JPH02279593A - Method for synthesizing diamond by vapor method - Google Patents

Method for synthesizing diamond by vapor method

Info

Publication number
JPH02279593A
JPH02279593A JP9805889A JP9805889A JPH02279593A JP H02279593 A JPH02279593 A JP H02279593A JP 9805889 A JP9805889 A JP 9805889A JP 9805889 A JP9805889 A JP 9805889A JP H02279593 A JPH02279593 A JP H02279593A
Authority
JP
Japan
Prior art keywords
diamond
powder
flame
box
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9805889A
Other languages
Japanese (ja)
Other versions
JP2680676B2 (en
Inventor
Kunio Komaki
小巻 邦雄
Yoichi Hirose
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9805889A priority Critical patent/JP2680676B2/en
Publication of JPH02279593A publication Critical patent/JPH02279593A/en
Application granted granted Critical
Publication of JP2680676B2 publication Critical patent/JP2680676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To accelerate the homogenization and mass production of a diamond deposit by fluidizing a base material for diamond deposition which is grains or powder in a box body and burning raw materials for diamond deposition so as to have an incomplete combustion region. CONSTITUTION:The base material for diamond deposition which is the grains or powder in the box body is fluidized in the method for synthesizing the vapor method diamond by burning the raw material compd. for diamond deposition contg. carbon so as to have the incomplete combustion region. The carbon source for synthesizing diamond to be used is exemplified by satd. hydrocarbon (e.g.; methane), unsatd. hydrocarbon (e.g.: propylene), arom. hydrocarbon (e.g.: styrene), alcohols (ethyl alcohol) on the like. In the case the base body is grains or powder, the fluidized bed is formed by the ejection force of the flame itself of the combustion flame, by which the diamond is deposited on this base body.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐摩耗性、耐食性、高熱伝導性、高比弾性等の
特性を有し、(1磨材、光学材料、超硬工具材、摺動材
、耐食材、音響振動材、刃先材用部キイ等に有用な膜状
、粒状のダイヤモンドの気相法合成に関する。
[Detailed description of the invention] [Industrial application field] The present invention has characteristics such as wear resistance, corrosion resistance, high thermal conductivity, and high specific elasticity, and is suitable for use in abrasive materials, optical materials, cemented carbide tool materials, This article relates to the vapor phase synthesis of film-like and granular diamonds useful for sliding materials, corrosion-resistant materials, acoustic vibration materials, keys for cutting edge materials, etc.

[従来の技術] ダイヤモンドの合成法としては超高圧条件下での、鉄、
ニッケル系等の触媒による合成法や爆薬法による黒鉛の
直接変換法が従来より実施されている。
[Conventional technology] Diamond synthesis methods involve using iron, iron, etc. under ultra-high pressure conditions.
Synthesis methods using nickel-based catalysts and direct conversion methods of graphite using explosive methods have been practiced in the past.

近年、低圧CVD法として炭化水素、又は窒素、酸素等
を含むH機化合物と水素との混合ガスを熱フィラメント
、マイクロ波プラズマ、高周波プラズマ、直流放電プラ
ズマ、直流アーク放電等により励起状態としてダイヤモ
ンドを合成する方法が開発されている。
In recent years, as a low-pressure CVD method, a mixed gas of hydrogen and hydrocarbons or H organic compounds containing nitrogen, oxygen, etc. is excited using a hot filament, microwave plasma, high-frequency plasma, DC discharge plasma, DC arc discharge, etc. to produce diamonds. A synthesis method has been developed.

さらに最近、本件出願人は燃焼炎中の非酸化性領域での
ダイヤモンドの合成法を開発し、特願昭83−7175
8号として出願しており、本件発明はこの改善法に当た
る。
More recently, the applicant has developed a method for synthesizing diamond in the non-oxidizing region of combustion flame, and filed a patent application No. 83-7175
No. 8 has been filed, and the present invention corresponds to this improvement method.

[発明が解決しようとする課題] 特願昭83−71758号の発明は従来法に比べ簡易な
手段で、しかも大面積の膜状ダイヤモンドをも生成しつ
る気相合成法であって、その要点は炭素を含むダイヤモ
ンド析出用原料化合物を不完全燃焼領域を有するように
燃焼させ、該不完全燃焼領域中、又は該領域の近傍の非
酸化性雰囲気中にダイヤセンド析出用基材を設置し、基
材温度をダイヤモンド析出温度に保持することにより基
材にダイヤモンドを析出させる方法である。
[Problem to be solved by the invention] The invention of Japanese Patent Application No. 83-71758 is a vapor phase synthesis method that is simpler than conventional methods and can also produce a large area of film-like diamond. burns a carbon-containing raw material compound for diamond precipitation so as to have an incomplete combustion region, and places a diamond precipitation substrate in a non-oxidizing atmosphere in or near the incomplete combustion region; This is a method in which diamond is deposited on a base material by maintaining the base material temperature at a diamond precipitation temperature.

この方法は炭素を含む原料化合物により燃焼炎を形成さ
せるのみで基材上にダイヤモンドを析出させることが可
能であり、従来のCVD法に比べ画期的に優れた方法で
あるが実用化のためにはダイヤモンド析出速度のさらな
る増大、均質性の向上や析出物の性状制御が強く望まれ
ている。
This method allows diamond to be deposited on a substrate simply by forming a combustion flame using a raw material compound containing carbon, and is a revolutionary method compared to the conventional CVD method, but it is difficult to put it into practical use. There is a strong desire to further increase the diamond precipitation rate, improve homogeneity, and control the properties of the precipitates.

本件発明はダイヤモンドの析出速度および析出面積を増
加させ、析出物の均質化および量産化を促進することを
目的とする。
The present invention aims to increase the precipitation rate and precipitation area of diamond, and to promote homogenization of the precipitate and mass production.

[課題を解決するための手段] 本件発明者は上記の目的を達成するために鋭意研究した
結果、ダイヤモンド析出用原料化合物を燃焼させるに際
し、函体中で雰囲気、圧力の制御を行ない、不完全燃焼
領域の増加と均質性の増大によって、より広い析出領域
でのダイヤモンドの析出速度が増大し、より均質化した
良質なダイヤをンドが析出すること、及び粒体又は粉体
である基体の流動により量産化が可能であることを見出
し、本件発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive research to achieve the above object, the inventor of the present invention controlled the atmosphere and pressure in a box when burning the raw material compound for diamond precipitation. The increased combustion area and increased homogeneity increase the deposition rate of diamond over a wider deposition area, resulting in more homogeneous and better quality diamond deposits, and the flow of the substrate, which may be granules or powder. The inventors discovered that mass production is possible and completed the present invention.

すなわち、本件発明の要旨は炭素を含むダイヤモンド析
出用原料化合物を不完全燃焼領域を有するように燃焼さ
せて気相法ダイヤモンドを合成する方法において、函体
中で粒体又は粉体であるダイヤモンド析出用基材を流動
させることを特徴とする気相法ダイヤモンドの合成法に
ある。
That is, the gist of the present invention is a method for synthesizing diamond using a vapor phase method by burning a carbon-containing raw material compound for diamond precipitation so as to have an incomplete combustion region, in which diamond precipitation in the form of granules or powder is performed in a box. The present invention relates to a method for synthesizing diamond using a vapor phase method, which is characterized by fluidizing the base material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用するダイヤモンド合成用炭素源としてはメ
タン、エタン、プロパン、ブタン等の飽和炭化水素、エ
チレン、プロピレン、ブチレン、アセチレン等の不飽和
炭化水素、ベンゼン、スチレン等の芳香族炭化水素、エ
チルアルコール等のアルコール類、アセトン等のケトン
基を含む化合物、ジエチルエーテル等のエーテル類、そ
の他アルデヒド化合物、含窒素化合物、−酸化炭素等す
べてが使用可能である。又、前述の化合物は1種または
2種以上を混合して用いることができる。
Carbon sources for diamond synthesis used in the present invention include saturated hydrocarbons such as methane, ethane, propane, and butane; unsaturated hydrocarbons such as ethylene, propylene, butylene, and acetylene; aromatic hydrocarbons such as benzene and styrene; Alcohols such as alcohol, compounds containing a ketone group such as acetone, ethers such as diethyl ether, other aldehyde compounds, nitrogen-containing compounds, and carbon oxide can all be used. Moreover, the above-mentioned compounds can be used alone or in combination of two or more.

さらに、炭素源として固体の炭素、黒鉛等を前記化合物
と水素、酸素等の混合ガスの燃焼炎中で、気化、燃焼、
水素化等の反応を介して炭素源として用いることも可能
である。又、その際、非酸化性ガスを混合することもで
きる。
Furthermore, solid carbon, graphite, etc. as a carbon source is vaporized, combusted, etc. in a combustion flame of a mixed gas of the above compound and hydrogen, oxygen, etc.
It is also possible to use it as a carbon source through reactions such as hydrogenation. Moreover, at that time, a non-oxidizing gas can also be mixed.

これらの炭素含有原料化合物が、燃焼炎中で燃焼熱によ
る分解と更に#素との反応での分解解離、燃焼によりラ
ジカル化された活性種から、例えばC,CCH,CH2
,CH3などが不完全撚2 ″ 焼領域では豊富でダイヤモンド相を形成するのを好適な
らしめるものと推定される。又、水素原子、酸素原子も
形成され、ダイヤモンド析出反応に関与しているものと
思われる。このようにラジカル化した活性種及び水素原
子、酸素原子の生成及び拡散領域が函体中の燃焼により
雰囲気中の酸素濃度の低減化等の調節ができ、外炎部の
減少または消失がおこり、即ちこれが不完全燃焼領域の
拡大につながり、ダイヤモンド析出面積、速度の増大、
均質化が可能となる。
These carbon-containing raw material compounds are decomposed by combustion heat in a combustion flame, further decomposed and dissociated by reaction with # element, and are converted into radicals by active species, such as C, CCH, CH2.
, CH3, etc. are abundant in the incompletely twisted 2'' firing region and are presumed to be suitable for forming a diamond phase.Hydrogen atoms and oxygen atoms are also formed and are involved in the diamond precipitation reaction. The generation and diffusion region of radicalized active species, hydrogen atoms, and oxygen atoms can be controlled to reduce the oxygen concentration in the atmosphere through combustion in the box, and the outer flame area can be reduced or Dissipation occurs, which leads to an expansion of the incomplete combustion region, an increase in diamond precipitation area, velocity,
Homogenization becomes possible.

本発明ではさらに函体中で基体を流動させることにより
ダイヤモンド量産化が可能となる。基体が粒体又は粉体
の場合は燃焼炎の炎口体の噴出力により流動床を形成し
、この基体上にダイヤモンドを析出させることができる
The present invention also allows mass production of diamonds by allowing the substrate to flow inside the box. When the substrate is a granule or powder, a fluidized bed is formed by the ejection force of the combustion flame from the nozzle, and diamond can be deposited on the substrate.

本件発明において例えば、アセチレン、スチレン、プロ
パン、エチルアルコール、メチルアルコール、ベンゼン
等の原料ガスに酸素を添加し、燃焼炎を形成し、酸素添
加量の調整で函体中の雰囲気中含有酸素量を低減して不
完全燃焼領域の体積を制御することが可能である。この
場合のアセチレン−酸素炎の不完全燃焼域はアセチレン
フェザ−と呼ばれており、この体積は酸素/アセチレン
比と全ガス量および函体中の雰囲気の圧力、含有酸素量
により変化し、制御可能である。特に酸素/アセチレン
比は0.5〜2の範囲を用いることができるが望ましく
は0.75〜1の比である。
In the present invention, for example, oxygen is added to a raw material gas such as acetylene, styrene, propane, ethyl alcohol, methyl alcohol, benzene, etc. to form a combustion flame, and by adjusting the amount of oxygen added, the amount of oxygen contained in the atmosphere in the box is reduced. It is possible to reduce and control the volume of the incomplete combustion region. In this case, the incomplete combustion region of the acetylene-oxygen flame is called the acetylene feather, and this volume changes depending on the oxygen/acetylene ratio, the total gas amount, the pressure of the atmosphere in the box, and the amount of oxygen content, and can be controlled. It is possible. In particular, the oxygen/acetylene ratio can range from 0.5 to 2, but is preferably from 0.75 to 1.

函体中の圧力は0.ITorr 〜10,000Tor
rで使用でき、望ましくは1OTorr〜760Tor
r 、更に望ましくは100Torr〜750Torr
である。函体内の圧力が減圧になるに従って炎体積の増
大が起り、それに従ってダイヤ合成領域が拡大する。一
方、減圧になりすぎると希薄になって炎が消えてしまう
と同時に温度の低下を招く。又、函体中の酸素含有量は
燃焼炎の炎外周部からの拡散酸素により不完全燃焼領域
の体積減少を起こすので重要な因子であるが、函体の形
状、大きさ、燃焼炎の体積や数、さらに流動させる基体
の状態によって異なるので一概には決定できない。ただ
本発明の函体を使用することによって実験によって容品
に決められるので、酸素量の制御によって不完全燃焼領
域の体積制御が可能になる。
The pressure inside the box is 0. ITorr ~10,000 Torr
r, preferably 1OTorr to 760Torr
r, more preferably 100 Torr to 750 Torr
It is. As the pressure inside the box decreases, the flame volume increases, and the diamond synthesis area expands accordingly. On the other hand, if the pressure is reduced too much, the flame becomes diluted and the flame goes out, at the same time causing a drop in temperature. In addition, the oxygen content in the box is an important factor because oxygen diffused from the outer periphery of the combustion flame causes a volume reduction in the incomplete combustion region, but the shape and size of the box, and the volume of the combustion flame are also important factors. It cannot be determined unambiguously because it depends on the flow rate, number, and condition of the substrate to be flowed. However, by using the box of the present invention, the volume of the incomplete combustion region can be controlled by controlling the amount of oxygen, since the container can be determined by experiment.

一般に外炎が存在する燃焼条件下でのアセチレンフェザ
−領域での温度は2000〜3000℃であり、補助励
起手段を必要としない。このため好ましいダイヤモンド
合成温度である1500℃以上が容易に達成される。基
体温度は600〜1200℃が適当であり、冷却、熱放
散等することにより、この基体温度範囲に制御可能であ
る。
Generally, the temperature in the acetylene feather region under combustion conditions in the presence of an external flame is between 2000 DEG and 3000 DEG C., and no auxiliary excitation means are required. Therefore, a preferable diamond synthesis temperature of 1500° C. or higher can be easily achieved. The substrate temperature is suitably 600 to 1200° C., and can be controlled within this range by cooling, heat dissipation, etc.

函体的雰囲気中の酸素量の制御により外炎部を消失する
様な燃焼や函体内圧力が低い場合にダイヤモンド生成に
必要なラジカル発生のための励起エネルギー不足が起こ
る場合があるが、この様な場合、必要に応じて補助励起
手段を用い得る。補助加熱源としては通電加熱により発
熱体、高周波誘導加熱、レーザー光による加熱方式、赤
外線加熱、アーク放電による加熱等がある。
By controlling the amount of oxygen in the atmosphere of the box, there may be a lack of excitation energy to generate the radicals necessary for diamond formation when combustion causes the outer flame to disappear or when the pressure inside the box is low. In such cases, auxiliary excitation means may be used as necessary. Examples of auxiliary heating sources include a heating element using electrical heating, high-frequency induction heating, a heating method using laser light, infrared heating, and heating using arc discharge.

ダイヤモンド析出用基体は通常低圧CVD法で用いられ
るものが使用できる。即ちSlウェハーStC焼結体、
SiC粒状物の外にW、 WC。
As the substrate for diamond deposition, those commonly used in low pressure CVD methods can be used. That is, Sl wafer StC sintered body,
W, WC outside the SiC granules.

Mo、Tic、TiN、サーメット、超硬合金工具鋼1
合金工具鋼、高速度鋼等の形状物及び粒状物が例示でき
る。
Mo, Tic, TiN, cermet, cemented carbide tool steel 1
Examples include shaped objects and granular objects such as alloy tool steel and high-speed steel.

以下、本発明の1例について図面を用いて説明を行う。An example of the present invention will be described below with reference to the drawings.

図1は函体1内に流動装置を有するダイヤモンド合成装
置の概略図である。底部にチャージされた粒体3は燃焼
バーナー2の燃焼炎が形成されると同時にその噴出力に
よって流動化する。ダイヤモンドの析出は基体粒体が燃
焼炎内のダイヤモンド合成領域内に滞留している間に起
こる。基体粒体は流動化するため静止状態時のダイヤモ
ンド析出表面積の3〜7倍のダイヤモンド析出表面積が
ダイヤモンド合成領域に曝され、ダイヤモンド析出に関
与する。又、一定時間の合成後、底部の板状部(粉体搬
出用バッチ)8を上げて間隙を形成し、合成粉体を採取
できる。又、新たな基材粒体のチャージは燃焼バーナー
の火口9付近にある基体送入口(図示せず)により行う
FIG. 1 is a schematic diagram of a diamond synthesis apparatus having a flow device inside a box 1. As shown in FIG. The granules 3 charged at the bottom are fluidized by the ejection force at the same time as the combustion flame of the combustion burner 2 is formed. Diamond precipitation occurs while the substrate particles remain within the diamond synthesis zone within the combustion flame. Since the base particles are fluidized, a diamond precipitation surface area that is 3 to 7 times the diamond precipitation surface area in a stationary state is exposed to the diamond synthesis region and participates in diamond precipitation. Further, after synthesis for a certain period of time, the plate-like part (batch for carrying out powder) 8 at the bottom is raised to form a gap, and the synthesized powder can be collected. Furthermore, new base material particles are charged through a base material inlet (not shown) located near the crater 9 of the combustion burner.

尚、図1中4は燃焼用ガスコントロール系、5は圧力検
出器、6は函体内圧力、雰囲気排気系、7は流動化粒体
容器(Mo製)水冷方式(図示せず)である。
In FIG. 1, 4 is a combustion gas control system, 5 is a pressure detector, 6 is a pressure inside the box, an atmosphere exhaust system, and 7 is a fluidized granule container (made of Mo) with a water cooling system (not shown).

図1の流動化粒体容器7の内径は約100mmφで上部
は180mmφの開口径である。この流動化容器では燃
焼ガス流量合計24) /ffiin−10g/s1n
の範囲であれば基体粒体数−〜数1000−程度まで流
動化が可能である。
The fluidized granule container 7 shown in FIG. 1 has an inner diameter of approximately 100 mmφ and an opening diameter of 180 mmφ at the top. In this fluidization vessel, the total flow rate of combustion gas is 24) /ffiin-10g/s1n
Within this range, it is possible to fluidize up to several thousand base particles.

[実 施 例] 図1に示す函体装置1 (SUS製水冷函体、50I)
にアセチレン−酸素用バーナー2を中心より垂直に設定
した。ダイヤモンド析出用粒状基体3としてSiC粒、
平均粒径約300mを2.5g、流動化粒体容器7内に
入れ500TorrでArで函体内全体を置換しておき
、その後、流動化容器底から15龍の直さに火口9が設
定されたバーナーにアセチレンガス3.51 /sin
 s酸素ガス3.15j) /sinを供給して燃焼炎
を形成し約90分間SEC粒の流動化とダイヤモンド合
成を行った。
[Example] Box device 1 shown in Fig. 1 (SUS water-cooled box, 50I)
The acetylene-oxygen burner 2 was set vertically from the center. SiC grains as the granular substrate 3 for diamond precipitation;
2.5 g of particles with an average diameter of about 300 m were placed in a fluidized granule container 7 and the entire inside of the box was replaced with Ar at 500 Torr, and then a crater 9 was set at a distance of 15 mm from the bottom of the fluidized container. Acetylene gas 3.51/sin in burner
A combustion flame was formed by supplying s oxygen gas (3.15j)/sin, and fluidization of SEC grains and diamond synthesis were performed for about 90 minutes.

その後、反応装置内より粒体を採取し、光学顕微鏡観察
を行ない、ダイヤモンド自形を有する数−の結晶子が粒
全体を被覆していることを確認した。この被覆粒を顕微
ラマン分光法によりΔp1定しダイヤモンドビークの1
333c+n−1に鋭いピークと1500〜1550c
m−’の範囲に非常にブロードな低いi−カーボンを認
めたことによりSiC粒は目形を持ったダイヤモンド結
晶に被覆されていることが判明した。又、被覆厚さは粒
の断面を顕微m1lFI足したところ、平均28−程度
であった。
Thereafter, the particles were collected from inside the reactor and observed under an optical microscope, and it was confirmed that the entire particle was covered with several crystallites having a diamond euhedral shape. Δp1 of this coated grain was determined by micro-Raman spectroscopy, and 1 of the diamond beak was determined.
Sharp peak at 333c+n-1 and 1500-1550c
The observation of very broad low i-carbon in the m-' range revealed that the SiC grains were covered with eye-shaped diamond crystals. Further, the coating thickness was about 28 mm on average when the cross section of the grain was added to the microscopic m11 FI.

[発明の効果] 本発明の方法によってダイヤモンド合成が広面積、高速
度で行なうことができ、又ダイヤモンド合成の均質化に
寄与することができる。
[Effects of the Invention] According to the method of the present invention, diamond synthesis can be performed over a wide area and at high speed, and it can also contribute to homogenization of diamond synthesis.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明に係る方法の1例を示すダイヤモンド合成
装置の概念図である。
FIG. 1 is a conceptual diagram of a diamond synthesis apparatus showing an example of the method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、炭素を含むダイヤモンド析出用原料化合物を不完全
燃焼領域を有するように燃焼させて気相法ダイヤモンド
を合成する方法において、函体中で粒体又は粉体である
ダイヤモンド析出用基材を流動させることを特徴とする
気相法ダイヤモンドの合成法。
1. In a method of synthesizing diamond using a vapor phase method by burning a carbon-containing raw material compound for diamond precipitation so as to have an incomplete combustion region, a diamond precipitation base material in the form of granules or powder is fluidized in a box. A vapor phase diamond synthesis method characterized by:
JP9805889A 1989-04-18 1989-04-18 Synthesis method of vapor phase diamond Expired - Fee Related JP2680676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9805889A JP2680676B2 (en) 1989-04-18 1989-04-18 Synthesis method of vapor phase diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9805889A JP2680676B2 (en) 1989-04-18 1989-04-18 Synthesis method of vapor phase diamond

Publications (2)

Publication Number Publication Date
JPH02279593A true JPH02279593A (en) 1990-11-15
JP2680676B2 JP2680676B2 (en) 1997-11-19

Family

ID=14209712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9805889A Expired - Fee Related JP2680676B2 (en) 1989-04-18 1989-04-18 Synthesis method of vapor phase diamond

Country Status (1)

Country Link
JP (1) JP2680676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217700A (en) * 1990-12-15 1993-06-08 Fujitsu Limited Process and apparatus for producing diamond film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217700A (en) * 1990-12-15 1993-06-08 Fujitsu Limited Process and apparatus for producing diamond film

Also Published As

Publication number Publication date
JP2680676B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP2597497B2 (en) Synthesis method of vapor phase diamond
US5491028A (en) Enhanced adherence of diamond coatings
US5876683A (en) Combustion flame synthesis of nanophase materials
US5674572A (en) Enhanced adherence of diamond coatings employing pretreatment process
US5783335A (en) Fluidized bed deposition of diamond
JPH02279593A (en) Method for synthesizing diamond by vapor method
Makris et al. Carbon nanotubes growth by HFCVD: effect of the process parameters and catalyst preparation
US5268201A (en) Composite diamond grain and method for production thereof
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JP2619557B2 (en) Synthesis method of vapor phase diamond
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP2651773B2 (en) Vapor phase diamond synthesis method and synthesis apparatus
JPH0255294A (en) Method for synthesizing diamond by vapor process
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JP2597498B2 (en) Synthesis method of vapor phase diamond
JPH02192491A (en) Method for synthesizing diamond of vapor process
JP2786721B2 (en) Synthesis method of diamond by combustion flame
Murakawa et al. Diamond coating using multiple flame torches in an atmospheric chamber
JPH02267193A (en) Method for synthesizing diamond by combustion flame method and gas burner for synthesis
JP2839612B2 (en) Synthesis method of vapor phase diamond
JPH0393640A (en) Production of diamond particle by continuous gas phase method
JPH04139014A (en) Production of silicon carbide
JPH01157497A (en) Production of granular diamond
JPH0274591A (en) Deposition of diamond film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees