JPH02280323A - Plasma etching method - Google Patents

Plasma etching method

Info

Publication number
JPH02280323A
JPH02280323A JP10202789A JP10202789A JPH02280323A JP H02280323 A JPH02280323 A JP H02280323A JP 10202789 A JP10202789 A JP 10202789A JP 10202789 A JP10202789 A JP 10202789A JP H02280323 A JPH02280323 A JP H02280323A
Authority
JP
Japan
Prior art keywords
gas
etching
flow rate
reaction gas
total flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10202789A
Other languages
Japanese (ja)
Other versions
JP2522041B2 (en
Inventor
Haruhito Mitsuya
三ッ谷 晴仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1102027A priority Critical patent/JP2522041B2/en
Publication of JPH02280323A publication Critical patent/JPH02280323A/en
Application granted granted Critical
Publication of JP2522041B2 publication Critical patent/JP2522041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To easily abter an inclining angle of the sidewall of a recess or an opening generated by etching by regulating total flow rate in reaction gas when the recess or the opening is formed. CONSTITUTION:A silicon substrate 4 provided with a mask is placed on an electrode 3, vacuum evacuated, and reaction gas 10 mixed with O2 gas and SF6 gas is introduced from a gas inlet tube 8. Then, high frequency power is supplied by a high frequency power source 7 between electrodes 2 and 3 to generate plasma. In this case, total flow rate is altered while O2 gas mixture ratio of the gas 10 is maintained constant, thereby varying O2 gas amount. When etching reaction is affected by the radical amount of O2 in the reaction gas, and total flow rate is increased/decreased, the inclining angle of a recess or a sidewall is decreased/increased. Thus, the inclining angle of the sidewall can be easily altered.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、被エツチング材の凹部または開口部の側壁に
傾斜面を形成するプラズマエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma etching method for forming inclined surfaces on the side walls of recesses or openings in a material to be etched.

〔従来の技術〕[Conventional technology]

半導体圧力センサは、半導体基体の一面から深さ100
−以上の凹部を掘ることにより半導体ダイアフラムを形
成し、そのダイアフラムが両側に加わる圧力差により変
形した際、ダイアフラムに形成したゲージ抵抗の抵抗値
が変化することを利用したものである。このためには、
半導体基体の一面から深さ100−以上の凹部を掘らな
ければならない、この凹部の形成には、従来は、例えば
ストップエツチングを利用したウェットエツチング法が
用いられていたが、後工程での便宜のために側壁に適切
な傾斜面をもつ凹部を形成するためプラズマエツチング
法の採用が検討されている。プラズマエツチング法は、
例えば特公昭63−45469号公報に記載されている
ように単結晶シリコン板上に積層された多結晶シリコン
層に傾斜した側壁を有するパターンを形成するときにも
用いられる。
The semiconductor pressure sensor has a depth of 100 mm from one surface of the semiconductor substrate.
- A semiconductor diaphragm is formed by digging the above-mentioned recesses, and when the diaphragm is deformed due to a pressure difference applied to both sides, the resistance value of the gauge resistor formed on the diaphragm changes. For this purpose,
Conventionally, a wet etching method using stop etching, for example, has been used to form a recess which requires digging a recess to a depth of 100 mm or more from one surface of a semiconductor substrate. For this reason, plasma etching is being considered to form recesses with appropriate slopes on the side walls. The plasma etching method is
For example, as described in Japanese Patent Publication No. 63-45469, it is also used when forming a pattern having inclined sidewalls in a polycrystalline silicon layer laminated on a single-crystal silicon plate.

傾斜した側壁を形成するには異方性エツチングを行うこ
とが必要である。第tvgJは異方性エツチングに用い
られるプラズマエツチング装置を示し、反応槽1の中に
は対向して上部電極2と下部電極3が配置され、下部電
極3上に被エツチング材が載せられる。上部電極は絶縁
物5を介して反応槽1外に引出され、ブロッキングコン
デンサ6を介して高周波電d馨接続されている0反応槽
1には流量調整器4を備えた反応ガス導入管8と排気管
9が開口している0反応槽lを排気管9から排気しなが
ら、導入管8より反応ガス1oを導入し、画電極2.3
間に高周波電源7からの高周波電力を印加して反応ガス
10をプラズマ化する。異方性エツチングを行うために
は、反応ガスの組成、電力槽内圧力の条件を調整するか
、被エツチング材の不純物濃度に勾配をつける。被エツ
チング材のエツチング防止用のマスク材を被着しない部
分が異方性エツチングされることにより、エツチングに
より生ずる凹部または開口部の側壁に傾斜面が生ずる。
It is necessary to perform an anisotropic etch to form the sloped sidewalls. No. tvgJ shows a plasma etching apparatus used for anisotropic etching, in which an upper electrode 2 and a lower electrode 3 are disposed facing each other in a reaction tank 1, and a material to be etched is placed on the lower electrode 3. The upper electrode is drawn out of the reaction tank 1 via an insulator 5 and connected to a high frequency electric wire via a blocking capacitor 6.The reaction tank 1 is connected to a reaction gas introduction pipe 8 equipped with a flow rate regulator 4. While evacuating the reaction tank 1, which has an open exhaust pipe 9, through the exhaust pipe 9, a reaction gas 1o is introduced from the introduction pipe 8, and the picture electrode 2.3 is
During this period, high frequency power from the high frequency power source 7 is applied to turn the reaction gas 10 into plasma. In order to perform anisotropic etching, the composition of the reaction gas and the pressure inside the power tank are adjusted, or a gradient is created in the impurity concentration of the material to be etched. By anisotropically etching the portion of the material to be etched that is not coated with the mask material for preventing etching, an inclined surface is formed on the side wall of the recess or opening formed by etching.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

表面にエツチング防止用のマスク材を被着した被エツチ
ング材にエツチングにより生ずる凹部または開口部の側
壁が傾斜面となるように加工する際、傾斜面の傾斜角度
を変えようとするときには、改めて反応ガスの成分ガス
混合比や圧力を調節し直し、エツチング条件を新たに定
める必要性がある。被工・シチング材に生ずる凹部また
は開口部の側壁の傾斜角度は、エツチング後の被エツチ
ング材の機械的な特性、被エツチング材の表面を被覆す
る’aBtJの付着性あるいは凹部に埋込まれる半導体
層の電気的特性などにより任意の値にし得ることが望ま
しい、しかし、上記のように側壁の傾斜角度を変更する
のは容易でなかった。
When etching a material to be etched with a masking material to prevent etching on its surface so that the side walls of recesses or openings formed by etching become sloped surfaces, it is necessary to re-react when trying to change the inclination angle of the sloped surfaces. It is necessary to readjust the gas mixture ratio and pressure, and to set new etching conditions. The angle of inclination of the sidewall of the recess or opening that occurs in the workpiece/sitching material depends on the mechanical properties of the material to be etched after etching, the adhesion of 'aBtJ covering the surface of the material to be etched, or the semiconductor embedded in the recess. It would be desirable to have an arbitrary value depending on the electrical characteristics of the layer, etc. However, it has not been easy to change the inclination angle of the sidewall as described above.

本発明の目的は、上記の問題を解決し、被エツチング材
に形成される凹部あるいは開口部の側壁の傾斜角度を容
易に変えることができるプラズマエツチング方法を提倶
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma etching method that solves the above problems and allows the angle of inclination of the side walls of the recesses or openings formed in the material to be etched to be easily changed.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、対向する電極
間に電圧を印加し、電極間に存在する酸素を含む減圧反
応ガス中にプラズマを発生させ、一方の電極近傍に配置
され、表面にマスク材のパターンを有する被エツチング
材のマスクで覆われない部分をエツチングして四部ある
いは開口部を形成する際に、反応ガス中の酸素ガス混合
比を一定に保ちながら反応ガスの総流量だけを凋整する
ことにより、エツチングにより生ずる凹部あるいは開口
部の側壁の傾斜形状を変化させるものとする。
In order to achieve the above object, the present invention applies a voltage between opposing electrodes, generates plasma in a reduced pressure reaction gas containing oxygen present between the electrodes, and generates a plasma in the vicinity of one of the electrodes. When forming four parts or openings by etching the parts of the material to be etched that are not covered by the mask, the total flow rate of the reaction gas is kept constant while keeping the oxygen gas mixture ratio in the reaction gas constant. By smoothing the etching, the slope shape of the side wall of the recess or opening caused by etching is changed.

〔作用〕[Effect]

酸素を含む反応ガスの酸素ガス混合比を一定に保ちなが
ら総流量を変えると、酸素ガスの量が変わる。エツチン
グ反応は、反応ガス中の酸素のラジカル量により左右さ
れ、反応ガスの総流量を増加させれば、酸素のラジカル
過多の状態となって形成される凹部あるいは開口部の側
壁の傾斜角度は小さくなる。総流量を減らすと酸素ラジ
カルの量が減り、側壁は立って垂直に近くなる。さらに
総流量を減らして酸素ラジカルの置を減らすと、傾斜角
度がさらにふえ、凹部あるいは開口部の側壁は下方の開
いた形状になる。このように総流量を増減させても、反
応ガスの成分ガスの混合比が同じであればプラズマ発生
条件をその都度変化させる必要がなく、傾斜角度の制御
が容易にできる。
By changing the total flow rate while keeping the oxygen gas mixture ratio of the oxygen-containing reaction gas constant, the amount of oxygen gas changes. The etching reaction is influenced by the amount of oxygen radicals in the reaction gas, and if the total flow rate of the reaction gas is increased, the angle of inclination of the side walls of the recesses or openings that are formed due to an excess of oxygen radicals will become smaller. Become. Reducing the total flow rate reduces the amount of oxygen radicals and the sidewalls become erect and nearly vertical. If the total flow rate is further reduced to reduce the placement of oxygen radicals, the inclination angle will further increase, and the sidewalls of the recesses or openings will have a downwardly open shape. Even if the total flow rate is increased or decreased in this way, if the mixing ratio of the component gases of the reaction gas is the same, there is no need to change the plasma generation conditions each time, and the inclination angle can be easily controlled.

〔実施例〕〔Example〕

第1図に示した装置を用い、下部電極3の上にシリコン
酸化膜のマスクを設けたシリコン基板4を置き、上部電
極2と下部電極3との間隔を50鶴とし、排気管9から
真空排気すると共に、導入管8より08ガスとSFhガ
スとを混合した反応ガス10を導入し、槽内圧力を0.
4 Torrに保ち、上、下電i2.3間に高周波電源
7により 150Wの高周波電力を供給し、プラズマを
発生させた。0.ガスの流量をIO5CCM、 SP&
ガスの流量を23.33CCM%すなわちO□ガス混合
比を30%にしたとき、0.ラジカルの消費効率がよく
、第2図fa)に示したようにシリコン基板4に垂直に
立つ側壁をもつ凹部11が形成された0反応ガスの混合
比を変えないで、o富ガスの流量を203CCM、総流
量を66.75CCMとしたときには、0富ラジカルが
過多の状態になり、第2図(blに示したように上方に
開いた側壁をもっ凹部12が形成された0反応ガスの混
合比を変えないで、0.ガスの流量53CCM、総流量
16.73CCMとしたときには、0!ラジカルが不足
の状態になり、第2図(C1に示すように底部の方が開
いた凹部13が形成された。t!流量以外のプラズマ発
生条件は変える必要はなかった。なお、槽内の圧力は、
総流量を変えても排気系のバルブの開閉度を変える装置
を用いることにより、数秒の間に圧力を一定圧力域内に
落ちつかせることができた。同様な方法は、半導体基板
の上に積層された多結晶シリコン層のバターニングの際
にも適用でき、多結晶シリコン層パターン縁部側壁の傾
斜角度を任意に調整することができた。
Using the apparatus shown in FIG. 1, a silicon substrate 4 provided with a silicon oxide film mask is placed on the lower electrode 3, the interval between the upper electrode 2 and the lower electrode 3 is set to 50 mm, and a vacuum is drawn from the exhaust pipe 9. At the same time as exhausting the tank, a reaction gas 10 containing a mixture of 08 gas and SFh gas is introduced from the introduction pipe 8, and the pressure inside the tank is reduced to 0.
4 Torr, and 150 W of high frequency power was supplied between the upper and lower electrodes from the high frequency power source 7 to generate plasma. 0. Change the gas flow rate to IO5CCM, SP&
When the gas flow rate is 23.33CCM%, that is, the O□ gas mixing ratio is 30%, 0. Radical consumption efficiency is high, and a recess 11 with side walls standing perpendicular to the silicon substrate 4 is formed as shown in FIG. When the total flow rate was 203CCM and the total flow rate was 66.75CCM, there were too many zero-rich radicals, and the mixture of zero-reactant gases had a concave portion 12 with an upwardly open side wall as shown in Figure 2 (bl). When the ratio is unchanged and the 0. gas flow rate is 53 CCM and the total flow rate is 16.73 CCM, the 0. It was formed.t! There was no need to change the plasma generation conditions other than the flow rate.The pressure inside the tank was
By using a device that changes the degree of opening and closing of the exhaust system valve even when the total flow rate changes, the pressure was able to settle within a constant pressure range within a few seconds. A similar method can be applied to patterning a polycrystalline silicon layer stacked on a semiconductor substrate, and the inclination angle of the edge sidewall of the polycrystalline silicon layer pattern can be adjusted as desired.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酸素ガスの混合比を変えなくても、反
応ガスの総流量を変えることによりプラズマ中の酸素ラ
ジカルの量を変化させることができ、それによってプラ
ズマの発生条件を一定に保持したまま、被エツチング材
にエツチングで形成される凹部あるいは開口部の側壁の
傾斜角度を調整することが可能になった。従って、凹部
あるいは開口部の形状の制御が容品となり、任意の機械
的特性をもつ基体の作成、1工程での薄膜付着性の同上
あるいは新しい形状の埋込素子の作成など種々の分野に
有効に適用することができる。
According to the present invention, the amount of oxygen radicals in the plasma can be changed by changing the total flow rate of the reaction gas without changing the mixing ratio of oxygen gas, thereby maintaining the plasma generation conditions constant. It is now possible to adjust the inclination angle of the side wall of the recess or opening formed in the material to be etched by etching. Therefore, controlling the shape of the recesses or openings becomes an object, and is effective in various fields such as creating substrates with arbitrary mechanical properties, improving thin film adhesion in one process, and creating embedded devices with new shapes. It can be applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いられるプラズマエツチング
装置の一例の断面図、第2図(al、 (bl、 tc
+は本発明の一実施例によって形成される凹部の形状を
示す断面図である。 l:反応槽、2:上部電極、3:下部電極、4;シリコ
ン基板、7:高周波電源、8:ガス導入管、9:排気管
、lO:反応ガス、11,12.13 :凹代理人奔理
士 山 口  厳、−−−□第1図 第2図
FIG. 1 is a sectional view of an example of a plasma etching apparatus used for carrying out the present invention, and FIG.
+ is a sectional view showing the shape of a recess formed according to an embodiment of the present invention. l: reaction tank, 2: upper electrode, 3: lower electrode, 4: silicon substrate, 7: high frequency power supply, 8: gas introduction pipe, 9: exhaust pipe, lO: reaction gas, 11, 12.13: concave agent Attorney Gen Yamaguchi, ---□Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)対向する電極間に電圧を印加し、電極間に存在する
酸素を含む減圧反応ガス中にプラズマを発生させ、一方
の電極近傍に配置され、表面にマスク材のパターンを有
する被エッチング材のマスクで覆われない部分をエッチ
ングして凹部あるいは開口部を形成する際に、反応ガス
中の酸素ガスの混合化を一定に保ちながら反応ガスの総
流量だけを調整することにより、エッチングにより生ず
る凹部あるいは開口部の側壁の傾斜形状を変化させるこ
とを特徴とするプラズマエッチング方法。
1) A voltage is applied between opposing electrodes to generate plasma in a reduced pressure reaction gas containing oxygen present between the electrodes, and a material to be etched is placed near one of the electrodes and has a pattern of mask material on its surface. When forming recesses or openings by etching the areas not covered by the mask, by adjusting only the total flow rate of the reaction gas while keeping the mixing of oxygen gas in the reaction gas constant, the recesses created by etching can be Alternatively, a plasma etching method characterized by changing the slope shape of the side wall of the opening.
JP1102027A 1989-04-21 1989-04-21 Plasma etching method Expired - Lifetime JP2522041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102027A JP2522041B2 (en) 1989-04-21 1989-04-21 Plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102027A JP2522041B2 (en) 1989-04-21 1989-04-21 Plasma etching method

Publications (2)

Publication Number Publication Date
JPH02280323A true JPH02280323A (en) 1990-11-16
JP2522041B2 JP2522041B2 (en) 1996-08-07

Family

ID=14316274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102027A Expired - Lifetime JP2522041B2 (en) 1989-04-21 1989-04-21 Plasma etching method

Country Status (1)

Country Link
JP (1) JP2522041B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094702A (en) * 1989-06-19 1992-03-10 U.S. Dept. Of Energy Menu driven heat treatment control of thin walled bodies
US7183219B1 (en) 1998-12-28 2007-02-27 Tokyo Electron At Limited And Japan Science And Technology Corporation Method of plasma processing
JP4791964B2 (en) * 2003-09-26 2011-10-12 ラム リサーチ コーポレーション Etching method and apparatus by ramping
JP2013042169A (en) * 2004-09-29 2013-02-28 Agere Systems Inc Metal oxide semiconductor device having trench diffusion region and formation method of the same
CN113972135A (en) * 2020-07-24 2022-01-25 和舰芯片制造(苏州)股份有限公司 Etching method of Y-type deep groove and manufacturing method of deep groove isolation structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119763A (en) * 1982-12-25 1984-07-11 Agency Of Ind Science & Technol Formation of thin film metal insulator semiconductor transistor
JPS60102745A (en) * 1983-11-09 1985-06-06 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119763A (en) * 1982-12-25 1984-07-11 Agency Of Ind Science & Technol Formation of thin film metal insulator semiconductor transistor
JPS60102745A (en) * 1983-11-09 1985-06-06 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094702A (en) * 1989-06-19 1992-03-10 U.S. Dept. Of Energy Menu driven heat treatment control of thin walled bodies
US7183219B1 (en) 1998-12-28 2007-02-27 Tokyo Electron At Limited And Japan Science And Technology Corporation Method of plasma processing
JP4791964B2 (en) * 2003-09-26 2011-10-12 ラム リサーチ コーポレーション Etching method and apparatus by ramping
JP2013042169A (en) * 2004-09-29 2013-02-28 Agere Systems Inc Metal oxide semiconductor device having trench diffusion region and formation method of the same
CN113972135A (en) * 2020-07-24 2022-01-25 和舰芯片制造(苏州)股份有限公司 Etching method of Y-type deep groove and manufacturing method of deep groove isolation structure

Also Published As

Publication number Publication date
JP2522041B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
EP0726596B1 (en) Plasma etching method
JPH0744175B2 (en) Etching method
EP3836195A1 (en) Method, substrate and apparatus
KR20060028660A (en) Dry-etching method
JPH05102107A (en) Manufacture of semiconductor device
US20050014372A1 (en) Etching method and plasma etching processing apparatus
JPH02280323A (en) Plasma etching method
JPH02260424A (en) Dry etching
JPH0666301B2 (en) Plasma etching method
JP4854874B2 (en) Dry etching method
US5110410A (en) Zinc sulfide planarization
JPH04317325A (en) Manufacturing apparatus for semiconductor device
JPH02155230A (en) Dry etching system
JPH0467777B2 (en)
JPH0770514B2 (en) Dry etching method
US6020268A (en) Magnetic field controlled spacer width
JPS6077427A (en) Dry etching device
JP3501872B2 (en) Plasma etching method for semiconductor substrate
US6461962B1 (en) Etching method
JPS634066A (en) Bias sputtering device
JP2698112B2 (en) Etching method
JPS6232618A (en) Processing method for semiconductor material
JPH0223619A (en) Manufacture of semiconductor device
JPS589983A (en) Dry etching method
JPH0750292A (en) Taper etching method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term