickers hardness of Hv30, and electrical resistivity of 17 μΩcm.
Although the electrical resistivity decreased slightly, the mechanical strength improved significantly.

このように、本発明によるはんだ材料は機械的強度と導
電性の両方に優れた特性を有し、従来、相反するとされ
ていた関係を解決している。
As described above, the solder material according to the present invention has excellent properties in both mechanical strength and electrical conductivity, and resolves the relationship that was conventionally considered to be contradictory.

(実施例2) SnにSiの重量%が2重量%になるように添加し、こ
の混合物をAr気流中で溶融して5n98重量%−8i
2重量%合金のインゴットを形成した。
(Example 2) Si was added to Sn so that the weight % of Si was 2 weight %, and this mixture was melted in an Ar stream to obtain 5n98 weight %-8i
An ingot of 2% alloy by weight was formed.

このインゴットをAr気流中で温度150℃のもとで5
時間の焼鈍を行い、さらに鍛造および圧延して外径5m
mの線材とした。この状態での引張強さは2 kgf/
mm”、ビッカース硬さはHv5、電気比抵抗は12μ
Ωcmであった。
This ingot was heated at a temperature of 150°C in an Ar flow for
Annealed for several hours, further forged and rolled to an outer diameter of 5m.
It was made into a wire rod of m. The tensile strength in this state is 2 kgf/
mm", Vickers hardness is Hv5, electrical resistivity is 12μ
It was Ωcm.

次に、この線材を10−6気圧の酸素分圧中で温度15
0℃のもとで、30分間保持する熱処理を施した。処理
後の各特性値は引張強さが5 kgf/mm2、ビッカ
ース硬さがHv13、電気比抵抗が12μΩcmであり
、電気的特性を低下させることなしに機械的強度を共晶
はんだ並みに向上させることができる。
Next, this wire was heated at a temperature of 15°C in an oxygen partial pressure of 10-6 atmospheres.
Heat treatment was performed at 0° C. for 30 minutes. Characteristic values after treatment are tensile strength of 5 kgf/mm2, Vickers hardness of Hv13, and electrical resistivity of 12 μΩcm, improving mechanical strength to the same level as eutectic solder without reducing electrical properties. be able to.

(実施例3) pbにSiの重量%が2重量%になるように添加し、こ
の混合物をAr気流中で溶融してpb98重量%−Si
2重量%合金のインゴットを形成した。
(Example 3) Si was added to pb so that the weight % of Si was 2 weight %, and this mixture was melted in an Ar gas flow to obtain pb98 weight %-Si.
An ingot of 2% alloy by weight was formed.

このインゴットをAr気流中で温度150”Cのもとて
5時間の焼鈍を行い、さらに鍛造および圧延して外径5
mmの線材とした。この状態での引張強さは1 kgf
’/mm2、ビッカース硬さはHv3、電気比抵抗は2
2μΩcmであった。
This ingot was annealed for 5 hours at a temperature of 150"C in an Ar flow, and then forged and rolled to obtain an outer diameter of 5.
It was made into a wire rod of mm. The tensile strength in this state is 1 kgf
'/mm2, Vickers hardness is Hv3, electrical resistivity is 2
It was 2 μΩcm.

次に、この線材を10−6気圧の酸素分圧中で温度15
0℃のもとで、30分間保持する熱処理を施しな、処理
後の各特性値は、引張強さが3kgf/mm2、ビッカ
ース硬さがHv8、電気比抵抗が22μΩcmであり、
電気的特性を低下させることなしに機械的強度を共晶は
んだ並みに向上させることができな。
Next, this wire was heated at a temperature of 15°C in an oxygen partial pressure of 10-6 atmospheres.
After the heat treatment was not performed at 0°C for 30 minutes, the characteristic values after treatment were a tensile strength of 3 kgf/mm2, a Vickers hardness of Hv8, and an electrical resistivity of 22 μΩcm.
It is not possible to improve mechanical strength to the same level as eutectic solder without reducing electrical properties.

以上の効果は、Sn、Pbおよびその合金以外のいわゆ
るはんだ材料、例えば、インジウム(In)、ビスマス
(Bi)およびその合金等においても見られることを確
認した。
It has been confirmed that the above effect is also observed in so-called solder materials other than Sn, Pb and their alloys, such as indium (In), bismuth (Bi) and their alloys.

(発明の効果) 以上述べたように、本発明は従来、高強度が図れなかっ
たはんだ材料の高強度化を実現すると共に、電気的特性
にも優れたはんだ材料を提供するものであり、宇宙、海
底などの高信頼性を要求される箇所に適用できる。また
、近年、急速に需要が増大しており、機械的強度と合わ
せて電気的特性を要求されるマイクロソルダリングへの
広汎な応用が期待される。
(Effects of the Invention) As described above, the present invention realizes high strength of a solder material that could not be achieved conventionally, and also provides a solder material with excellent electrical properties. It can be applied to locations where high reliability is required, such as on the ocean floor. In addition, demand has been increasing rapidly in recent years, and it is expected that it will be widely applied to micro-soldering, which requires electrical properties in addition to mechanical strength.

Claims (2)

【特許請求の範囲】[Claims] (1)0.1重量%以上、5重量%以下のジルコン(Z
r)、マグネシウム(Mg)、シリコン(Si)、アル
ミニウム(Al)、バナジウム(V)、チタン(Ti)
およびマンガン(Mn)の1種類または複数種類を、酸
素分圧10^−^8気圧以上、0.2気圧未満で、温度
100℃以上、固溶線以下で熱処理して形成した酸化物
微粒子をはんだ基材に含ませたことを特徴とするはんだ
材料。
(1) Zircon (Z
r), magnesium (Mg), silicon (Si), aluminum (Al), vanadium (V), titanium (Ti)
Solder is made of oxide fine particles formed by heat treating one or more types of manganese (Mn) and manganese (Mn) at an oxygen partial pressure of 10^-^8 atm or more and less than 0.2 atm, at a temperature of 100°C or more and below the solid solution line. A solder material characterized by being included in a base material.
(2)前記はんだ基材は錫(Sn)、鉛(Pb)、錫(
Sn)−鉛(Pb)合金、インジウム(In)、ビスマ
ス(Bi)、インジウム(In)−ビスマス(Bi)合
金のいずれかであることを特徴とする特許請求の範囲第
1項記載のはんだ材料。
(2) The solder base material is tin (Sn), lead (Pb), tin (
The solder material according to claim 1, which is any one of Sn)-lead (Pb) alloy, indium (In), bismuth (Bi), and indium (In)-bismuth (Bi) alloy. .
JP9924889A 1989-04-19 1989-04-19 Solder material Pending JPH02280991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9924889A JPH02280991A (en) 1989-04-19 1989-04-19 Solder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9924889A JPH02280991A (en) 1989-04-19 1989-04-19 Solder material

Publications (1)

Publication Number Publication Date
JPH02280991A true JPH02280991A (en) 1990-11-16

Family

ID=14242403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9924889A Pending JPH02280991A (en) 1989-04-19 1989-04-19 Solder material

Country Status (1)

Country Link
JP (1) JPH02280991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU679631B2 (en) * 1994-06-13 1997-07-03 Nihon Almit Co., Ltd. High-strength solder alloy
CN104690439A (en) * 2013-12-04 2015-06-10 青岛润鑫伟业科贸有限公司 Soft solder for copper brazing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU679631B2 (en) * 1994-06-13 1997-07-03 Nihon Almit Co., Ltd. High-strength solder alloy
CN104690439A (en) * 2013-12-04 2015-06-10 青岛润鑫伟业科贸有限公司 Soft solder for copper brazing

Similar Documents

Publication Publication Date Title
US6156132A (en) Solder alloys
JP2001504760A (en) Lead free solder
US4311522A (en) Copper alloys with small amounts of manganese and selenium
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
JPH06238479A (en) Lead-free solder material
TWI814081B (en) High temperature ultra-high reliability alloys, manufacturing method thereof, and applications thereof
JPWO2018174162A1 (en) Solder joint
JPH06184679A (en) Copper alloy for electrical parts
JP2001049369A (en) Copper alloy for electronic material and its production
JPS63109130A (en) Copper alloy for electronic equipment
JPH0425338B2 (en)
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
US4202688A (en) High conductivity high temperature copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPS6158541B2 (en)
JPS6215622B2 (en)
JPH02280991A (en) Solder material
JPH0987814A (en) Production of copper alloy for electronic equipment
JPS6215621B2 (en)
JPS6296638A (en) Aluminum alloy for lead frame
JPH0440417B2 (en)
JPS6338547A (en) High strength conductive copper alloy
JPS6311418B2 (en)
JPH0575812B2 (en)
JP2918961B2 (en) High-strength copper alloy with high workability