JPH02279964A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH02279964A
JPH02279964A JP1096495A JP9649589A JPH02279964A JP H02279964 A JPH02279964 A JP H02279964A JP 1096495 A JP1096495 A JP 1096495A JP 9649589 A JP9649589 A JP 9649589A JP H02279964 A JPH02279964 A JP H02279964A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
vaporizer
vapor
outlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1096495A
Other languages
Japanese (ja)
Inventor
Yasunobu Ito
康伸 伊藤
Yoshiyuki Yamauchi
芳幸 山内
Osamu Kasebe
修 加瀬部
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1096495A priority Critical patent/JPH02279964A/en
Publication of JPH02279964A publication Critical patent/JPH02279964A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of strange sound induced by vapor-liquid separated refrigerant, use effectively the entire area of a vaporizer and increase a cooling capacity by defining an inner diameter of an outlet pipe which introduces refrigerant in a vapor and liquid mixed state from an expansion valve to a vaporizer in a compression type refrigerating cycle. CONSTITUTION:In a compression type refrigerating cycle, an inner diameter of an outlet pipe 5, which introduces refrigerant in a vapor and liquid mixed state from an expansion valve 2 to a vaporizer 6, is designed 1.0 to 1.3 times an inner diameter of an inlet pipe 1 which introduces liquefied refrigerant to the expansion valve 2. This construction increases the velocity of atomized refrigerant flowing in the outlet pipe 5, eliminates vapor and liquid separation time, and rather promotes atomization, thereby preventing the generation of coarse liquefied particles. Moreover, agitation induced by high flow velocity promotes homogenization, the refrigerant flows into the vaporizer 6 and is distributed equally before vapor and liquid separation takes place, which prevents the generation of strange sound. Furthermore, since the refrigerant is equally distributed, the temperature distribution in the vaporizer 6 is equalized, thereby improving the cooling efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍冷房装置に関するもので、より詳しくいえ
ば、圧縮式の冷凍サイクルにおける、膨張弁から蒸発器
に至る冷媒の通路に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration and cooling system, and more specifically, to a refrigerant passage from an expansion valve to an evaporator in a compression type refrigeration cycle. .

〔従来の技術〕[Conventional technology]

第1図に従来からある圧縮式冷凍サイクルの一部である
膨張弁と蒸発器とそれらの配管が例示されている。1は
、図示されない圧縮機によって圧縮され、凝縮器におい
て放熱して凝縮した液体状の冷媒を、受液器等を介して
受入れる人口管、2は液体冷媒を減圧させる膨張弁で、
0リングジヨイント3により人口管1と連結される。膨
張弁2には、別の○リングジヨイント4によって、減圧
された冷媒を蒸発器の方へ導びく太い出口管5が連結さ
れており、その先端はサーペンタイン式の蒸発器6の人
口側ヘッダ一部7に接続されている。
FIG. 1 illustrates an expansion valve, an evaporator, and their piping, which are part of a conventional compression type refrigeration cycle. 1 is an artificial pipe that receives liquid refrigerant that has been compressed by a compressor (not shown), radiated heat in a condenser, and condensed through a liquid receiver, etc.; 2 is an expansion valve that reduces the pressure of the liquid refrigerant;
It is connected to the artificial tube 1 by an O-ring joint 3. A thick outlet pipe 5 that guides the depressurized refrigerant toward the evaporator is connected to the expansion valve 2 by another O-ring joint 4, and its tip is connected to the artificial side header of the serpentine evaporator 6. Some are connected to 7.

なお、第1図中、8は蒸発器6の冷媒通路、9はフィン
、10は出口側のヘッダ一部、11は気体状となった冷
媒を前記の圧縮機の方へ送る管を示している。
In Fig. 1, 8 indicates a refrigerant passage of the evaporator 6, 9 indicates a fin, 10 indicates a part of the header on the outlet side, and 11 indicates a pipe for sending the gaseous refrigerant toward the compressor. There is.

冷凍サイクルが運転されると、加圧された液体状の冷媒
は入口管1を通って膨張弁2に入り、蒸発器6内の気化
状態に応じた量が減圧されて断熱膨張し、霧状、つまり
気体と粒状の液体の混合流体となって出口管5を通り、
蒸発器6の人口側ヘッダ一部7に入り、細かく分流して
蒸発器6の冷媒通路8内の細い多数の管路を通過する間
に、通路8の表面やフィン9から熱を吸収し、自らは気
化して気体状冷媒となり、出口側ヘッダ一部1゜で合流
して管11により再び圧縮機の方へ送られる。
When the refrigeration cycle is operated, the pressurized liquid refrigerant passes through the inlet pipe 1 and enters the expansion valve 2, and the amount corresponding to the vaporization state in the evaporator 6 is reduced in pressure and expanded adiabatically, forming a mist. , that is, it becomes a mixed fluid of gas and granular liquid and passes through the outlet pipe 5.
The refrigerant enters the header part 7 on the artificial side of the evaporator 6, is divided into small parts, and while passing through a large number of thin pipes in the refrigerant passage 8 of the evaporator 6, absorbs heat from the surface of the passage 8 and the fins 9, The refrigerant itself is vaporized and becomes a gaseous refrigerant, which merges at a 1° angle of the outlet header and is sent to the compressor again through the pipe 11.

このように、膨張弁2の上流側の人口管1には液体冷媒
が流れると共に、下流側の出口管5には減圧されて膨張
し霧状となった冷媒が流れるので、入口管1の径が8+
n+nとずれば出口管5の径を127manにするとい
うように、入口管1に対して出口管5を格段に太くする
のが通例であった。
In this way, liquid refrigerant flows into the artificial pipe 1 on the upstream side of the expansion valve 2, and refrigerant that has been depressurized and expanded into a mist flows into the outlet pipe 5 on the downstream side. is 8+
It was customary to make the outlet pipe 5 much thicker than the inlet pipe 1, such that if the difference was n+n, the diameter of the outlet pipe 5 would be 127 man.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍サイクルにおいては、冷媒が膨張弁から蒸発
器へ流れる過程で異音を発するのが普通であるが、その
原因は、膨張弁がら蒸発器へ流入する霧状の冷媒が不均
質であって、一部は気相と液相に分離しており、間欠的
に液相が気相を巻き込むことによって生じるものである
In conventional refrigeration cycles, it is normal for the refrigerant to make an abnormal noise as it flows from the expansion valve to the evaporator. A part of the gas is separated into a gas phase and a liquid phase, and this is caused by the liquid phase intermittently entraining the gas phase.

また、従来のものでは、霧状冷媒の不均質さのために、
蒸発器の多数の細い管路に冷媒が均等に分配されず、さ
らに蒸発器内における冷媒の流れ方が脈動状態となり、
これが一つの異音発生原因となったり、均等な分配を更
に妨げたりするほか、蒸発器が部分的に温度の異なる状
態を生じ、効率的に冷却能力を発揮することができない
という問題もあった。
In addition, in the conventional method, due to the heterogeneity of the atomized refrigerant,
The refrigerant is not evenly distributed among the many thin pipes of the evaporator, and the flow of refrigerant inside the evaporator becomes pulsating.
This not only causes abnormal noise and further impedes uniform distribution, but also causes the evaporator to have different temperatures in some parts, making it impossible to efficiently exert its cooling capacity. .

本発明は、これら従来の冷凍サイクルが有する問題点の
原因となる膨張弁から蒸発器へ流れる霧状の冷媒の気液
分離を阻げ、より微粒化、均質化させる有効な手段を得
ることを、発明が解決すべき課題とする。
The present invention aims to prevent the gas-liquid separation of the atomized refrigerant flowing from the expansion valve to the evaporator, which is the cause of these problems in conventional refrigeration cycles, and to obtain an effective means for further atomizing and homogenizing the refrigerant. , the problem to be solved by the invention.

〔課題を解決するた必の手段〕[Indispensable means to solve problems]

本発明の冷凍冷房装置は、圧縮式冷凍サイクルにおいて
、膨張弁から蒸発器へ気液混合状態の冷媒を導びく出口
管の内径を、前記膨張弁へ液状の冷媒を導びく入口管の
内径の10倍〜1.3倍としたことを特徴とする。
In the refrigeration/cooling device of the present invention, in a compression type refrigeration cycle, the inner diameter of the outlet pipe that leads refrigerant in a gas-liquid mixture state from the expansion valve to the evaporator is equal to the inner diameter of the inlet pipe that leads liquid refrigerant to the expansion valve. It is characterized by being 10 times to 1.3 times.

〔作 用〕[For production]

膨張弁へ人口管によって流入する液状の冷媒は、膨張弁
の細孔を通過することによって減圧されて膨張し、霧状
となって出口管を通り蒸発器へ流入する。しかし出口管
を流れる霧状の冷媒は液体き気体に分離し易く、分離し
た気液が膨張弁の出口管内を流れ蒸発器に流入すること
が異音の発生原因となっていた。出口管を流れる冷媒は
液体と気体とに分離して体積が膨張しているので出口管
の管径を太くするのが常識的手段であるが、本発明にお
いては逆に膨張弁の出口管を従来よりも細くしたので、
出口管内を流れる霧状の冷媒の流速が高まり、気液分離
のいとまを与えず、むしろ微粒化が促進され、粗大な液
粒が発生しなくなる。また、高速の流れによる撹乱作用
もあって均質化が進み、高速であるから気液分離が起こ
る前に蒸発器内へ流入して均等に分配されるので、異音
が発生しない。さらに、冷媒の分配が均等に行なわれる
ので、蒸発器内の温度分布も一様化して冷却効率が向上
する。
The liquid refrigerant flowing into the expansion valve through the artificial pipe passes through the pores of the expansion valve, is depressurized, expands, becomes a mist, and flows into the evaporator through the outlet pipe. However, the atomized refrigerant flowing through the outlet pipe is easily separated into liquid and gas, and the separated gas and liquid flows through the outlet pipe of the expansion valve and flows into the evaporator, causing abnormal noise. Since the refrigerant flowing through the outlet pipe is separated into liquid and gas and expands in volume, it is common sense to increase the diameter of the outlet pipe, but in the present invention, on the contrary, the outlet pipe of the expansion valve is increased in diameter. Because it is thinner than before,
The flow rate of the atomized refrigerant flowing in the outlet pipe is increased, and there is no impediment to gas-liquid separation, rather atomization is promoted and coarse droplets are no longer generated. In addition, homogenization progresses due to the turbulent action of the high-speed flow, and because of the high-speed flow, the gas flows into the evaporator and is evenly distributed before gas-liquid separation occurs, so no abnormal noise is generated. Furthermore, since the refrigerant is evenly distributed, the temperature distribution within the evaporator is also made uniform, improving cooling efficiency.

〔実施例〕〔Example〕

車両空調装置の冷凍サイクルにおける本発明の実施例と
して、基本的な構造は前述の第1図に示した従来のサー
ペンタイン式のものと同様とし、入口管1も径8mmの
ものを使用したが、出口管5としては従来用いられてい
た12.7mm径の太いものを廃して、はるかに細い1
0mm径のものを使用した。
As an embodiment of the present invention in a refrigeration cycle of a vehicle air conditioner, the basic structure was the same as the conventional serpentine type shown in FIG. 1, and the inlet pipe 1 was 8 mm in diameter. As the exit pipe 5, we have replaced the thick one with a diameter of 12.7 mm that was previously used, and replaced it with a much thinner one.
One with a diameter of 0 mm was used.

また他の実施例として、その構造自体はよく知られてい
るドロンカップ式の蒸発器に本発明を適用した例を第2
図に示す。この例の場合、21は液体冷媒の入口管(径
8mmのものを使用)、22は膨張弁、23及び24は
0リングジヨイント、25は減圧された冷媒をドロンカ
ップ式の蒸発器26へ導びく出口管(径10mmのもの
を使用)、27は入口側ヘッダ一部、28は蒸発器26
の冷媒通路、29はフィン、30は出口側のヘッダー部
、31は気体状となった冷媒を圧縮機の方へ送る管を示
している。
As another example, a second example in which the present invention is applied to a Dron cup type evaporator whose structure itself is well known is shown.
As shown in the figure. In this example, 21 is a liquid refrigerant inlet pipe (8 mm diameter is used), 22 is an expansion valve, 23 and 24 are O-ring joints, and 25 is a depressurized refrigerant to a Dron cup type evaporator 26. 27 is a part of the inlet side header, 28 is the evaporator 26
29 is a fin, 30 is a header section on the outlet side, and 31 is a pipe for sending the gaseous refrigerant toward the compressor.

いずれの場合も蒸発器6又は26の温度分布には著しい
改善が認められた。第3図及び第4図は前記性の実施例
であるドロンカップ式の蒸発器26に実施した場合の温
度分布を示したものである。これらの線図は蒸発器26
を正面からみたときの蒸発器26上の各点の位置を横軸
にとり、縦軸に蒸発器からの空気温度をとったもので、
第3図は冷媒の流量が少ない低流量域において測定した
温度分布を示し、第4図は冷媒の流量が大きい高流量域
において測定した温度分布を示している。
In either case, a significant improvement was observed in the temperature distribution of the evaporator 6 or 26. FIGS. 3 and 4 show the temperature distribution in the case of implementing the above-mentioned embodiment in the Dron cup type evaporator 26. These diagrams are for the evaporator 26
The horizontal axis represents the position of each point on the evaporator 26 when viewed from the front, and the vertical axis represents the air temperature from the evaporator.
FIG. 3 shows the temperature distribution measured in a low flow area where the flow rate of the refrigerant is small, and FIG. 4 shows the temperature distribution measured in the high flow area where the flow rate of the refrigerant is large.

実線は従来の通り12.7mm径の出口管25を用いた
場合、破線は10mm径の出口管25を用いた場合であ
る。いずれの場合も線図の左の方、つまり蒸発器26の
人口側配管から遠いところにおける本発明によるものの
温度の低下が著しい。これは蒸発器26に流入する冷媒
が、本発明の実施例では気液分離を起こしておらず、微
粒化しているために霧状の冷媒が遠くまでとどき、蒸発
器26の人口から遠いところでも活発に蒸発して良く熱
を奪っていることを物語るものである。
The solid line shows the case where the outlet pipe 25 with a diameter of 12.7 mm is used as in the conventional case, and the broken line shows the case where the outlet pipe 25 with a diameter of 10 mm is used. In either case, the temperature of the device according to the present invention is significantly reduced on the left side of the diagram, that is, at a location far from the artificial side piping of the evaporator 26. This is because the refrigerant flowing into the evaporator 26 does not undergo gas-liquid separation in the embodiment of the present invention and is atomized, so the mist refrigerant reaches a long distance, even in places far from the population of the evaporator 26. This shows that it actively evaporates and removes heat well.

この結果、従来のものに対して、本実施例の蒸発器の平
均温度は4℃も低下することが判明した。
As a result, it was found that the average temperature of the evaporator of this example was lowered by 4° C. compared to the conventional one.

これは同程度の条件としたときに、単純計算であるが約
20%の冷房能力向上を可能とする数値である。とくに
、冷媒の流量の少ない低流量域での改善が著しい。この
ことは、低流量域では膨張弁22の出口管25内におけ
る霧状冷媒の流速が低くなるため一般に気液分離が起こ
りやすいところ、本発明の実施例では細い径の出口管2
5を用いたために流速が高まって、気液分離しなくなっ
た結果であると解することができる。
Although this is a simple calculation, it is a value that makes it possible to improve the cooling capacity by about 20% under the same conditions. In particular, the improvement is remarkable in the low flow rate range where the refrigerant flow rate is small. This means that in a low flow rate region, the flow velocity of the atomized refrigerant in the outlet pipe 25 of the expansion valve 22 is low, so that gas-liquid separation is generally likely to occur.
This can be interpreted as a result of the flow rate being increased due to the use of No. 5, and gas-liquid separation no longer occurring.

出口管の内径をどの程度細くすればよいかということに
ついては、多くの実験をくり返した結果、入口管の内径
を基準にしてそれよりは大であるが、その1.3倍より
も小さい値がよいことを見出した。
As for how thin the inner diameter of the outlet pipe should be, as a result of many experiments, we found that it is larger than the inner diameter of the inlet pipe, but smaller than 1.3 times the inner diameter of the inlet pipe. I found out that it is good.

〔発明の効果〕〔Effect of the invention〕

本発明の手段により、膨張弁において減圧され膨張した
霧状の冷媒は、気液分離することなく均質な微粒の状態
で蒸発器に高速で流入し、均等に分配されるので、気液
分離した冷媒による異音の発生が防止され、蒸発器の全
域が有効に利用されるようになって冷却能力を増大させ
ることができる。
By means of the present invention, the atomized refrigerant that has been depressurized and expanded in the expansion valve flows into the evaporator at high speed in the form of homogeneous fine particles without being separated into gas and liquid, and is evenly distributed. The generation of abnormal noise due to the refrigerant is prevented, and the entire area of the evaporator is effectively utilized, thereby increasing the cooling capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーペンタイン式の蒸発器及び膨張弁の付近を
示す斜視図、第2図はドロン力・ツブ式の蒸発器及び膨
張弁の付近を示す正面図、第3図及び第4図は本発明の
効果を示す温度分布線図である。 1.21・・・人口管、   2322・・・膨張弁、
5.25・・・出口管、   6,26・・・蒸発器。
Figure 1 is a perspective view showing the vicinity of the serpentine type evaporator and expansion valve, Figure 2 is a front view showing the vicinity of the drone force/tub type evaporator and expansion valve, and Figures 3 and 4 are the main parts. FIG. 3 is a temperature distribution diagram showing the effects of the invention. 1.21... Artificial tube, 2322... Expansion valve,
5.25... Outlet pipe, 6,26... Evaporator.

Claims (1)

【特許請求の範囲】[Claims]  圧縮式冷凍サイクルにおいて、膨張弁から蒸発器へ気
液混合状態の冷媒を導びく出口管の内径を、前記膨張弁
へ液状の冷媒を導びく入口管の内径の1.0倍〜1.3
倍としたことを特徴とする冷凍冷房装置。
In a compression type refrigeration cycle, the inner diameter of the outlet pipe that guides refrigerant in a gas-liquid mixed state from the expansion valve to the evaporator is 1.0 to 1.3 times the inner diameter of the inlet pipe that leads liquid refrigerant to the expansion valve.
A refrigeration/cooling device characterized by double the size.
JP1096495A 1989-04-18 1989-04-18 Refrigerator Pending JPH02279964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096495A JPH02279964A (en) 1989-04-18 1989-04-18 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096495A JPH02279964A (en) 1989-04-18 1989-04-18 Refrigerator

Publications (1)

Publication Number Publication Date
JPH02279964A true JPH02279964A (en) 1990-11-15

Family

ID=14166672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096495A Pending JPH02279964A (en) 1989-04-18 1989-04-18 Refrigerator

Country Status (1)

Country Link
JP (1) JPH02279964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167879A (en) * 2011-02-15 2012-09-06 Showa Denko Kk Evaporator and vehicle air conditioning device
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same
JP2012167879A (en) * 2011-02-15 2012-09-06 Showa Denko Kk Evaporator and vehicle air conditioning device

Similar Documents

Publication Publication Date Title
US2956421A (en) Capillary refrigerating systems
CA2462629C (en) Method and apparatus for turbulent refrigerant flow to evaporator
JP2008039208A (en) Cooling air supplying equipment
JP4096674B2 (en) Vapor compression refrigerator
JPH02279964A (en) Refrigerator
JPH10111046A (en) Air conditioner
JPH06272998A (en) Refrigerator
JP5127578B2 (en) Refrigeration cycle equipment
JP4888050B2 (en) Refrigeration cycle equipment
US20200200451A1 (en) Refrigeration cycle apparatus and refrigerator including the same
CN216897558U (en) Refrigerant noise elimination pipeline and air conditioner
JPH0217368A (en) Distributor for air conditioner
JPS5828906B2 (en) Refrigeration equipment
JP2503138Y2 (en) Refrigeration equipment
CN215373041U (en) Evaporator input pipe assembly, air conditioner indoor unit and air conditioner
JPH07190565A (en) Expansion valve for refrigerant
KR100378533B1 (en) An expansion device for turbo-chillers
JPH03105178A (en) Refrigerating and air-conditioning device
JPH08296924A (en) Refrigerating equipment
JPS63221812A (en) Shunt
JPH04366375A (en) Air conditioner
JP2002310518A (en) Refrigerating apparatus
BR202022020179Y1 (en) CONSTRUCTIVE ARRANGEMENT APPLIED TO ALUMINUM WIRE EVAPORATOR AND CONDENSER
WO2015003236A1 (en) Noise attenuation system and method for attenuating noise in a refrigeration system
JPH01212878A (en) Flow separator